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Abstract

Significance: As one part of the central nervous system, the retina manifests neurovascular
defects in Alzheimer’s disease (AD). Quantitative imaging of retinal neurovascular abnormal-
ities may promise a new method for early diagnosis and treatment assessment of AD. Previous
imaging studies of transgenic AD mouse models have been limited to the central part of the
retina. Given that the pathological hallmarks of AD frequently appear in different peripheral
quadrants, a comprehensive regional investigation is needed for a better understanding of the
retinal degeneration associated with AD-like pathology.

Aim: We aim to demonstrate concurrent optical coherence tomography (OCT) and OCT angi-
ography (OCTA) of retinal neuronal and vascular abnormalities in the 5XFAD mouse model and
to investigate region-specific retinal degeneration.

Approach: A custom-built OCT system was used for retinal imaging. Retinal thickness, vessel
width, and vessel density were quantitatively measured. The artery and vein (AV) were classified
for differential AVanalysis, and trilaminar vascular plexuses were segmented for depth-resolved
density measurement.

Results: It was observed that inner and outer retinal thicknesses were explicitly reduced in the
dorsal and temporal quadrants, respectively, in 5XFAD mice. A significant arterial narrowing in
5XFAD mice was also observed. Moreover, overall capillary density consistently showed a
decreasing trend in 5XFAD mice, but regional specificity was not identified.

Conclusions: Quadrant- and layer-specific neurovascular degeneration was observed in 5XFAD
mice. Concurrent OCT and OCTA promise a noninvasive method for quantitative monitoring of
AD progression and treatment assessment.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the fifth leading cause
of death in Americans over 65 years.1 The death rate resulting from AD soared 123% between
2000 and 2015,1 and it is anticipated that one in every 85 people will be living with AD by 2050.2

There is no cure for AD to date; thus, early detection and therapeutic interventions are imperative
to prolong cognitive function in AD patients.3,4 A definitive diagnosis of AD can be achieved by
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cerebrospinal fluid assays or positron emission tomography imaging.5,6 However, these methods
are often invasive, costly, time-consuming, and limited in their availability.

There is ample evidence to support that the retina and brain share common pathological
hallmarks of AD,7,8 highlighting the potential usefulness of retinal examination for AD
diagnosis. Beta-amyloid (Aβ) deposits in the retina were found to be associated with brain
Aβ burden,9,10 and morphological and functional impairments of the retina were also observed
in AD patients.11,12 Given the clear optics of the eye, the retina offers easy accessibility
to ocular imaging modalities, enabling noninvasive, cost-effective, and rapid screening to
define at-risk AD populations. Accordingly, over the past decade, substantial progress has
been made in retinal imaging techniques, such as retinal fluorescent imaging,13 fluorescence
lifetime imaging,14 hyperspectral imaging,15 spectrophotometric fundus imaging,16 optical
coherence tomography (OCT),17 and OCT angiography (OCTA),18 to detect AD-associated
abnormalities.

With depth-resolved capabilities, OCT and OCTA have been mostly used in clinical studies.
OCT illustrated morphological abnormalities in the retina associated with AD,17 and OCTA
demonstrated functional abnormalities in the retinal vasculature in AD patients.18 However, the
clinical results often conflicted with each other,19,20 and age-related confounding factors cannot
be easily excluded in measurement,21,22 limiting reliable interpretations for retinal changes asso-
ciated with AD. To better understand the causation of AD in the retina, studies using transgenic
mouse models, recapitulating amyloid plaques, neurofibrillary tangles, or neurodegeneration,23

have been recently demonstrated. Georgevsky et al.24 used spectral-domain OCT in APP/PS1
mice and observed significant inner retinal thinning at 9 months and outer retinal thinning at
12 months. Harper et al.25 used multicontrast OCT in APP/PS1 mice and found that retinal vessel
density and retinal thickness were comparable between the transgenic mice and control mice at
54 to 103 weeks old. Song et al. conducted an ex vivo study using OCT and angle-resolved low-
coherence interferometry in 3xTG-AD mice at 15 to 16 months of age. They found significant
nerve fiber layer (NFL) thinning and scattering parameters changes on the NFL in 3xTG-AD
mice.26 Lim et al.27 used spectral-domain OCT in 5XFAD mice and found significant NFL
thinning at 6, 12, and 17 months of age.

The previous animal studies well demonstrated comparative results between transgenic and
control mice; however, their quantitative analysis was mainly performed at the central retina, i.e.,
the optic nerve head (ONH) region. Since pathological hallmarks frequently appear in different
peripheral quadrants of the human retina in AD,13,20,21,28,29 comprehensive regional monitoring
would provide better insights into AD-associated retinal degeneration. Moreover, comparative
imaging of retinal neuronal and vascular systems may become a useful tool to study pathological
mechanisms of AD-associated retinal degeneration in different mouse models. In this study,
concurrent OCT/OCTA monitoring of retinal neuronal and vascular abnormalities in all retinal
quadrants (up to ∼30- deg eccentricity from the ONH) in the 5XFAD mouse model of AD was
first-time demonstrated. A clear trend toward a reduction in both retinal thickness and vascular
parameters was found in different regions of the 5XFAD mouse retina.

2 Materials and Methods

2.1 Animals

Six-month-old female 5XFAD mice (N ¼ 5) and B6SJLF1/J mice (WT; N ¼ 6) were used in
this study. 5XFAD mice overexpress mutated versions of the human amyloid precursor protein
(APP) and human presenilin-1, resulting in Aβ plaques in the brain and retina.30 It is well doc-
umented that 6-month-old 5XFADmice showed behavioral deficits,31 neuronal death,32 capillary
stalling,33 and abnormal tissue viscoelasticity in brain subregions.34 All the mice were directly
obtained from the Mutant Mouse Resource and Research Center (MMRRC Stock No. 34840-
JAX; Jackson Laboratory, Bar Harbor, Maine) after genotyping for the Pde6brd1 mutation. Thus,
the 5XFAD mice homozygous for the recessive Pde6brd1 allele were not included in this study to
ensure that visual impairments did not affect results.
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2.2 Imaging System

A custom-designed spectral-domain OCT system was used in this study. The system has been
employed in multiple functional OCT/OCTA studies.35–37 Briefly, a near-infrared superlumines-
cent diode (λ ¼ 810 nm; Δλ ¼ 100 nm; D-810-HP, Superlum, Carrigtwohill, County Cork,
Ireland) was used as a light source. A line CCD camera with 2048 pixels (AViiVA EM4;
e2v Technologies, Chelmsford, United Kingdom) was used for recording OCT spectra in the
custom-built OCT spectrometer. The frame rate of the camera was set to 50 kHz. The axial and
lateral resolutions were theoretically estimated as 2.9 and 11 μm, respectively. The measured
axial resolution from the scattering profile of the external limiting membrane (ELM) was
3.4 μm. The ELM is the thin line of junctional complexes between Müller cells and photore-
ceptors (<1 μm thickness), which can be well described by a Gaussian to confirm the axial point
spread function.38 1-mW power was illuminated on the mouse cornea.

2.3 Experimental Procedures

Anesthesia was intraperitoneally induced by a mixture of ketamine (100 mg∕kg body weight)
and xylazine (5 mg∕kg body weight), and a drop of 1% tropicamide ophthalmic solution
(Akorn, Lake Forest, Illinois) was applied to the imaging eye. Next, a cover glass (12-545-
80; Microscope cover glass, Fisherbrand, Waltham, Massachusetts) with a drop of eye gel
(Severe; GenTeal, Novartis, Basel, Switzerland) was placed on the imaging eye. After the mouse
was fully anesthetized, the head was fixed by a bite bar and ear bar in the animal holder that
provided five degrees of freedom (i.e., x, y, z, pitch, and roll). Volumetric raster scans were
individually acquired from each retinal quadrant (dorsal, nasal, temporal, ventral quadrant, and
the ONH). The ONH region was first captured, which can serve as a central point of the retina,
and the dorsal/ventral quadrants were captured, followed by the nasal/temporal quadrants. Four
repeated B-scans at each slow-scan position were collected for OCTA construction; thus, each
OCT volume consisted of 4 × 600 × 600 A-scans. All animal experiments were approved by the
local animal care and biosafety office and performed following the protocols approved by the
Animal Care Committee (ACC) at the University of Illinois at Chicago (ACC Number: 19-044).
This study followed the Association for Research in Vision and Ophthalmology Statement for
the Use of Animals in Ophthalmic and Vision Research.

2.4 OCTA Image Processing

The OCTA images were constructed by implementing intensity-based speckle variance
processing.39 Next, retinal flattening was performed by realigning each A-line. Three vascular
layers were then manually segmented for vessel density analysis (Fig. 1), i.e., the superficial
vascular plexus (SVP), intermediate capillary plexus (ICP), and deep capillary plexus (DCP).40

For each segmented layer, en face OCTA image was reconstructed by maximum intensity
projection, and a Hessian-based vessel enhancement method proposed by Jerman was used
to enhance vasculature in each en face image.41 After that, binarization for the SVP was done
by adaptive thresholding, and binarization for the ICP and DCP was done by ridge-based vessel
detection method.42 All binarized images were further processed by morphological opening
operation to remove small particle noises. Image processing was performed on MATLAB
R2016a (MathWorks, Natick, Massachusetts), in coordination with image processing package
available in Fiji software.43

2.5 Data and Statistical Analysis

Retinal thickness, vascular width, and vascular density were measured for quantitative compari-
son. For thickness measurement, flattened OCT-B scans were prepared, and large vessels were
manually removed to measure the retinal thickness solely [Fig. 1(k)]. Central 200 A-lines
were averaged in the horizontal direction, returning one averaged intensity profile [Fig. 1(l)].
The regions in where the vessels were manually removed [Fig. 1(k)] were excluded from the
averaging. Based on the average profile, the NFL, inner retinal layer, outer retinal layer, and
total retinal thickness were manually measured [Fig. 1(m)]. For vascular width measurement,
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the artery and vein (AV) around the ONH were first classified by referring vascular morphology
on radially resliced OCT B-scans,44 and the vessel width of all first branches was measured based
on the circular profile, 300 μm away from the ONH [Figs. 1(n)–1(p)]. The full-width at half-
maximum (FWHM) was measured using the “findpeaks” function (MATLAB R2016a,
MathWorks, Natick, Massachusetts) in determining the vessel diameter. The vessel density for
each plexus was defined as the percentage of area occupied by vasculature in the binarized
OCTA images. The two-sample t-test was performed for the statistical comparison between
WT and 5XFAD, and a p-value < 0.05 was considered statistically significant. In this study,
each quadrant measurement was treated as an independent sample based on the current under-
standing that AD-associated retinal degeneration appears in a specific retinal region, and this
local effect does not affect measurements for other quadrant observations.20,21 Statistical analysis
was performed on Origin 2020b (OriginLab, Northampton, Massachusetts).

3 Results

Figure 2 shows wide-field OCT and OCTA montages, consisting of four retinal quadrant images
of a WTand 5XFAD mouse. Total imaging area covers ∼2.2 mm × 2.2 mm of the central retina,

Fig. 1 OCTA binarization procedures. Representative en face OCTA of (a) SVP, (d) ICP, and
(g) DCP in dorsal quadrant of the mouse retina. (b), (e), (h) Vessel enhancement was performed,
followed by (c), (f), (i) binarization processing. (j) Flattened OCT B-scan. (k) Flattened OCT B-scan
after vessel removal. Scale bars: 100 μm. (l) Representative A-line intensity profile. (m) Thickness
measurement points. Midpoints of ascending and descending slopes of the NFL intensity
profile, the OPL peak point, and the RPE/CH trough point were used in the measurement.
(n) Pseudocolored en face OCTA image (red for arteries and blue for veins). Vessel width was
measured at FWHM of the intensity profile of the yellow dashed circle. Scale bars: 200 μm.
Representative pseudoradial OCT B-scans illustrate the different reflectance profiles between the
(o) artery and (p) vein. NFL, nerve fiber layer; IPL, inner plexiform layer; INL, inner nuclear layer;
OPL, outer plexiform layer; ONL, outer nuclear layer; ELM, external limiting membrane; ISe, inner
segment ellipsoid; IS, inner segment; OS, outer segment; RPE, retinal pigment epithelium; BM,
Bruch’s membrane; CH, choroid.
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which is ∼61- deg visual angle by the conversion factor of 36 μm per degree of visual angle. The
conversion factor was estimated based on a recent work demonstrating the adult mouse eye
model incorporated with a contact lens and gel thickness information.45 This field of view can
partially visualize network topologies of the mouse retina vasculature. Arteries and veins radially
emanate from the ONH, whereas the capillary plexus reveals a circular mesh structure centered at
the ONH.46 Retinal abnormalities were not recognized between the WT and 5XFAD mouse
through visual inspection, implying only subtle changes might occur in the 5XFAD mouse
retina. Each quadrant OCT and OCTA volume was then individually processed and analyzed
for the quantitative assessment.

We first analyzed neuronal change by retinal thickness measurement. The thickness of the
NFL, inner retina, and outer retina were separately measured at the consistent position, ∼600 μm
away from the ONH in each quadrant. Overall, the NFL thickness (WT: 12.4� 1.6 μm;
5XFAD: 11.2� 2.0 μm; p ¼ 0.042), inner retinal thickness (WT: 79.8� 2.3 μm; 5XFAD:
77.9� 3.1 μm; p ¼ 0.033), and outer retinal thickness (WT: 101.3� 2.3 μm; 5XFAD:
98.7� 2.4 μm; p ¼ 0.001) were significantly reduced in 5XFAD mice (Fig. 3). Accordingly,
total retinal thickness was significantly lower in 5XFAD mice compared with WT mice
(WT: 191.2� 3.8 μm; 5XFAD: 188.0� 4.1 μm; p ¼ 0.014). Quadrant analysis also showed
a consistent retinal thinning in different regions. There seems to be a trend that the dorsal area
in the inner retina showed an advanced retinal thinning compared with the ventral side. The NFL
in the dorsal quadrant was notably thinner in 5XFAD mice (WT: 13.4� 2.0 μm; 5XFAD:
10.8� 2.1 μm; p ¼ 0.063) [Fig. 3(e)]. Another notable observation is the reduction of the outer
retinal thickness. All quadrants showed a reduction in the outer retina, and the difference in the
temporal quadrant was statistically significant (WT: 101.1� 2.9 μm; 5XFAD: 97.4� 1.3 μm;

Fig. 2 Wide-field OCT and OCTA montages of (a), (c) the WT and (b), (d) the 5XFAD mouse
retina. The color bar indicates the depth scale from the retinal surface to the outer plexiform layer.
Scale bars: 200 μm.
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p ¼ 0.034) [Fig. 3(g)]. Collectively, retinal thinning in all quadrants was clearly demonstrated in
6-month-old 5XFAD mice, and retinal thinning was attributed not only to the inner retina but
also to the outer retina.

We next investigated vascular changes. To quantify the vascular narrowing/widening effect,
we measured arterial and venular width following the circular profile around the ONH with radii
of 300 μm. AV classification was achieved by the pseudoradial scanning method.44 Figures 1(o)
and 1(p) show the radial OCT B-scans showing hyperreflective wall boundaries in retinal
arteries, whereas these wall boundaries were absent in retinal veins. We found a significant
arterial narrowing in 5XFAD mice (WT: 33.6� 4.7 μm; 5XFAD: 28.3� 4.8 μm; p < 0.0001

for average arterial width comparison, p ¼ 0.007 for average arterial width per mouse compari-
son, i.e., the average of the mean of each mouse dataset) [Fig. 4(a)], and the venular width was
comparable between WT and 5XFAD mice (WT: 33.9� 10.6 μm; 5XFAD: 31.1� 10.1 μm;
p ¼ 0.309 for average venular width comparison, p ¼ 0.201 for average venular width per
mouse comparison, i.e., the average of the mean of each mouse dataset) [Fig. 4(b)]. The venular
width exhibited more variations than the arterial width and did not show significant alterations
between the two strains.

Fig. 3 Comparative retinal thickness measurement. (a) Overall NFL thickness and (e) quadrant
specific measurement. (b) Overall inner retinal thickness and (f) quadrant-specific measurement.
(c) Overall outer retinal thickness and (g) quadrant-specific measurement. (d) Overall total retinal
thickness and (h) quadrant-specific measurement. Black dots in (a)–(d) indicate individual data
points measured from each retinal quadrant. Data are expressed as mean� standard deviation
per group. A two-sample t -test was performed for intergroup comparison. P-values are indicated
in each plot, and statistical significance is indicated by an asterisk: *P < 0.05. N ¼ 6 for WT
(wild-type) and N ¼ 5 for TG (transgenic 5XFAD).

Fig. 4 Split-violin plots of (a) arterial width measurement and (e) venular width measurement.
Data are expressed as mean� standard deviation per group. A two-sample t -test was performed
for intergroup comparison. P-value for statistical significance is indicated by an asterisk.
*P < 0.05. N ¼ 6 for WT (wild-type) and N ¼ 5 for TG (transgenic 5XFAD).
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Next vascular density was analyzed. The vasculature observed in OCTA reflects functional
vessels.47 To measure the layer-specific change, trilaminar vascular plexuses were segmented
(Fig. 1). Figure 5 shows that the vessel density in the SVP was comparable between WT and
5XFAD mice (WT: 21.2� 1.8%; 5XFAD: 21.4� 1.3%; p ¼ 0.606), whereas the overall
capillary density showed a decreasing trend in 5XFAD mice. Especially, the ICP density reduc-
tion in 5XFAD mice was close to being statistically significant (WT: 14.7� 1.5%; 5XFAD:
13.7� 1.6%; p ¼ 0.056) [Fig. 5(b)]. We also found that capillary density consistently showed
a decreasing trend in all retinal quadrants, although quadrant specificity tends to vary [Figs. 5(e)
and 5(f)]. Collectively, the results demonstrate that the arterial narrowing effect was significant in
5XFAD mice, and functional capillary density in all quadrants was reduced in 5XFAD mice.

4 Discussion

In this study, region-specific neurovascular degeneration was found in 6-month-old 5XFAD
mice. Significant inner retinal thinning was first noted in 5XFAD mice (Fig. 3), consistent with
a recent finding of selective inner retinal deficits in 5XFAD mice at 6 months.27 The retinal
thinning generally indicates neuronal death,48 and increasing evidence suggests that Aβ deposits
in the inner retina may be associated with degeneration of retinal ganglion cells.49 Especially, the
5XFAD mouse model was found with the highest concentration of Aβ peptides in the brain and
retina among AD mouse models.50 Although the exact role of Aβ in AD pathology remains an
open question, it is believed that aggregation of extracellular Aβ can disrupt cellular commu-
nication and activities, which can damage synapses and ultimately induce neuronal cell death.51

In a recent study, notable Aβ accumulation was found around degenerating retinal ganglion cells
in AD subjects.9 Also, we confirmed consistent outer retinal thinning in all quadrants [Fig. 3(g)].
The reason can be attributed to aggressive Aβ deposition not only in the inner retina but also in
the outer retina in 5XFAD mice. It was reported that Aβ was largely accumulated in the 5XFAD
retina under the retinal pigment epithelium (RPE), which might cause inflammation and
contribute to photoreceptor cell death.52,53 Likewise, increased Aβ deposits around the rod
photoreceptors were recently observed in AD subjects along with outer retinal thinning.13,54

The presence of Aβ may cause defects in photoreceptor cell function and potentially contribute

Fig. 5 Comparative vessel density measurement. (a) Overall SVP density and (d) quadrant-spe-
cific measurement. (b) Overall ICP density and (e) quadrant-specific measurement. (c) Overall
DCP density and (f) quadrant-specific measurement. Black dots in (a)–(c) indicate individual data
points measured from each retinal quadrant. Data are expressed as mean� standard deviation
per group. A two-sample t -test was performed for intergroup comparison.P-values are indicated in
each plot. N ¼ 6 for WT (wild-type) and N ¼ 5 for TG (transgenic 5XFAD).
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to visual impairments in AD subjects as reflected by the reduction of contrast sensitivity, visual
acuity, color vision, and visual field.55

Six-month-old 5XFAD mice also manifested vascular abnormalities in the retina. Arteries
showed a significant narrowing in 5XFADmice [Fig. 4(a)], which might be a consequence of the
capillary flow deficits. Although capillary density reduction did not reach statistical significance,
the ICP and DCP consistently exhibited a decreasing trend in all quadrants of the 5XFAD mouse
retina [Figs. 5(b) and 5(c)]. Hernández et al.33 found that capillary stalling was elevated in
6-month-old 5XFAD mice and described that a small portion of capillary occlusion could
dramatically decrease blood flow in up-and-down-stream vessels, resulting in the blood flow
changes on cerebral blood flow. Nortley et al. also suggested that capillaries could be the most
critical locus where Aβ can decrease cerebral blood flow,56 and reduced blood flow was found to
increase inAβ deposition, suggesting that blood flow deficits can further worsenAβ pathology.57

However, there is an opposite pathophysiological basis that angiogenesis can occur in response
to impaired cerebral perfusion and vascular injury.58 Such inflammation due to Aβ accumulation
can induce the retina to become hypoxic and trigger angiogenesis,19 which can cause increased
vessel density observed in OCTA.59 A recent clinical study reported capillary density increase in
AD subjects,60 while others reported the opposite results.61,62 We speculate that capillary density
may increase at the initial stage of the Aβ accumulation. However, at the later stage, when neuro-
nal cell loss occurs, capillary density may naturally decrease due to a reduction of metabolic
demand and damaged endothelial cells. A further longitudinal study is required to verify this
hypothesis.

Individual quadrant OCT/OCTA analysis suggested that neurovascular degeneration may
occur in all retinal regions, but there seems to be a trend of regional specificity in terms of
degeneration progress. Retinal thinning of the NFL and outer retina was distinguished in the
dorsal and temporal quadrant, respectively, in 5XFAD mice (Figs. 3 and 5). Song et al.26 also
found different light scattering parameters only in the dorsal quadrant in AD mouse retinas.
In fact, a region-specific degeneration is not only limited to the animal models but also appeared
in human subjects with AD.21 Previous studies demonstrated that retinal changes were predomi-
nantly focused on the superior and inferior regions of the NFL in AD subjects.28,29 Querques
et al.12 reported that ganglion cell layer thickness was reduced in AD subjects only in the central
and temporal retinal region. Koronyo et al.13 found that Aβ plaques mainly appeared in the
periphery of the superior quadrant, whereas some regional changes were discovered in each
retinal layer differentially.54 Such discrepancy requires further verification of region-specific
changes in the retina associated with AD pathology.

This study has three limitations to be addressed. First, a relatively small sample size was used
in this cross-sectional study, which naturally lowered the statistical power to draw a definitive
conclusion. Prospective longitudinal monitoring with an increasing sample size would further
elucidate retinal abnormalities associated with AD pathology in transgenic mouse models.
Second, there was no conclusive biomarker confirmation. Postmortem histopathology would
be helpful to confirm the presence of AD biomarkers, such as Aβ42, total tau (T-tau), and
phosphorylated tau (P-tau), in different retinal regions to correlate the level of biomarkers with
OCT/OCTA features. Third, it is important to be aware of anesthesia-related cardiovascular
effects, including changes in blood pressures, cardiac output, and varying heart rhythms.
The ketamine–xylazine mixture is known to have potent cardiodepressive effects that can
potentially lower local vessel diameter and blood flow over time.63,64 Since the effect is time-
dependent, in this study, the ONH region was always first captured in each mouse, and vessel
width measurement was performed around the ONH [Fig. 1(n)]. Monitoring vital signs during
image acquisition would allow for better understanding of anesthesia-related cardiovascular
effects on the mouse retina. Despite the limitations of this study, in vivo full quadrant imaging
may provide a foundation for future detailed exploration of the relationship between retinal
neurovascular defects and AD-associated retinal degeneration.

5 Conclusions

This study demonstrates in vivo OCT/OCTA monitoring of all retinal quadrants, which
allowed examining region-specific neurovascular degeneration in the 5XFAD mouse retina.
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Six-month-old 5XFAD mice revealed that inner and outer retinal degeneration were explicitly
advanced in the dorsal and temporal quadrant, respectively. The arterial narrowing was observed
in 5XFAD compared with wild-type mice. Overall decrease of measured capillary density was
also observed in 5XFAD mice, suggesting a tight correlation between retinal neurons and vas-
culature. The proposed imaging strategy promises a noninvasive method for longitudinal mon-
itoring of AD progression and treatment assessment in transgenic mouse models of AD.
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