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Abstract. Functional near-infrared spectroscopy (fNIRS) is a noninvasive brain imaging technique to measure
evoked changes in cerebral blood oxygenation. In many evoked-task studies, the analysis of fNIRS experiments
is based on a temporal linear regression model, which includes block-averaging, deconvolution, and canonical
analysis models. The statistical parameters of this model are then spatially mapped across fNIRS measurement
channels to infer brain activity. The trade-offs in sensitivity and specificity of using variations of canonical or
deconvolution/block-average models are unclear. We quantitatively investigate how the choice of basis set
for the regression linear model affects the sensitivity and specificity of fNIRS analysis in the presence of vari-
ability or systematic bias in underlying evoked response. For statistical parametric mapping of amplitude-based
hypotheses, we conclude that these models are fairly insensitive to the parameters of the regression basis for
task durations >10 s and we report the highest sensitivity-specificity results using a low degree-of-freedom
canonical model under these conditions. For shorter duration task (<10 s), the signal-to-noise ratio of the
data is also important in this decision and we find that deconvolution or block-averaging models outperform
the canonical models at high signal-to-noise ratio but not at lower levels. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.NPh.6.2.025009]
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) is a noninvasive
brain imaging technique that measures evoked hemodynamic
changes in the brain using low levels of red to near-infrared
light. For these measurements, an arrangement of light sources
and detectors is placed on the scalp. Although, depending on an
individual’s anatomy, the light traveling through the tissue from
a source to a detector position (usually 25 to 35 mm away) can
reach the outer layers of the cortex of the brain, which provides
sensitivity to measure superficial changes in brain activation in
between a light source and detector pair. In most studies, two or
more wavelengths of light are recorded, which provide informa-
tion to spectrally distinguish both oxy-hemoglobin (HbO2) and
deoxy-hemoglobin (Hb) changes via modified Beer–Lambert
law.1 Using a grid of optical light sources and detector positions,
fNIRS can record the spatial distribution of changes in hemo-
globin during functional tasks, providing a measurement of
underlying brain activity.

When compared to other popular brain imaging, such as
functional magnetic resonance imaging (fMRI), fNIRS offers
more portability and the ability to record the brain during
more ecologically valid conditions. For example, fNIRS has
been employed in functional imaging of infants (see Refs. 2

and 3, for a review), gait (e.g., Refs. 4 and 5), two-person
brain connectivity [(hyperscanning) e.g., Refs. 6 and 7], bedside
imaging (see Refs. 3 and 8, for a review), etc. However, fNIRS
has a lower spatial resolution compared to fMRI (around 2 to
3 cm). This technique is also prone to systemic physiological
noise and motion artifacts (see Ref. 9, for review). Isolating the
evoked signals from the unwanted noises is a challenge and an
area of open investigation (see Ref. 10, for review). Nonetheless,
the use of fNIRS has been steadily growing over the past two
decades, particularly in niche applications and populations
where more conventional modalities such as fMRI are more
difficult or constraining.

Similar to fMRI, fNIRS infers changes in brain activity based
on the changes in the hemodynamic signal (blood oxygenation
level-dependent signal), which relates to the underlying electro-
physiological processes via complex neurovascular coupling (i.
e., relationship between the local neural activity and the oxygen
levels of hemoglobin in the blood of the cerebral cortex).
Previous work has shown a strong correlation between fNIRS
and fMRI signals temporally11,12 and spatially.13,14 Because of
this correlation, the time-series analysis of fNIRS data is
often similar to that of fMRI and is generally based on mapping
the statistical parameters from a regression-based model of the
time course of measurements. In this paper, we extend the pre-
vious published works of our group,15,16 detailing these models
and the statistical generalizations needed for fNIRS data. For
example, compared to fMRI, fNIRS instruments typically sam-
ple at a higher rate (5 to 20 Hz); however, fNIRS still measures
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the relatively slow hemodynamic response and this requires
modification to the statistical model to account for this oversam-
pling, as detailed in Huppert.9

Because it is more portable and less restrictive, fNIRS is
widely used with infants, children, and other special popula-
tions. This also allows fNIRS to be used in a wider variety
of different experimental conditions and environments. Over
the past few years, the use of fNIRS in these populations and
tasks has called into question the appropriateness of using
regression-based canonical models based on the “normal”
hemodynamic response function (HRF) observed in fMRI
work. In particular, the canonical models make assumptions
about the shape and timing of the brain’s response, which
may or may not be systematically different in special popula-
tions. As fNIRS sample rates are faster, it could be more sensi-
tive to these errors or valuable information could potentially be
lost in making these assumptions. The objective of this study is
to investigate the sensitivity and specificity of these regression
models applied to fNIRS data. Here, we use receiver operating
characteristic (ROC) analysis to quantify the effects of variabil-
ity and/or bias in the shape of the underlying hemodynamic
response on the regression methods and to determine under
what circumstances different models may be preferred. In
this work, we have used numerical simulation methods to
look at the effects of several HRFs with varying different param-
eters, including various signal-to-noise ratio (SNR) levels and
various durations of the task period.

2 Theory

2.1 Functional Near-Infrared Spectroscopy Linear
Statistical Models

In fNIRS studies, measurements are made between a series of
discrete light emitter and detector positions on the head. The
intensity of the light transmitted from an emitter to a detector
position is sensitive to changes in the optical absorption of
the underlying tissue along the light’s path through the tissue.
This results in a time course of optical transmission measure-
ments. Concurrent and colocalized measurements at two or
more optical wavelengths are then used for estimating the
changes in the concentration of HbO2 and Hb using the modi-
fied Beer–Lambert law1 and given by
EQ-TARGET;temp:intralink-;e001;63;287

ΔODiðλ; kÞ ¼ ½εHbO2ðλÞΔcHbO2

i ðkÞ
þ εHbðλÞΔcHbi ðkÞ�liPPFðλÞ; (1)

where i is the channel index, λ is the wavelength of the laser
source, ΔODðλ; kÞ is the optical density variation at time k,
and εHbO2 and εHb are the absorption coefficients of HbO2 and
Hb. Here, ΔcHbO2 and ΔcHb are the changes of HbO2 and Hb
concentration levels, respectively; l is the distance between the
source and the detector; and PPF is the partial pathlength factor,
which corrects for the increased effective distance traveled by
the light due to scattering and the partial volume factor account-
ing for the fraction of this path that was actually in the volume of
interest (brain).1

In many fNIRS studies, these changes in hemoglobin are
recorded over time during some variation of a repeated cognitive
task(s). The fNIRS signals between each source-to-detector pair
are analyzed using a general linear regression model to test for
statistical differences between the baseline and the task condi-
tions for each scan. This approach is similar to fMRI, although

several differences in the structure of noise in fNIRS compared
to other modalities should be noted (see Ref. 9, for review).
First-level statistical models for examining evoked signal
changes are given by a regression model described by the
equation

EQ-TARGET;temp:intralink-;e002;326;697Y ¼ X � β þ ϵ; (2)

where X is the design matrix encoding the timing of stimulus
events, β is the coefficient (weight) of that stimulus condition
for that source–detector channel, and Y is the vector of measure-
ments. The design matrix (X) can come from either a canonical
model of the expected response or a deconvolution model
(described in next section). We note that the traditional
block-averaging is also described by this Eq. (2) and can be con-
sidered a subset of the deconvolution model,17 in the case of
non-overlapping events. In Eq. (2), ϵ is the measurement
noise/error term. The validity of this model depends on the prop-
erties of ϵ and the matching statistical assumptions (in most
cases, ϵ is assumed to be an uncorrelated, normally distributed,
zero mean random variable). Details on these assumptions and
their effect on the regression results when the noise is nonideal
can be found in Ref. 9.

In general, statistical testing of the regression coefficients (β)
to either compare these to zero (baseline) or between two task
conditions is used for inferring the location and level of brain
activity using a Student’s t-test. While there are a few
approaches to solving Eq. (2), which have been used in fNIRS
analysis including generalized linear models (e.g., Refs. 9, 16,
18, and ordinary least-squares regression19), in this paper, we
will use the NIRS-specific generalized linear model formulation
proposed by Barker et al.15

2.2 Prewhitened and Robust Linear Model

In this work, we used a NIRS-adopted version of the general
linear model, as previously described in Barker et al.15 This
approach uses an autoregressive prewhitening method and an
iteratively reweighted least squares (AR-IRLS) to control
type-I errors in the fNIRS statistical model. This approach
has been previously shown to have excellent sensitivity-speci-
ficity properties in comparison to ordinary least squares and
other general linear regression models for fNIRS data containing
physiological noise (serial-correlated noise structures) and
motion-related artifacts (heavy-tailed outliers).15 In brief, this
regression model uses an n’th order autoregressive filter
(WAR) determined by an Akaike model-order (AIC) selection
to whiten both sides of this expression, e.g.,

EQ-TARGET;temp:intralink-;e003;326;230WAR � Y ¼ WAR � X � β þWAR � ε: (3)

As described in Barker et al.,15 the regression model is first
solved using robust regression and the residual noise is then fit
to an AR model. This filter (WAR) is applied to both sides of the
original model and then resolved and repeated until conver-
gence. This AR filter removes serially correlated errors in the
data that result from physiological noise and/or motion artifacts.
AR whitening, however, does not address the heavy-tailed noise
from motion artifacts. To do this, the AR-whitened model is
solved using robust weighted regression, which is a procedure
to iteratively downweight outliers, such as motion artifacts

EQ-TARGET;temp:intralink-;e004a;326;89S · WAR � Y ¼ S · WAR � X � β þ S · WAR � ε; (4a)

Neurophotonics 025009-2 Apr–Jun 2019 • Vol. 6(2)

Santosa et al.: Investigation of the sensitivity-specificity of canonical. . .



where S is

EQ-TARGET;temp:intralink-;e004b;63;741S
�rW
σ

�
¼

�
1 −

�rW
σ·κ

�
2

�� rW
σ

�� < κ
0

�� rw
σ

�� ≥ κ
; (4b)

which is the square root of Tukey’s bisquare function20 and is
the same model as used in Eq. (4) from Barker et al.,15 where rw
is the regression residual (rw ¼ S · WAR � ε). The tuning con-
stant κ is typically set to 4.685, which from theory provides
95% efficiency of the model in the presence of normally distrib-
uted errors and σ is the standard deviation of the residual noise
in the model.

Using this model, the regression coefficients (β) and their
error covariance is estimated, which is used in defining the stat-
istical tests between task conditions and baseline. The regression
model is solved sequentially for each data file for each subject.
All source–detector pairs within a file are solved concurrently
yielding a full covariance model of the noise, which is used in
group-level and region-of-interest analyses. The estimate of β
and its covariance matrix is given by the expressions
EQ-TARGET;temp:intralink-;e005a;63;530

β ¼ ðXT · WT
AR · ST · S · WAR · XÞ−1 · XT · WT

AR · ST · S

· WAR · Y; (5a)

EQ-TARGET;temp:intralink-;e005b;63;475Covβ ¼ ½ðWAR · XÞT �WAR · X�−1 · σ2; (5b)

EQ-TARGET;temp:intralink-;e005c;63;453σ2 ¼ ðWAR · Y −WAR · X � βÞT · ðWAR · Y −WAR · X · βÞ:
(5c)

2.3 Linear Regression Design Model (X )

In the fNIRS field, there is a controversy on what type of design
model should be used for linear regression analysis. Namely, it
is not clear what effect the assumption of a fixed temporal shape
of the response or the use of specific time window for computing
the contrast from a block average or deconvolution model has
on the statistical power for brain signals from special popula-
tions (e.g., infants) that may not have the “typical” adult-like
response. To examine this question, we note that in Eq. (2),
the design model (X) describes the timing of the experimental
task and conditions in the experiment and sets up the hypothesis
that can be tested from the regression coefficients. This design
can take the form of either an unrestricted (full deconvolution)
model or an impulse response model. In the impulse response
model, the response is assumed to be linearly additive such that
(for example) the brain response to a 30-s task is the same as 30
repeated 1-s duration tasks building up on top of each other. In
this model, only the hemodynamic impulse response function is
estimated, which generally is thought to peak around 6 to 8 s and
recover to baseline around 12 to 15 s. This impulse response is
assumed to be the same for tasks of any duration. Thus, an ad-
vantage of this model is that it can be used even if the task blocks
have differing durations, as is often the case in self-paced para-
digms. In comparison, for the full deconvolution model, the
entire time course of the block is estimated. For example, in a
30-s duration task, the response over a window of about 45 s
(task plus 15-s recovery to baseline) would be used. Because
the full deconvolution model does not assume the response
to be linearly additive over the task block, it can be used for
examining the saturation or habituation effects of a prolonged
task duration. However, in this 30-s duration example, the
full deconvolution model would require three times more

regression terms compared to the impulse response version
(modeling 45 s of data instead of just the 15-s impulse window).
Note that this discussion of additive linear assumptions applies
to blocked design or slow event-related designed experiments.
In rapid event-related designs, both the full deconvolution and
impulse response models assume linearity. Examples of some-
what simplified full and impulse response models are given in
Eqs. (6a) and (6b).

Full deconvolution model

EQ-TARGET;temp:intralink-;e006a;326;653

2
6666664

Yk

Ykþ1

Ykþ2

Ykþ3

Ykþ4

Ykþ5

3
7777775
¼

2
6666664

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

3
7777775
�
2
4 β1
β2
β3

3
5þ ϵ: (6a)

Impulse response model

EQ-TARGET;temp:intralink-;e006b;326;548

2
6666664

Yk

Ykþ1

Ykþ2

Ykþ3

Ykþ4

Ykþ5

3
7777775
¼

2
6666664

1 0

1 1

1 1

0 1

1 0

1 1

3
7777775
�
�
β1
β2

	
þ ϵ: (6b)

The full model design matrix is constructed where each
column is a vector of 1s at the task onset of each block.
Each column shifts the onset by one entry [Eq. (6b)]. If the vec-
tors of coefficients (β) were plotted down the columns, this
would look like the time course of either the full or the impulse
response. Note that the model described in Eq. (6a) reduces to
the block-averaging equation in the limit that the events are non-
overlapping (specifically, there are no off-diagonal terms in the
matrix XT:X in the Gauss–Markov equation).21 Under this con-
dition, the regression model reduces to a weighted backprojec-
tion (β ¼ 1∕n:XT:Y), which is the block-averaging operation in
terms of the estimation of the beta weights. In block-averaging,
the variance of the coefficients is estimated separately for each
point, whereas in regression its assumed to be normally distrib-
uted with parameter sigma2 [Eq. (5b)]. However, this distinction
is moot when computing the contrast over a time window, as the
parametric t-test, which is often used in these block-averaging
results, reintroduces the normally distributed assumption. Thus,
as commonly implemented by many literatures, e.g., in the
HOMER NIRS software, the Student’s t-test contrast from
block-averaging and deconvolution are equivalent (see Ref. 19,
for more details).

For either the full deconvolution model or the impulse
response model, a basis set (denoted as matrix Γ) can be used
to reparameterize the model such that

EQ-TARGET;temp:intralink-;e007;326;179Y ¼ X � Γ � β 0 þ ϵ: (7)

This models the time course (column of the coefficient vec-
tor) as a linear combination of the basis. This basis set matrix
can be either a complete (lossless) or a restricted (e.g., smooth-
ing or canonical) basis. In this paper, we have explored several
of the commonly used basis sets (e.g., canonical HRF; see
Secs. 2.3.1–2.3.5, for details).

For either the original Eq. (2) or the basis-set reparametrized
Eq. (7) models, then, the estimated model coefficient vector
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βiðkÞ is used to calculate the t-value for a two-tailed t-test to test
the null hypothesis cTβiðkÞ ¼ 0.22 In this study, the
t-statistics of channel i at time step k are obtained using

EQ-TARGET;temp:intralink-;e008;63;719tiðkÞ ¼
cTβiðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̂2i ðkÞcT ½XTðkÞXðkÞ�−1c
p ; (8)

where c is a vector contrast for selecting the coefficient interest
and σ2 is the mean squared error of the residual. The contrast
vector (c) encodes the hypothesis to be tested. For example,
in the deconvolution model, where there is a coefficient
(β) for each estimated time point, the contrast vector
c ¼ ½0 0 1 1: : : 0 0�T would compute the summed contrast over
a window of time.

2.3.1 Canonical hemodynamic response function

The canonical HRF (also commonly referred to as the “double
gamma function” in fMRI literature) models a hemodynamic
response with an undershoot period. This is one possible
basis set that can be used in Eq. (7). This is defined by the fol-
lowing equation:

EQ-TARGET;temp:intralink-;e009;63;510HRF ¼ ba11 � tða1−1Þ
Γða1Þ

� eð−b1�tÞ − c � b
a2
2 � tða2−1Þ
Γða2Þ

� eð−b2�tÞ;
(9)

where b1 (default 1 s−1) and b2 (default 1 s−1) are the dispersion
time constants for the peak and undershoot periods, and a1
(default 4 s) and a2 (default 16 s) are the peak time and under-
shoot time. Here, c (default 1/6) is the ratio of the height of the
main peak to the undershoot, and Γð:Þ is the scalar value of the
gamma function and is a normalizing factor.

An extension of the canonical model is to add the derivatives
in the dispersion (b1) and onset (a1) parameters. In this context,
the expanded basis set can be viewed as a first-order approxi-
mation on a Taylor-series expansion allowing small variations in
the value of these parameters. In these models, a total of three (or
six in the case of second derivatives) regression vectors are used
for each task condition. Using Eq. (8), the statistical test of the
resulting model is then based on the Student’s t-test for nonzero
values of these coefficients. In this work, we have explored the
case in which all three (main term and first derivatives) coeffi-
cients are used to define the statistical test (e.g., c ¼ ½1 1 1�),
which we denote as the “fixed effects” (FE) derivative model
and the case in which two derivative terms are ignored after
solving and only the main term is considered in the contrast
(e.g., c ¼ ½1 0 0�), which we denote as the “random effects”
(RE) derivative model to indicate that these additional derivative
terms are used as nuisance regressors.

2.3.2 Gamma function

The gamma HRF basis set models a hemodynamic response
without an undershoot period. This is defined by the equation:

EQ-TARGET;temp:intralink-;e010;63;146HRF ¼ ba11 � tða1−1Þ
Γða1Þ

� eð−b1�tÞ; (10)

where b1 (default 1 s−1) is the dispersion time constants and a1
(default 6 s) is the peak time.

2.3.3 Boxcar function

The boxcar model uses a constant amplitude block for the dura-
tion of the task event or stimuli pattern. Boxcar function is cre-
ated by a vector of zeros except during the task duration where it
is equal to a constant value (e.g., 1). A limitation of the boxcar
model is that it does not model transitions from baseline to task
and is equivalent to comparing the average of the response mag-
nitude during the entire task period to the entire non-task period.
The transition periods where the brain response is changing
from baseline to task magnitudes are either lumped into the
“task” (thereby diluting the estimate of the average brain activ-
ity) or lumped into the “baseline” estimate (increasing the esti-
mate of the variance of the baseline). This will also create
discontinuities in the time course of the residual error of the
model, which can affect the performance of the autoregressive
prewhitening and the control of type-I errors. We note that this
regression model is the least realistic of the canonical basis sets
examined in this paper because it assumes the brain activity to
change instantaneously. In this work, we used a boxcar shifted
by 4 s to better match the expected peak of the hemodynamic
response.

2.3.4 Finite impulse response

The canonical basis models (canonical HRF, gamma, and box-
car) provide a limited support to the estimate of the hemo-
dynamic shape and impose smoothness and timing information
in the estimate. In contrast, the finite impulse response (FIR)
model or deconvolution model uses an identity operator for
the basis set (or equivalently uses no basis set) and models
the entire temporal shape of the hemodynamic response provid-
ing complete support for any timing or shape of response. In the
full deconvolution model (denoted as FIR in this work), the
model is estimated over the full window of the task duration
as demonstrated in Eq. (6a). We again note that the full decon-
volution model reduces to a block-average model for non-over-
lapping events. In the impulse response version (denoted as FIR-
IRF in this work), the FIR basis models the impulse response
window (16-s duration in this work) and is convolved with dura-
tion of the stimulus task to yield the model of the data [e.g.,
Eq. (6b)]. In both cases, Eq. (8) is used to compute the
Student’s t-test over a time window of the estimated response.
This window must be chosen a priori. In this work, we used the
window of 4 s after the onset of the task to 8 s after the cessation
of the task.

2.3.5 Nonlinear impulse response estimation procedure

Finally, in this work, we also introduced a nonlinear impulse
response estimation procedure. In this model, a canonical
model and first derivatives in dispersion and onset was fit to
the data using our standard AR-IRLS regression procedure.
The residual error (unweighted/unwhitened) was computed
from the model fit. The parameters of the canonical model
were then updated by adjusting the shape based on the coeffi-
cients of the two derivative terms and by noting that these coef-
ficients were related to a first-order Taylor series in dispersion
and onset. A regression model using the new updated canonical
model and updated derivatives was then fit to the residual of the
original model. This was repeated until convergence as a steep-
est decent minimization.
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3 Methods
In this work, simulations were performed to compare the
performance of the various models. To model realistic ranges
of hemodynamic impulse responses, we used the experimentally
recorded data from a finger-tapping experiment given in
Huppert et al.23 These data consisted of responses from 11
healthy right-handed subjects during a 2-s finger-tapping task.
These data were selected because they demonstrated a range of
onset, time-to-peak of the response, and the presence/absence of
post-stimulus undershoots, which had been shown to correlate
with the intersubject variability observed in concurrent fMRI.
Using these normalized response from HbO2 and Hb (Fig. 5
in Ref. 23), we performed a principal component decomposi-
tion, which was then used to create synthetic data as a linear
combination of the eigenvectors. A total of 2200 new HRF
shapes had been generated from these original data and are
shown in Fig. 1. This set of hemodynamic responses had a con-
siderably larger overall support then typically observed in
fNIRS studies with a time to peak that varied between about
3 and 23 s (the typical response is usually thought to be between
6 and 8) and a recovery that varied from 6 to 35 s (typical 12 to
15 s). These simulated responses had between 20% and 100%
(perfect match) overlap with the original canonical response
model. Although not exhaustive, we feel that this set of simu-
lations covers a large variety of expected hemodynamic
responses extending beyond just finger-tapping.

For each simulation, one of the 2200 different impulse
response shapes was taken as the “biological truth” and con-
volved with a randomly generated stimulus-timing paradigm
of a specific duration task between 1 and 30 s. The duty
cycle of the task was kept constant at 20% for all simulations
such that the shorter duration blocks had more trials than the
longer duration blocks. The events were non-overlapping
such that block-averaging and deconvolution were equivalent
in these data. The convolution of the selected impulse response
and the stimulus block timing was added to the experimental
resting-state (no task) fNIRS data taken from Perlman et al.24

These data were measured in 12 channels in the forehead
from 8 sources and 4 detectors in children. A specific con-
trast-to-noise ratio (CNR) between 5:1 [high contrast] and
1:100 [extremely low contrast] was generated. In our experi-
ence, CNR of 1:2 was reasonable for a cognitive task in children
data (e.g., Ref. 24).

The ROC curve analysis was run by generating and analyz-
ing the simulated time courses where activation had been added
to half of the fNIRS source–detector pairs. This was repeated
900 times using a randomly selected resting-state data file
and randomly generated stimulus timing to generate a ROC
curve for each of the eight different regression models
(described in next section). A separate ROC curve was gener-
ated for each of the seven different SNR levels (SNR ¼ 0.01,
0.1, 0.3, 0.5, 1.0, 2.0, 5.0), and eight different task durations
(1-, 2-, 5-, 10-, 15-, 20-, 25-, 30-s durations), and all 2200
impulse response models for a total of 985,600 ROC curves
(7 × 109 total simulations). In this study, we compared eight
different regression models: (i) canonical, (ii) canonical with
derivatives of random effects [canonical+RE(deriv)] (iii) canoni-
cal with derivatives of fixed effects [canonical+FE(deriv)],
(iv) gamma function, (v) boxcar function, (vi) finite impulse
response with impulse response version (FIR-IRF), (vii) full
deconvolution FIR model, and (viii) nonlinear. All analyses,
including ROC curve generation by using various basis sets,
were done using our NIRS Brain AnalyzIR toolbox.16

ROC curves were generated from the various schemes (i.e.,
regression models, durations, and SNRs) by varying the esti-
mated p-value threshold for activation from 0 to 1, and then
calculating the true-positive rate (TPR) or sensitivity and
false-positive rate (FPR) or (1-specificity). Ideally, the ROC
curve will climb quickly toward to the top-left, meaning the
model correctly predicted the class. The ideal condition or per-
fect test will have a highest area under the curve (AUC) of 1.
Additionally, the AUC value of 0.5 represented the random
chance or worthless test. Furthermore, we also estimated the
control of the type-I error by showing the relationship between
the actual FPR and the expected theoretical error reported by
MATLAB (denoted as p-hat). The ideal condition (“truth”)
showed similar values between p-hat and FPR, where the slope
of that condition was equal to 1. A large positive slope meant
that the model has a high FPR, whereas, a small positive slope
meant that the model has high false-negative rate.

4 Results

4.1 Sensitivity of Regression to Systematic Bias in
the Hemodynamic Response Function Shape

Using the range of derived hemodynamic shapes (shown in
Fig. 1), we have examined the sensitivity and specificity of
the various regression bases to systematic bias in the shape of
the underlying hemodynamic response compared to the basis
used in recovery. For consistency across simulations, the bias
is defined relative to the canonical HRF model as the
R-squared fit between the simulated and the canonical models,
which we denote as the “percent-overlap”. In Figs. 2(a)–2(d),
we show the AUC from ROC analyses for the (i) canonical
(blue solid line), (ii) canonical+RE(deriv) (red dashed line),
(iii) FIR-IRF (yellow dashed line), (iv) FIR (dark-green and
dotted line), and (v) nonlinear (light-blue and dash-dot line)
deconvolution models as a function of the match between the
generative response shape and the idea canonical HRF

Fig. 1 HbO2 (thick solid line) of 2-s finger-tapping task with the range
of interstimulus interval between 4 and 20 s (average = 12 s), which is
averaged from 2200 responses (see Ref. 23, for experiment details).
The thin dotted line and thin dashed line represent 25 to 75 and 5 to 95
percentiles, respectively. The thick line shows the average (normal-
ized) evoked response for 2-s task period.
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model. In Figs. 2(e)–2(f), we show the sensitivity of the ROC
models (at p ¼ 0.05). The results are presented at SNR ¼ 0.3,
0.5, 1.0, and 2.0 levels as shown in panels (a) and (e), (b) and (f),
(c) and (g), (d) and (h), respectively. In all panels, the x-axis is
the overlap between these models (100% overlap equals an
exact match to the canonical HRF). A task duration of 5 s is
used in these regression models. The rationale for showing
this cross section at 5-s duration of the total results will be
more apparent from the further results sections.

As shown in Fig. 2, as expected, the canonical HRF model’s
sensitivity falls off as mismatch between the generative and
recovery responses is increased, especially for simulations
with <50% overlap with the canonical model [see panel (e)
and (f) (SNR: 0.3, 0.5, 1.0, and 2.0), for detail]. Below about
a 50% overlap, the canonical model fails, but adding derivatives
to this model (as random effects) recovers some of this loss in
sensitivity and an increase of the AUC. The nonlinear model
does not ever perform better than the canonical model with
derivatives and, thus, is not recommended. At high SNR levels
(1:0 and 2:0), the FIR (full deconvolution) and FIR-IRF
(impulse response model) are able to handle large mismatches.
However, this is not substantially better than the canonical
model with derivatives at this 5-s task duration. As the SNR
is lowered, the FIR and FIR-IRF models fail faster than the
canonical models. This is due to the higher degrees of freedom
in the FIR models. Thus, even though there is a mismatch
between the simulated and the recovered HRF shapes, the per-
formance of canonical models is better than the FIR models at
lower SNR levels. The FIR-IRF response model is more stable
than the FIR (full deconvolution/block-averaging) model at
moderate SNR levels.

We note that a ROC analysis quantifies the sensitivity and
specificity of the model to test null hypothesis. In the regression

model of fNIRS, the null hypothesis is that the magnitude of the
evoked signal change during the task is not statistically different
from the baseline period. As demonstrated by these results, the
rejection of this null hypothesis does not require a “perfect”
alternative hypothesis. That is, it is not required to get the
time window of the contrast or the shape of the response exactly
right to still have the power to reject the null hypothesis.

4.2 Sensitivity of Linear Models to Hemodynamic
Response Function Mismatch per Task
Duration

Although adding derivatives (as random effects) to the canonical
HRF model recovers some of the loss of sensitivity due to
systemic mismatch between the underlying and the recovered
hemodynamic shapes at the short task duration (5 s), as shown
in Fig. 2, this effect is negated as the duration of the task
increases. Figure 3 shows the comparison of the area under
the ROC curve (AUC) for all (448) possible configurations
from eight different regression models, seven different SNR lev-
els, and eight different task durations. It is noted the ROC analy-
sis is repeated 900 times for every configuration. This figure has
eight panels whereas each of these panels represents eight differ-
ent task durations, that is, 1-, 2-, 5-, 10-, 15-, 20-, 25-, and 30-s
durations, as shown in Figs. 3(a)–3(h), respectively. For every
panel, it describes the AUC values (y-axis) for seven different
SNR levels of 0.01, 0.1, 0.3, 0.5, 1.0, 2.0, and 5.0 (x-axis). As
mentioned earlier, the range of AUC is 0.5 (worst) to 1 (best).
Eight different regression models have been compared in every
panel: (i) canonical (blue solid line), (ii) canonical+RE(deriv)
(red dashed line), (iii) canonical + FE(deriv) (green dotted
line), (iv) gamma function (black and dash-dot line), (v) boxcar
function (magenta solid line), (vi) FIR-IRF (yellow dashed line),

Fig. 2 Comparison of AUC and sensitivity at p ¼ 0.05 from ROC analysis at various mismatch levels
(relative bias with the canonical HRF model) between 20% and 100% overlap for 5-s task duration.
An overlap of 100% means a perfect match to the canonical HRF. Overlap is mathematically defined
here as theR2 fit. In each panel, it shows themismatch or (overlap) for both AUC (first row) and sensitivity
(second row) using five selected regression models: canonical, canonical+RE(deriv), FIR-IRF, FIR, and
nonlinear. First to fourth columns show the performance at SNR levels of 0.3, 0.5, 1.0, and 2.0,
respectively.

Neurophotonics 025009-6 Apr–Jun 2019 • Vol. 6(2)

Santosa et al.: Investigation of the sensitivity-specificity of canonical. . .



(vii) FIR (dark-green and dotted line), and (viii) nonlinear (light-
blue and dash-dot line).

As the task duration increases, the exact timing of the tran-
sients of the response at the onset and recover are washed out by
the steady-state behavior of the response during the duration.
We found that above ∼10-s task durations, the models all
had about the same performance even when there was a mis-
match between the true underlying HRF shape and the regres-
sion basis. For task durations of 2 to 5 s, the performance of the
models differed mainly at low SNR levels (<SNR1.0). Similar
to the findings in Fig. 2, the FIR and FIR-IRF models lost their
sensitivity quickest as SNR decreased, which was most pro-
nounced at the shortest duration tasks (1 to 2 s). We noted
that the boxcar model had a bit of odd behavior with a peak
in its sensitivity at about SNR = 0.5–2 but then a loss in sensi-
tivity at high SNRs. This was actually because this boxcar basis
set had sharp edges to the response (e.g., a binary regressor).
This resulted in discontinuities in the residual of the model
after fitting and much of the response signal at the edges of
the response are considered noise, particularly at higher SNR
levels. As described previously, the boxcar model, which can
only model an instantaneous change in the brain response
between the baseline and the task period, was an unrealistic
model. These discontinuities in the model residual at the tran-
sition points were more pronounced at higher SNRs.

4.3 Receiver-Operatingor Characteristic Analysis for
Short Task Duration

Figure 4 shows the comparison of the ROC analysis for 5-s task
duration using six different SNR levels, that is, 0.1, 0.3, 0.5, 1.0,

2.0, and 5.0, as shown in Figs. 4(a)–4(f), respectively. Similar to
the previous figure, eight different regression models have been
compared in every panel. In detail [SNR: 0.1 in Fig. 4(a)], the
ROC performance shows the AUC in descending order: gamma
(AUC: 0.86), canonical+RE(deriv) (AUC: 0.82), FIR-IRF
(AUC: 0.81), canonical (AUC: 0.80), nonlinear (AUC: 0.76),
FIR (AUC: 0.70), boxcar (AUC: 0.63), and canonical+FE
(deriv) (AUC: 0.60). As SNR levels increase (>0.5), the choice
of basis used in the regression models has little effect on the
ROC analysis [except boxcar function for reasons previously
noted; see Figs. 4(c)–4(f)].

5 Discussion
Activation analysis in fNIRS adopts the same approach from the
fMRI field, that is, to attempt to accurately model the hemo-
dynamic response elicited by the task design. Most fNIRS or
fMRI task-based studies have been primarily focused on esti-
mating the amplitude of evoked responses across different task
conditions or in reference to a baseline. The accuracy and
robustness of the hemodynamic response model have an impor-
tant role in determining the sensitivity and specificity of the
resulting estimates of activation. In addition, the shape of the
HRF can be characterized by several parameters: amplitude or
height, rise time, time to peak followed by an undershoot, and
full width at half maximum, for both fMRI25–28 and fNIRS
studies.29 Many different HRF estimation methods have been
proposed with various different parameters using several func-
tions, such as canonical response, FIR, and nonlinear. However,
a rigorous comparison of the performance of these various
approaches has not been done prior to the present study.

Fig. 3 Comparison of AUC from ROC analysis for all (eight) different regression models at various SNR
levels (x -axis) from 900 repeated simulations. Eight different activation or task periods of 1, 2, 5, 10, 15,
20, 25, and 30 s are investigated in panels (a)–(h), respectively. In every panel, it shows the comparison
of AUC values at seven SNR levels of 0.01, 0.1, 0.3, 0.5, 1.0, 2.0, and 5.0 for all (eight) different HRF
models (i.e., canonical, canonical+RE(deriv), canonical+FE(deriv), gamma, boxcar, FIR-IRF, IRF, and
nonlinear).
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A central theme of statistics is that you do not prove a
hypothesis; you can only disprove a null one. In linear regres-
sion as it pertains to fNIRS brain imaging and this work, the null
hypothesis is that the magnitude of the fNIRS signals during the
task period does not differ from the baseline period. To test this
null hypothesis, we offer an alternative such as the mean over a
specific window of time during the response differs from the
baseline period. If the mean over this time window differs
from the baseline, then we can reject the null hypothesis.
However, this does not mean that this is the “best” time window
and there could have been an even better choice of alternative
hypothesis that could have led us to reject the null hypothesis
with even more confidence. In this context, the choice of basis
set used in the regression (canonical, boxcar, FIR, etc.) simply
frames the alternative hypothesis. We do not need to get this
alternative hypothesis perfectly correct to still have the statistical
power to reject the null hypothesis. When we use a canonical
model, we are not ruling out that there could be a better-shaped
model or different time window that may have allowed us to
reject the null hypothesis even more soundly. The better our
alternative hypothesis matches the data, the more sensitive
(higher TPR) of the statistical test. However, the simpler
(lower degrees of freedom) the alternative hypothesis, the
more specificity (lower FPR) the test has. Thus, the performance
of a linear regression model is a trade-off between reducing the
false-negative rate of the model by using an accurate alternative
hypothesis and reducing the FPR by using a model with fewer
degrees of freedom such as the canonical model.

In this study, we found that the short task durations (<5 s) are
most affected by the choice of basis set used within the regres-
sion model, especially for low SNR level (SNR <0.5). This is
mainly due to the fact that the shorter tasks place stronger

emphasis on the transients of the response. As the task duration
increases, the transients are diluted by the steady-state behavior
of the response. At short durations (see Fig. 2), a simple canoni-
cal model is more affected by the mismatch between the basis
set used in recovery and the underlying true evoked signal.
Although arbitrary shapes could be modeled with the FIR
(deconvolution) model, this model only works well at higher
SNR levels. Thus, at low SNR (<0.5), the canonical model has
better performance in ROC analysis despite mismatches in the
response shape. These mismatches are further negated by the
inclusion of derivatives in the model when used as random
effects (e.g., used in the regression but not included as part
of the contrast). When derivatives are included directly as part
of the contrast (“fixed effects” version), the results are much
worse and the false discovery rate increases.

5.1 Response Magnitude versus Timing
Hypotheses

We note that these findings only apply if the primary hypothesis
of the study is testing the magnitude of the hemodynamic
response, that is, if the hypothesis is comparing the evoked
brain signal during a task to baseline or is comparing the ampli-
tude of two tasks to each other. In this work, we did not look at
how statistical tests can be used to examine if two tasks or
groups have different evoked response timings from each other.

If two responses had different underlying timings, the use of
a single basis set (including the FIR model using the same tem-
poral window to define the contrast in both responses) would
provide differing sensitivities to the two responses. Thus, rejec-
tion of the null hypothesis that the two responses had the same
amplitude cannot distinguish between two responses with the

Fig. 4 ROC curves [TPR or sensitivity against FPR or (1-specificity)] for all (eight) different regression
models at various SNR levels for 5-s task duration. Six different SNR levels of 0.1, 0.3, 0.5, 1.0, 2.0, and
5.0 are investigated in panels (a)–(f), respectively. In every panel, it shows the comparison of all (eight)
different regression models: canonical, canonical+RE(deriv), canonical+FE(deriv), gamma, boxcar,
FIR-IRF, IRF, and nonlinear.
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same timing but different amplitudes or two responses with the
same amplitude but differing timings. When viewed as a first-
order Taylor-series expansion on the timing of the canonical
basis set, the inclusion of derivatives to the canonical model
can be used to test amplitude (testing the main coefficients)
and first-order differences to the timing (using tests on the coef-
ficients assigned to the derivatives). This however, would only
test a null hypothesis that the two responses were not sta-
tistically different to the first order in terms of the onset or
dispersion of the canonical shape. In this work, we had proposed
a nonlinear regression model but found that these models
required a minimum level of SNR to be useful as currently
implemented. When testing magnitudes of the evoked response,
we could not recommend the use of the nonlinear model in this
current work. However, future work applying more robust non-
linear estimation methods, such as regularized methods, may
improve the utility of these nonlinear models and allow for
better testing of timing differences.

5.2 Limitations of this Study

In this work, our results and conclusions are based on the testing
of the null statistical hypothesis that the magnitude of the brain
response during the task does not differ from the magnitude of
the baseline period. In both our statistical tests and our simula-
tions to generate ROC curves, we have assumed a linearly addi-
tive hemodynamic model. It is known that the hemodynamic
response can be nonlinear, such as observed during long task
durations demonstrating habituation effects or tasks with very
short interstimulus intervals. In these cases where nonlinearities
may exist, using a linear model to test and reject the null hypoth-
esis is still statistically valid as a first-order test but will lose
sensitivity (increase false-negatives) as the nonlinearity becomes
more pronounced. Alternative methods such as the Volterra
series30 can be used to model such nonlinearities as better alter-
native hypothesis in these scenarios. An interesting future exten-
sion of this work would be to examine how these linear
regressions begin to break down as the assumption of a linear
additive hemodynamic response is violated. However, in this
current work, our simulations are restricted only to the linear
additive case.

A further conclusion of this work is that simpler (lower
degrees of freedom) regression models are favorable particularly
at lower SNR. We found that the increased sensitivity of these
simple models often outweighs the loss in specificity due to the
usage of a canonical model that is not a perfect match to the data.
The results show that the canonical model performed well down
to about a 50% overlap, which covers a fairly large variation in
responses. However, this conclusion is not intended to say that
the canonical model is necessarily the “best” for all data. For
example, if there is a systematic bias in the shape of the brain
response (e.g., infants may have different shape than adults),
then using a slightly modified canonical model will recover
some of the loss in specificity due to this mismatch. However,
the conclusion of the paper is that, based on the AUC of the
ROC analysis, it is better to have a slightly mismatched canoni-
cal shape than it is to use a model with high degrees of freedom.

6 Conclusions and Recommendations
Based on the simulations and analysis presented in this work,
we conclude as follows:

• For task durations longer than about 10 s, the choice of
basis set for the regression model is less important. For
these longer tasks, regression models that used basis
sets with lower degrees of freedom (even if there is up
to about 50% mismatch in the shape of the response)
have a better performance based on the ROC analysis for
testing the hypothesis of differing response amplitudes.

• For tasks shorter than about 5 s, the sensitivity (TPR) of
the model depends more on the choice of basis set. In this
case, adding derivatives to the basis set to allow small var-
iations in the modeled response recovers the sensitivity at
the slight expense of reduced specificity. In our simula-
tions, the best choice of basis set has been a canonical
model with first derivatives included as random effects
in the model. However, it is important not to use these
derivative terms to define the contrast as these lead to
high false-positives.

• Although the FIR and FIR-IRF models can adapt to any
arbitrary underlying response timing, these models are
more sensitive to noise and have worse performance at
low SNR levels (<0.5) due to their higher degrees of free-
dom. At low SNR, the canonical model with derivatives is
a better model compared to FIR, based on the ROC analy-
sis even in the presence of a mismatch in the shape of the
response.

• We do not recommend using a boxcar function as the
basis set in the regression model for any task duration
and any SNR level.

• The nonlinear HRF model, which is introduced in this
work, did not outperform the canonical model with deriv-
atives and was more affected by low SNR. In practice,
nonlinear models are not useful for testing amplitude-
based hypotheses. We found that the errors/uncertainties
due to the nonlinear fitting procedures outweigh the slight
improvements in the sensitivity gained by having a more
accurately shaped response model.

• Our overall recommendation is that low degree-of-free-
dom canonical HRF model with derivatives (as random
effects) provides the best choice for basis set in the linear
model used for fNIRS analysis and can tolerate a moder-
ate degree of mismatch between the underlying shape and
the model assumptions. This represents the best trade-off
between sensitivity and specificity of the methods tested
in this work.
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