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Abstract. In the field of offshore oil slicks at the sea surface, radar or optical imagery can
provide much useful information. Regarding optical imagery, detection relies on the differences
between the reflectance of water alone and oil-covered water. As soon as the thickness of the oil
layer is large enough to induce a spectral difference between the reflectance of water and oil-
covered water, spectral indices are good candidates for detection. Thereafter, identification and
quantification require extended optical and physical knowledge regarding oil properties. To this
end, various products have been characterized in the laboratory. Hyperspectral reflectance and
transmission measurements have been performed for various pure or emulsified products. This
has enabled the definition of two theoretical thickness boundaries: a minimal thickness leading
to a noticeable spectral attenuation effect on the reflectance between oil and water and a maximal
thickness after which the spectral reflectance no longer evolves with thickness. For some prod-
ucts, these theoretical minimal and maximal thicknesses may not be realistic values for slicks at
the sea surface, meaning that they will never be reached. However, they do give a thickness range
in which thickness assessment could be performed with optical imagery and modeling. To go
deeper into the understanding of oil behavior at sea, experimentation has also been done using
a large tank filled with sea water, thus providing more realistic spectral signatures than in the
laboratory. From this experiment, the thickness of a small amount of oil freely spread on a plane
water surface has been assessed and compared with the boundaries established using the labo-
ratory measurements. The database of spectral signatures built for product identification
has been extended with the thickness boundaries and the experimental thicknesses for quanti-
fication purpose. This database has been successfully used to identify a product detected on an
airborne hyperspectral image and to assess the corresponding oil slick volume, in the case of the
NOFO2015 emulsion. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JRS.15.024504]
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1 Introduction

Already in the 1990s, remote sensing had been described as a promising way to improve oil spill
response efforts.1 Slicks detection relies on imagery, with sensors adding information to that
collected by the human eye. Sensors offer access to ultraviolet, near infrared (NIR), middle infra-
red (MIR), and thermal infrared (TIR) for the optical domain, as well as to several radar bands.
Oil impact has no strong spectral characteristics in the visible region;1,2 the main hydrocarbons
spectral features are absorption peaks related to C–H absorption bands in the shortwave infrared
(SWIR), MIR, and TIR domains. With the availability of hyperspectral sensors, SWIR is proving
an interesting spectral range for oil detection, characterization, and quantification. In this spectral
region, absorption peaks3 are found around 1.7, 2.3, and 2.6 μm, respectively. Oil characteristics
led to indices development,4,5 and with sensors covering the visible to near-infrared (VNIR)
spectral range, it is possible to identify the spectral change associated directly with oil-covered
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water: the decrease of reflectance for blue wavelength and its stability in the NIR. This was
described as a spectral rotation by Lennon et al.6 They used this spectral feature to build indices
dedicated to oil detection with VNIR imaging systems and tested them on CASI data acquired
over the Prestige tanker oil spill in November 2002. The BP Deepwater Horizon oil spill in 2010
boosted the interest and study of oil slicks via remote sensing7,8 but also showed that further
development and operationalization were needed.8

Detection enables the location and monitoring of a slick, but the amount of product as well as
its type and status are also crucial information for choosing the right spill response. Thus, there is
a need not only for a detection map but also for a thickness map and a map of type or status. The
analysis of the different components contributing to the radiance measured above a slick enables
the identification of the components affected by the oil transmission, dependent on thickness.9,10

This dependency is limited to a product-specific range. Indeed, the thickness must be large
enough to induce a measurable spectral difference between reflectances of water and oil-covered
water. For quantification purposes, it must also be thin enough to prevent photons from being
absorbed before crossing the oil layer.7

Regarding the type or the status, Lammoglia and Roberto de Souza Filho11 indicate that
different oil types can be qualitatively distinguished from spectral features in the VNIR-SWIR
domain.

In this context, in 2014, the NAOMI (New Advanced Observation Method Integration)
project was set between TOTAL and ONERA aiming at, for its offshore part, detection, char-
acterization, and quantification of oil slicks. Radar and/or VNIR-SWIR imagery appeared to be a
good approach for fulfilling the objectives at a reasonable cost. For the optical part of the work,
the idea was close to the one described in Ref. 5, using indices for detection and retrieval of
spectral signatures, relying on a library of data built up from laboratory12 or in the field mea-
surements, for characterization. Modeling of radiance for water and oil-covered water was
started for quantification.

The work began with laboratory measurements providing reflectance and a crucial intrinsic
pure oil parameter: the attenuation coefficient. Then, oil spills data were acquired in a tank filled
with sea water and, for one of them, also at sea. The tank experiment was designed to obtain
realistic spectral signatures and thicknesses. This paper focuses on the database and its use for
product identification and quantification and demonstrates the interest in extending the spectral
signature database with thickness information.

Section 2 defines the measured optical quantities. Section 3 deals with the material, ranging
from laboratory, tank, and sea data and leading on to the extended database. Section 4 describes
the methods for detection, identification, and quantification, the last two using the extended
database. Section 5 presents the corresponding results for spills in both the tank and at sea.
A discussion of the results can be found in Sec. 6 before the conclusion in Sec. 7.

2 Definition of the Physical Quantities

The relevant optical property for remote sensing optical sensors is reflectance. More precisely,
for remote sensing of water, reflectance is often the spectral remote sensing reflectance. It is
defined by the ratio of the water leaving radiance to the irradiance on the surface.13

In our case, the considered quantity is the bi-conical reflectance factor14 (BCRF), which is, by
definition, the ratio of the reflected flux to the flux that would be reflected by an ideal perfectly
diffuse standard surface illuminated by a collimated source. It corresponds to the reflectance of a
Lambertian opaque surface leading to the radiance observed at the sensor level.

For non-opaque products, reflectance is background- and thickness-dependent; therefore it is
not an intrinsic parameter. A useful intrinsic parameter for product characterization is the spectral
attenuation coefficient corresponding to the sum of spectral absorbance and scatterance per dis-
tance unit.13

It is noteworthy that BCRF is a dimensionless quantity. If the conical apertures are small
enough to consider that bidirectional reflectance distribution function (BRDF) is constant over
these small angular domains (which is often the case except for the specular reflection direction),
BCRF is simply equal to BRDF (sr−1) multiplied by π (sr) and BCRF is equal to the bidirectional
reflectance factor.
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3 Materials

The list of the studied products and associated measurements is given in Table 1. The following
sections describe the measurements and the information derivation for the extended database.

3.1 Data Coming from Laboratory Measurements

Transmission measurements were performed with a PerkinElmer spectrophotometer, taking into
account the reflection at each interface.12 Each product was poured into a quartz cell with a
thickness that was adapted to the product. These measurements enabled us to derive the attenu-
ation coefficient and then from the attenuation coefficient, a theoretical minimal thickness that
induces a spectral attenuation effect on reflectance between oil and water and a theoretical maxi-
mal thickness beyond which spectral reflectance no longer evolves with thickness.

Concerning reflectance, measurements were performed with the ONERA spectro-
goniometer dedicated to large samples (“Banc de BRDF Grands Echantillons”) as shown
Fig. 1. It covers the 0.35- to 2.5-μm spectral range with a 3-nm spectral resolution in the
VNIR (0.35 to 1 μm) and 10 nm in the SWIR (1 to 2.5 μm) spectral ranges from an ASD
Fieldspec spectroradiometer. The zenith angles of the source (SZA) and of the spectrometer
collection optics (VZA) can vary between 0 deg and 60 deg with an accuracy of 1 deg. The
azimuthal angle of the spectrometer collection optics (VAA) can vary between 0 deg and 180 deg
with an accuracy of 1 deg. Thus, the setup enables the recording of a spectral radiance for a
sequence of angular configurations over nearly a full quarter of a sphere. However, due to the
occultation of the source by the collection optics, measurements are not possible in the back-
scattering direction �10 deg. Our measurements are limited to nadir (VZA ¼ 0 deg). For most
of them, SZA varies from 10 deg to 50 deg with a step of 10 deg for an arm angle equal to

Table 1 Products and measurements. The reflectance in italics corresponds to measurements
for a unique angular configuration, and the reflectance in bold for several angular configurations
as detailed in Sec. 3.1.

Name Description Laboratory Marine tank Sea

Colza Rapeseed oil Transmission, reflectance Reflectance

DALIA Crude oil from Angola Transmission, reflectance

FAME Transmission Reflectance

Gazole Diesel Transmission, reflectance Reflectance

HC1541 Light crude oil Transmission, reflectance

NOFO2015 Emulsion: 40% oil and
60% sea water (oil =
Oseberg + TBTS)

Transmission, reflectance Reflectance Reflectance

Olive Olive oil Transmission, reflectance Reflectance

SP95 Unleaded gas 95 E10 Transmission Reflectance

SP98 Unleaded gas 98 Transmission Reflectance

TBTS Heavy oil-fuel Transmission, reflectance Reflectance

Tournesol Sunflower oil Transmission, reflectance Reflectance

UN1267 Petroleum crude oil Transmission

USAN Crude oil from Nigeria Transmission, reflectance

15W40 Motor oil Transmission, reflectance Reflectance

Plantoil Industrial oil
(RADIAGREEN EBO)

Transmission, reflectance
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180 deg corresponding to VAA ¼ 180 deg. For a small set of products, in italics in Table 1,
measurements were performed for only one angular configuration: SZA ¼ 40 deg, VZA ¼
0 deg, and VAA ¼ 180 deg for the arm with the collection optics. Measurements were per-
formed for various thicknesses ranging from 4 to 10 mm: five thicknesses (4, 5.5, 7, 8.5, and
10 mm) for the small set of products in italics in Table 1 and three thicknesses (5, 7.5, and
10 mm) for the others.

For non-opaque and non-scattering products, a model of the reflectance measurement was
established according to Fig. 2 and led to Eq. (1). This model, more complete than in Ref. 12,
enables artificial modification of the background and thickness and therefore generation of
adequate signatures.

EQ-TARGET;temp:intralink-;e001;116;378ρ ¼ TðθsÞ:e−
k:e

cosðθ 0sÞTðθ 0
sÞ:Tðθ 00

s Þ:t↓:ρb:t↑:Tðθ 00
v Þ:Tðθ 0

vÞ:e−
k:e

cosðθ 0vÞ:TðθvÞ; (1)

where ρ is the reflectance, TðθsÞ is the downward Fresnel transmission between air and product
for an illumination zenith angle θs, k is the attenuation coefficient, e is the thickness, Tðθ 0

sÞ is the
downward Fresnel transmission between product and container for an angle θ 0

s on the product
side, Tðθ 00

s Þ is the downward Fresnel transmission between container and background for an
angle θ 00

s on the container side, t↓ and t↑ are the downward and upward transmissions within

Fig. 1 ONERA spectro-goniometer dedicated to large samples (Banc de BRDF Grands
Echantillons).

Product

Container (t )

Background( )

s

v

s v

s v

e

Fig. 2 Ray path used for reflectance measurement modeling for non-opaque and non-scattering
products.
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the container, respectively, Tðθ 00
v Þ is the upward Fresnel transmission between background and

container for an angle θ 0
v on the container side, Tðθ 0

vÞ is the upward Fresnel transmission between
container and product for an angle θ 0

v on the product side, TðθvÞ is the upward Fresnel trans-
mission between product and air for an observation zenith angle θv, and ρb is the background
reflectance. t↓:ρb:t↑ is a term corresponding to laboratory measurement. It can be replaced by a
measured reflectance over clean sea water for instance. This enables the building of fairly real-

istic signatures. e
− k:e
cosðθ 0sÞe

− k:e
cosðθ 0vÞ is a term depending on product thickness. It can be used to com-

pute the reflectance for other thickness values as shown in Fig. 3.
A validation of the model and of the measurements was done for some products. The attenu-

ation coefficient value deduced from transmission measurements was used in Eq. (1). Various
constant values for the product optical index were used to compute the T terms. As the actual
thickness was only roughly known (measurement with a simple ruler), the computation was
performed for several thickness values. The computed reflectances (colored lines) were com-
pared with the measured one (bold black line) as shown in Fig. 3 for diesel. The expected diesel
thickness (according to the ruler) is 5 mm in Fig. 3(a) and 10 mm in Fig. 3(b). This is in agree-
ment with the model for a 4-mm and 8-mm thickness, respectively (in the SWIR region more
sensitive to the thickness). This shows a fairly good agreement between model (including inputs)
and measurements.

3.2 Data Coming from Tank Filled with Sea Water

For the measurements, a small part of a large tank (1900 m2) located in CEDRE (Center for
Research and Experimentation for Accidental Water Pollution) at Brest, France, fairly deep
(3 m) and filled with sea water, was used to generate successive small slicks. For each product,
a known volume was poured into a frame floating on the tank as in Fig. 4(a). Two hyperspectral
cameras fixed about 15 m above the frame imaged each slick as shown in Fig. 4(b). The features
of the cameras are given in Table 2. The water surface in the frame was cleaned between each
product. The cameras also imaged the Spectralon© reference panels set on the quay. Computing
the radiance ratio of pixels from the slick to pixels from the reference panel and multiplying this
ratio by the reflectance of the reference panel provides spectral signatures. The thickness assess-
ment is described in Refs. 15 and 16. It relies on slick detection using indices. A mean thickness
is computed by dividing the volume poured in the frame by the surface of the slick. In the case of
NOFO2015 mixed slick, with a thin and a thick part, the assessment is refined. From the thick-
ness assessment of several products, a common mean thickness of 25 μm has been found for
light crude oil (HC1541), gasoil, and unleaded gas 98. The VNIR image [Fig. 5(a)] enables the

Fig. 3 Comparison of computed reflectance for sample thickness from 4 to 12 mm (various colors)
and measured (bold black) laboratory reflectance for diesel: approximative expected diesel thick-
ness (a) 5 mm and (b) 10 mm.
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detection of the whole slick, and the SWIR image [Fig. 5(b)] enables the detection of the thicker
part only. The difference gives the surface covered by the thin part. Assuming a thickness of
25 μm for the thinner part, the volume of this thinner part is then computed. This thinner part
volume is subtracted from the total volume poured into the frame to assess the volume corre-
sponding to the thicker part of the slick. The mean thickness of the thicker part is then assessed
by dividing the volume of this part with the corresponding surface. It leads to 1.1 mm for the
NOFO2015 emulsion thick part.

3.3 Data Coming from Sea

Hyperspectral imaging of marine slicks was performed in 2015 during a campaign organized by
NOFO, a Norwegian entity (Norwegian Clean Seas Association for Operating Companies). The
campaign objective was to test devices to clean a slick. The ONERA imaging system named
SETHI onboard a FALCON20 aircraft was allowed to image the slicks during the recovery
exercises.17 The optical images were acquired with the same cameras as used for the tank experi-
ment. Their features are given in Table 2.

Fig. 4 Tank experiment: (a) pouring a known volume of product (rapeseed oil) and (b) imaging the
slick with two hyperspectral cameras at the top of a cherry picker.

Table 2 Features of the two hyperspectral pushbroom cameras.

Features HySpex VNIR HySpex SWIR

Number of pixels 1600 320

Field of view 17 deg 14 deg

Spectral range 0.4 to 1 μm 1 to 2.5 μm

Number of spectral bands 160 256

Length of spectral bands 3.7 nm 6 nm

Pixel dimensions at 15 m 2.8 mm × 5.6 mm 11.3 mm × 11.3 mm

Pixel dimensions at 9000 ft 0.51 m × 1.03 m 2.06 m × 2.06 m

Swath at 9000 ft 820 m 660 m

View Nadir Nadir
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During the experiment corresponding to results presented in Sec. 5, the sea state was 3 on the
Douglas scale.

3.4 Extended Database

All of the data presented previously constitutes the extended database. It contains not only spec-
tral signatures (laboratory and/or tank and/or at sea spectral reflectance) but also the attenuation
coefficient, corresponding theoretical minimal and maximal thicknesses from an optical point of
view, and thickness derived from the tank experiment when available. The current content
regarding thicknesses is illustrated by Fig. 6.

In this figure, the att_MIN and att_MAX thicknesses correspond to theoretical optical boun-
daries computed by the attenuation coefficient. For the att_MIN, the value is taken in the SWIR
domain, around 1.7 μm. For the att_MAX, it is taken either in SWIR (for UN1267, TBTS,
NOFO2015 emulsion, HC1541, DALIA, USAN which includes all crude oils) or in VNIR (for
the others) depending on the spectral shape of the attenuation coefficient and its availability
(some of our measurements, for very opaque oils, were not reliable for wavelengths <0.7 μm).
Considering only the VNIR domain would probably lead to much smaller att_MAX values for

Fig. 5 NOFO2015 emulsion in the tank: (a) VNIR image and (b) SWIR image.

Fig. 6 Illustration of the extended database content for thicknesses.
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all crude oils in agreement with values from Ref. 10. The att_MAX thickness corresponds to the
theoretical skin depth and represents the largest thickness that enables ray crossing of the full
layer above the water, forward and backward. For thicknesses larger than att_MAX, the deepest
part of the layer does not contribute to the measured reflectance; therefore reflectance cannot be
inverted with an optical model to restitute the thickness. The att_MIN value represents the theo-
retical smallest thickness that induces a detectable spectral attenuation for ray crossing the full
layer forward and backward. It is noteworthy that slicks with smaller thicknesses than att_MIN
may be detectable due to other phenomena (index difference between product and water and
possible interferences).

The thicknesses observed in our tank experiment correspond to the blue triangles. The exper-
imental thickness is in the att_MIN-att_MAX range for only two cases (Colza and 15W40). This
means that, for these two cases, the spectral reflectance and optical model looking at attenuation
could theoretically enable one to assess thickness. For TBTS and emulsionNOFO2015 cases, the
actual thickness is above the att_MAX; therefore thickness cannot be derived from an optical
model. For the other cases (HC1541, Gasoil, SP98, Tournesol, and Plantoil), the actual thickness
is smaller than the att_MIN, and thickness cannot be derived from attenuation terms of an optical
model. In several cases, for highly transparent oils, such as unleaded gas, the att_MAX values are
very high and, of course, the actual thickness is expected to be much lower than this theoretical
boundary. The whole content is summarized in Table 3.

Table 3 Overview of the extended database content. L corresponds to laboratory measurement,
T to tank experiment measurements, and S to measurements at sea. As in Table 1, the italic L
corresponds to the case with only one angular configuration. Y stands for yes and indicates that
information is present. N stands for no and indicates that information is not present.

Name Description

Spectral
reflectance

(VNIR + SWIR)

Attenuation coefficient
and att_MIN and

att_MAX thicknesses

Thickness
deduced from
tank experiment

Colza Rapeseed oil L, T Y Y

DALIA Crude oil from Angola L Y N

FAME T Y N

Gazole Diesel L, T Y Y

HC1541 Light crude oil L, T Y Y

NOFO2015 Emulsion: 40% oil and
60% sea water
(oil = Oseberg + TBTS)

L, T, S Y Y

Olive Olive oil L, T Y N

SP95 Unleaded gas 95 E10 T Y Y

SP98 Unleaded gas 98 T Y N

TBTS Heavy oil-fuel L, T Y Y

Tournesol Sunflower oil L, T Y Y

UN1267 Petroleum crude oil N Y N

USAN Crude oil from Nigeria L Y N

15W40 Motor oil L, T Y Y

Plantoil Industrial oil
(RADIAGREEN EBO)

L, T Y Y

Note: Access to data from the extended database is possible. For that, an official and named request per user,
mentioning which data are requested and their foreseen use, should be addressed to TOTAL18,19 and to
ONERA.20,21
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4 Methods

4.1 Detection

Detection relies on spectral indices that correspond to spectral band ratio or linear combination.
The definitions of the indices used in this paper are provided in Table 4. An index image is
computed for each case. The corresponding histogram is used to separate water and oil.

4.2 Identification

Product identification is performed from spectral libraries. Spectral reflectances collected in the
laboratory constitute the lab spectral library, and the ones collected during the tank experiment
constitute the tank spectral library.

For the non-opaque and non-scattering products, the laboratory model was used to replace
the background used for the laboratory measurements with the water of the tank.

Three spectral distances were selected to compare the image with the libraries: Spectral
Information Divergence (SID),23 Spectral Angle Mapper (SAM),23 and CHI2. A threshold can
be given by the user to limit the classification to really similar spectra.

4.3 Quantification

For identified products, volume assessment can be done due to thickness being deduced from
signature adjustment (by adjusting the exponential terms as explained in Sec. 3.1) or using the
thickness stored in the database. Knowing the pixel size for the image, the surface covered by the
product is simply computed as the product of the number of pixels found by the detection tool
with the pixel size. This surface is multiplied by the thickness found by signature adjustment or
associated with the product in the database:

EQ-TARGET;temp:intralink-;e002;116;212V ¼ N:pr:pc:e; (2)

where V is the product volume, pr is the pixel size in the row direction, pc is the pixel size in the
column direction, and e is the product thickness. The slick may be separated into a thin and a
thick part. In this case, the volume for each part is assessed according to Eq. (2), and the total
volume is computed by summation.

5 Results

The results correspond to images from the tank experiment and to an airborne image acquired
during the NOFO2015 campaign. For the sake of consistency, only results obtained for the

Table 4 Definition of spectral indices. ρ stands for reflectance, and numbers correspond to
wavelength expressed in micrometer.

Index Definition Reference

VNIR FI: fluorescence index ðρ0.47 − ρ0.67Þ∕ðρ0.47 þ ρ0.67Þ 6

RAI: rotation-absorption index kρkðρ0.47 − ρ0.85Þ∕ðρ0.47 þ ρ0.85Þ 6

nFI: normalized FI kρkðρ0.47 − ρ0.67Þ∕ðρ0.47 þ ρ0.67Þ 17

SWIR HI: hydrocarbon index ð1.72 − 1.67Þ
ð1.75 − 1.67Þ ðρ1.75 − ρ1.67Þ þ ρ1.67 − ρ1.72

4

Aire 1700 Surface under the reflectance curve
between 1.66 and 1.75 μm

22

Aire 2300 Surface under the reflectance curve
between 2.21 and 2.38 μm

22
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NOFO2015 emulsion will be presented, as data are available at all scales, from laboratory to real
sea conditions.

5.1 Detection

5.1.1 Tank experiment case

Figure 7 shows the results for the various detection indices and automatic thresholding in the case
of NOFO2015 emulsion in the tank. The three VNIR indices enable the detection of the whole
slick, whereas the SWIR indices enable the detection of its thick part. For VNIR indices, the auto-
matic thresholding can also be applied to the slick itself to distinguish its thin and thick parts.

5.1.2 Sea case

The detection result for an airborne image is presented in Fig. 8 for VNIR indices and in Fig. 9
for SWIR ones. In these figures, the upper part corresponds to the indices images, and just below
are the corresponding detection masks generated with automatic thresholding on the indices
images. The lower part corresponds to the histograms of indices images with the threshold
found. Only FI enables the detection of the whole slick for the marine tank. RAI and nFI seem
to detect only the thicker emulsified part. For the SWIR indices, they seem to detect the very
thick part of the slick and the automatic thresholding reinforces the underdetection. The auto-
matic thresholding on the FI index has been applied to the slick itself to distinguish its thin and
thick parts.

5.2 Identification

5.2.1 Tank experiment case

Figure 10 shows the results for the identification step in the case of NOFO2015 emulsion in the
tank using, respectively, the tank library for the upper part and the lab library for the lower part of

Fig. 7 Comparison of detection results for various indices for NOFO2015 emulsion in the tank.
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the figure. In the lab library case, SAM, CHI2, and SID enable the identification of the thicker
part of the slick. In the tank library case, a signature for the thinner part of the slick is included,
which enables the detection of this part, but for the thicker part, the identification seems to be less
efficient than for the lab library. For some pixels, there is confusion with sunflower oil. Figure 11
illustrates the content of each library.

5.2.2 Sea case

In the sea case, the identification has to be limited to the very thick part. For this part, the per-
centage of correctly identified pixels is 82% for CHI2, 86% for SAM, and 88% for SID.

5.3 Quantification

Once the product is identified, the volume can be computed. In the NOFO2015 emulsion case, as
explained in Ref. 15, light cannot reach the bottom of the emulsion layer and go back to the

Fig. 9 Comparison of detection results for various SWIR indices for NOFO2015 emulsion at sea.

Fig. 8 Comparison of detection results for various VNIR indices for NOFO2015 emulsion at sea.
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sensor. Therefore, the thickness cannot be determined only by the analysis of the in situ spectral
reflectance with an optical model (cf Sec. 3.1). The mean thickness observed in the tank is taken
as the best estimate of the mean thickness of the slick at sea. According to the tank experiment,
the mean thickness for the thinner part of the slick is assumed to be equal to 25 μm and it leads to
1.1 mm for its thicker part. The corresponding result for the airborne image of the NOFO2015
campaign is presented in Table 5.

Fig. 11 Tank and lab libraries used for results presented in Fig. 10.

Table 5 Slick surface and volume for the NOFO2015 airborne image.

Thick Thin Total

Surface (m2) 13,533 109,007 122,540

Volume (m3) 14.9 2.7 17.6

Surface (%) 11 89 100

Volume (%) 85 15 100

Fig. 10 Comparison of identification results for various spectral distances for NOFO2015 emul-
sion in the tank using the tank library (upper part) and the lab library (lower part).
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6 Discussion

In the previous section, results concerning the NOFO2015 emulsion were presented. In this
section, the representativeness of the database content in terms of signatures and thicknesses
is discussed. The volume assessment for the NOFO2015 emulsion case is compared with the
one relying on photointerpretation and Bonn code.

6.1 Database Content Representativeness

6.1.1 Spectral signatures

For non-emulsified products, up to now, spectral signatures correspond to a flat water surface,
which is far from the real sea water surface. This impacts the magnitude of the reflectance and
therefore the contrast between oil and water. Modeling has been developed to assess the spectral
signature for a flat and a real sea surface covered with oil. This will enable us to produce a
realistic signature for various spatial resolutions.

For emulsified products, modeling of the signature for water-in-oil emulsion on a flat surface
is still in progress.

6.1.2 Thicknesses

As for the signature, the thicknesses are assessed for a flat water surface. At sea, the wind and the
waves elongate the slick. This phenomenon tends to reduce its thickness. But the Langmuir
circulation tends to concentrate the slick in the perpendicular direction. This concentration is
less effective for high viscosity oil.24 The balance between the two effects is difficult to assess.
These existing contrasting effects, lead us to the conclusion that the thickness derived from the
tank experiment can be considered a reasonable approximation of the actual thickness.

In the case of the NOFO2015 emulsion slick in the marine tank, the thin part of the slick
looks like light crude oil. The Oseberg blend included in the NOFO2015 emulsion has not been
characterized on its own in the lab or in the tank. The products leading to a 25-μm thickness
during the tank experiment, including a light crude oil, were detected visually but not with the
index. Therefore, the thickness of the thin part of the slick could be higher than 25 μm, and this
would decrease the value found for the thicker part of NOFO2015 emulsion. As a point of com-
parison, during the tank experiment, the thinner mean thickness detected from the index was
125 μm. It corresponds to an unstable emulsion (made with a mix of HC1541 and heavy
oil-fuel, different from the NOFO2015 one).

A sensitivity analysis to various parameters is given in Table 6. The first part of the table, in
bold-italics, corresponds to the sensitivity to the number of pixels for the thick part of the slick in
the tank. For each number (the nominal one 2537 and a lower and a larger one) and for a thick-
ness equal to 0.025 mm for the thin part of the slick in the tank, the corresponding thickness for
the thick part of the slick, the percentage of the poured volume corresponding to the thin and
thick part, respectively, are deduced. Just below, the corresponding volumes are assessed for the
NOFO2015 airborne image. A similar approach is taken in the second part of the table in italics
corresponding to the sensitivity to the thickness of the thin part of the slick. Thickness for the
thick part of the slick in the tank, percentage of volumes for the tank case, and volume for the
NOFO2015 airborne image are derived from the thickness for the thin part of the slick in the tank
for three cases 0.025, 0.05, and 0.125 mm (and for a pixel number for the thick part of the slick in
the tank equal to the nominal one). The third and last part of the table, in bold, is to compare to
the second one in italics. It illustrates the impact of an error of 50 ml on the emulsion volume
poured in the tank.

The 0.125-μm thickness case for the thin part of the slick appears less realistic than the other
two regarding the volume percentage for both the thin and thick part of the slick. The minimum
and maximum volumes found in this table for the NOFO2015 image are 15.9 and 21.5 m3,
respectively, compared with a nominal assessment about 18 m3.

Even if a tank experiment cannot be easily done again, a laboratory characterization of the
Oseberg crude oil would enable us to assess its attenuation coefficient, and therefore a thickness
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assessment could be done for the thin part of the marine tank slick of NOFO2015 emulsion by
modeling. It could also be compared with the relative thickness assessed according to Eq. (2)
of Ref. 25.

Although it is not perfectly rigorous in the case of an emulsion, the simple transmission
measurement in the laboratory has been converted into the attenuation coefficient stored in the
extended database, and a skin depth (corresponding to the theoretical att_MAX thickness) has
been derived (a more adequate measurement providing the absorption coefficient can be found in
Ref. 26). The skin depth of the extended database is about 0.2 mm in the NOFO2015 emulsion
case. The analysis of spectra has shown15 that the actual thickness is higher than the skin depth.

Table 6 Volume assessment sensitivity to number of thick pixels (bold-italics), to the thickness
assumption for thin pixels (italics), and to the knowledge on the total volume (bold).

Tank experiment with 500 ml poured

Number of thick pixels 2537 2000 3000

Corresponding thickness for thick part of the slick (mm) 1.10 1.39 0.93

Volume for thin part (%) 10.7 11.2 10.4

Volume for thick part (%) 89.3 88.8 89.6

Volumes (m3) derived for the NOFO2015 airborne image

For the thin part 2.7 2.7 2.7

For the thick part 14.9 18.8 12.6

Total 17.6 21.5 15.4

Tank experiment with 500 ml poured

Thickness for thin part of the slick (mm) 0.025 0.050 0.125

Corresponding thickness for thick part of the slick (mm) 1.10 0.97 0.57

Volume for thin part (%) 10.7 21.5 53.7

Volume for thick part (%) 89.3 78.5 46.3

Volumes (m3) derived for the NOFO2015 airborne image

For the thin part 2.7 5.5 13.6

For the thick part 14.9 13.1 7.7

Total 17.6 18.5 21.3

Tank experiment if 450 ml poured instead of 500 ml

Thickness for thin part of the slick (mm) 0.025 0.050 0.125

Corresponding thickness for thick part of the slick (mm) 0.98 0.84 0.45

Volume for thin part (%) 11.9 23.9 59.7

Volume for thick part (%) 88.1 76.1 40.3

Volumes (m3) derived for the NOFO2015 airborne image

For the thin part 2.7 5.5 13.6

For the thick part 13.2 11.4 6.0

Total 15.9 16.9 19.7

Viallefont-Robinet et al.: Remote sensing of marine oil slicks with hyperspectral camera. . .

Journal of Applied Remote Sensing 024504-14 Apr–Jun 2021 • Vol. 15(2)



Therefore, the skin depth could be taken as the lower bound of the actual thickness for the
NOFO2015 airborne image.

6.2 Comparison with Other Volume Assessment

A method for assessing volume of oil on water relying on its visual appearance is well known in
the offshore community. It corresponds to a code, named Bonn Agreement Oil Appearance Code
(BAOAC),27 linking the visual appearance of the oil slick to a thickness range. Although this
code is not adequate for emulsion, a volume assessment has been made relying on image
photointerpretation.16 The corresponding results are reported in Table 7. Class 3 corresponds
to code 3 when the surface appears “metallic” and thickness is in the range 5 to 50 μm.
Class 4 corresponds to code 4 when the surface appears with discontinuous true color and its
thickness is between 50 and 200 μm. Class 5 corresponds to emulsion and thus does not cor-
respond to code 5 when the surface appears with continuous true color, but the code 5 lower limit
of 200 μm is taken into account in the volume assessment.

The slick surface found using photointerpretation is larger than the one found using the
index. The sum of class 3 and class 4 surfaces is much larger than the surface corresponding
to the thin part of the slick for the index. The surface for class 5 and the thick part of the slick are
of the same order of magnitude. As no thickness range is available for class 5, its contribution to
the total volume is probably highly underestimated.

There is a need to connect the thin part of the slick to class 3 and class 4, to consolidate the
thickness for the thin part(s), and to update the thickness for the thick part if necessary.
According to the tank experiment, taking 1.1 mm as the approximate thickness for the thick
part of the slick implies the selection of 0.025 mm for its thin part. This is why these values
appear with the font (italics) in Table 7 and the corresponding volumes are added to estimate the
approximate volume. The thickness upper bound for the thin part of the slick is just taken as the
mean thickness of class 4, which also corresponds to a thickness that has been detected using
the index.

The translation of the Bonn code thickness ranges into mean thickness that was made by Hu
et al.28 cannot be used in or adapted to the NOFO2015 emulsion case. Indeed, the correspon-
dence between reflectance and thickness is, at least, product specific. In the thickness range
obtained during our laboratory measurements, the NOFO2015 emulsion reflectance remains the
same. Therefore, in contrast to Hu et al.,28 it is not possible to establish a relation between reflec-
tance and thickness by referring to laboratory measurements and transferring it to an image. The
cumulative histograms have been computed as by Hu et al.28 to check their shape and the pos-
sible identification of classes from inflection points. They are presented in Fig. 12 for the two
VNIR wavelengths (470 and 670 nm) used for the FI index and for the two SWIR wavelengths
(1240 and 1640 nm) used by Hu et al.28 The histogram obtained for 470 nm would suggest two
classes for the emulsion. It is difficult to identify classes for the other wavelengths.

Table 7 Slick surfaces and volumes for the NOFO2015 airborne image.

Thin Thick Total

Extented database Surface (m2) 109,007 13,533 122,540

Thickness (mm) 0.025 to 0.125 0.2 to 1.1

Volume (m3) 2.7 to 13.6 2.3 to 14.9 5 < V ≈ 17.6

Class 3 Class 4 Class 5 Total

Bonn code Surface (m2) 77,147 60,440 11,347 148,934

Thickness (mm) 0.005 to 0.050 0.050 to 0.200 >0.200

Volume (m3) 0.4 to 3.9 3 to 12.1 >2.3 >5.7 to 18.2
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Despite the uncertainty about the thickness of the thinner part of the slick and the effect of the
wind and the Langmuir circulation, the laboratory and tank measurements enable one to provide
a lower bound and a possible value for the slick volume, whereas the Bonn code only provides a
range for the lower bound. They provide a minimum and a possible volume for the thicker part of
the slick, which is usually the most important part to collect.

7 Conclusion

The work performed in the laboratory or during the tank experiment leads to a database giving
access to a large set of properties for various products, ranging from spectral signatures to spec-
tral attenuation coefficient to thicknesses including theoretical minimal, maximal thicknesses
from an optical point of view, as well as thicknesses derived from the tank experiment. This
extended database is used for product identification and, in case of opaque oil or water-in-oil
emulsion layer, for quantification assessment resulting from thicknesses deduced from labora-
tory and tank experiment measurements.

The presented approach for detection, identification, and quantification is a prototype and
needs to be extended for a broader applicability. An operational method would require a much
more exhaustive list of products in the database. This would be enough to obtain an efficient
solution for slick monitoring with hyperspectral sensors as long as the spatial resolution is suited
to the slick size. As observed in this paper, the spatial resolution of airborne hyperspectral cam-
eras is in general appropriate for the monitoring of oil slicks, and following from that, the use of
UAV mounted hyperspectral cameras should be an effective monitoring tool. For space-borne
hyperspectral sensors, the signal-to-noise ratio and the moderate spatial resolution would prob-
ably affect the results. A complementary study needs to be done to simulate images with lower
spatial resolution and to assess the impact of this parameter.

The representativeness of the database content can be improved from modeling and should
then enable adaptation of the magnitude of spectral signature to a non-flat water surface.

Beyond the database, modeling can be used to define optimal observation conditions to
assess the expected contrast between water and oil and the thickness as far as it is in the theo-
retical min–max range from an optical point of view.

Hyperspectral imagery can be an advantage for identification and enables quantification by
an optical model for some products. In the case of a known product, detection can be performed
with multispectral imagery, and quantification can be achieved from the thickness derived from a

Fig. 12 Cumulative histogram for the VNIR wavelengths included in the FI index and the two
SWIR wavelengths used in Ref. 28.
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tank experiment. This opens the presented methodology to multispectral space-borne imagery
with higher spatial resolution than the hyperspectral one.
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