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Abstract. Hyperspectral imaging (HSI) continues to grow as a method for remote detection of
vegetation, materials, minerals, and pure chemicals. We have used a longwave infrared (7.7 to
11.8 μm) imaging spectrometer in a static outdoor experiment to collect HSI data from 24 min-
erals and background materials to determine the efficacy with which HSI can remotely detect and
distinguish both pure minerals and mineral mixtures at a 45-deg tilt angle relative to ground
using two different backgrounds. Measurements were obtained separately for the minerals and
materials mounted directly on both a bare plywood board and a board coated with aluminum foil:
19 powders (3 mixtures and 16 pure mineral powders) held in polyethylene bottle lids as well as
five samples in rock form were taped directly to the boards. The primary goal of the experiment
was to demonstrate that a longwave infrared library of solids and minerals collected as direc-
tional-hemispherical reflectance spectra in the laboratory could be used directly for HSI field
identification along with simple algorithms for a rapid survey of the target materials. Prior to the
experiment, all 24 mineral/inorganic samples were measured in the laboratory using a Fourier
transform infrared spectrometer equipped with a gold-coated integrating sphere; the spectra were
assimilated as part of a larger reference library of 21 pure minerals, 3 mixtures, and the poly-
ethylene lid. Principal component analysis with mean-centering was used in an exploratory
analysis of the HSI images and showed that, for the aluminum-coated board, the first principal
component captured the difference between the signal that resembled a blackbody and the highly
reflective aluminum background. In contrast, the second, third, and fourth principal components
were able to discriminate the materials including phosphates, silicates, carbonates, and the mix-
tures. Results from generalized least squares target detection clearly showed that laboratory
reference spectra of minerals could be utilized as targets with high fidelity for field detection.
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1 Introduction

In the last few decades, hyperspectral imaging (HSI) has evolved as a method for remote detec-
tion with many applications, including identification of plants, earthen materials, and natural
events, such as fire or volcanic eruption.1–3 Typically, the spectral data within an individual pixel
are exploited by comparing the reflected/emitted energy of the target substance(s) (as mitigated
by intervening atmosphere) with those materials’ spectral characteristics, which are compiled in
a separate spectral library.4,5 Many materials have been studied with HSI and some even studied
in multiple phases; much of the early HSI work focused on gas-phase detection6,7 and a few
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studies also reported liquid-phase detection.8–10 More recent HSI studies, however, have focused
on detection of solid materials, typically using reflected visible or near-infrared wavelengths.11,12

The solid-phase studies have grown at an exponential pace, particularly for vegetation13–15 as
well as for rocks, minerals, and other geological specimens.11,16–19 To support these geological
studies, the ASTER spectral library database, for example, has grown to include over 2300 spec-
tra for a wide variety of materials including minerals, rocks, vegetation, soils, and manmade
materials covering the wavelength range 0.4 to 15.4 μm.20 Thermal infrared (TIR) or longwave
infrared (LWIR) sensors can measure known spectral features that correspond to the fundamental
vibrational frequencies of interatomic bonds within common rock-forming minerals. Only a few
of the geologically-based studies, however, have used TIR wavelengths, and these include the
very early laboratory studies of Hunt and Salisbury, who showed that igneous,17 sedimentary,18

and metamorphic19 species, particularly sedimentary species such as silicates and carbonates,18

are readily detected by infrared reflectance spectroscopy. Many HSI studies followed in the
1980s and 1990s21 including, e.g., the first TIR imaging studies by Kahle et al.22 as well as
several others. In many of these pioneering works, it was noted that minerals containing anion
chemical moieties such as silicates,23 carbonates,24 phosphates,25 sulfates,26 or cations such as
ammonium or uranyl27,28 are all known to display characteristically strong emission/reflectance
features in the LWIR between 7 and 13 μm, making them amenable to such TIR detection.

There are now several modalities available for HSI including handheld sensors,29,30 field
portable systems,31 and airborne systems.32–36 With the deployment of LWIR systems such
as the spatially enhanced broadband array spectrograph system (SEBASS) hyperspectral
imager,34 the last 20 years have even seen airborne detection of rocks and minerals. For example,
Aslett et al.37 recently reported detection of rock forming minerals at Death Valley National Park
in California using areal SEABASS data.

The reflectance spectra of solid materials, however, can vary significantly, especially in the
LWIR,38,39 and multiple spectra may be needed for identification of the same solid species as
opposed to gases, where only a single reference spectrum is needed.40,41 Reflectance spectra for
solids depend on both real and imaginary components ðn; kÞ of the complex refractive index as
well as morphological parameters such as particle size and shape, surface roughness, etc. In the
LWIR, however, the wavelength of light becomes comparable to typical solid particle sizes (e.g.,
1 to 100 μm). As this happens, the measured reflectance signal becomes a more complex com-
bination of surface scattering and volume scattering.39,42–44 Surface scattering leads to greater
reflectivity, often from reststrahlen features, where little energy has passed through grain boun-
daries and light scattering arises primarily from first-surface reflections.24,44 Volume scattering,
by contrast, is characterized by lower reflectivity due to inter- and intraparticle reflection, refrac-
tion, and internal absorption of the light.

It is thus understood that reflectance spectra, especially of solid materials, depend on many
factors, such as sample form, grain size, and surface roughness, and are not always linear in areal
coverage or concentration. The raw spectra are also a function of observational parameters such
as tilt angle, temperature, and humidity and of course a function of the detector and its spectral
bandwidth. To investigate some of these effects, we have conducted an HSI experiment with
24 minerals using the Telops Hyper-Cam LW, an imaging Fourier transform infrared (FTIR)
spectrometer, configured to collect data in the LWIR spectral range 7.7 to 11.8 μm (1300
to 850 cm−1).

In addition to investigating some of the above parameters, we wished to specifically answer
the question, “Can laboratory reflectance spectra for HSI field identification along with a port-
able spectrometer in the LWIR be used along with relatively simple analysis to rapidly survey a
set of minerals and inorganic species, including mixtures and different sample forms?” While
most HSI studies employ visible or near-infrared wavelengths, we have focused on the use of
laboratory mineral reflectance data for detection at infrared wavelengths, cognizant of all the
grain size/sample form effects on the spectra; such effects can cause great spectral variation
in the infrared (IR), especially for chemical mixtures and for mixed particle sizes.38,39,44

We also investigated the influence of using the HSI infrared spectrometer with varying sample
tilt angles (25 deg, 35 deg, and 45 deg relative to ground), as well as other temperature and
diurnal effects, but those results are reported elsewhere. The primary analytical tools used for
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discrimination of the pure and mineral mixtures are principal component analysis (PCA) and
generalized least squares (GLS) target detection as described below.

2 Experimental

Most of the minerals were obtained from commercial sources, such as Mineralogical Research
Company, Wards Scientific, or Clay Mineral Society, whereas the pure chemical samples were
purchased from Aldrich. Laboratory reference spectra were collected as directional-hemispheri-
cal reflectance (DHR) data using commercial FTIR spectrometers, each coupled with an inte-
grating sphere; the experimental protocols that were followed have been detailed elsewhere.45

The VNIR spectra were also measured, but those measurements are not discussed in this
paper.28,44

Briefly, two types of spectra are recorded for each sample as shown in Fig. 1, namely the
diffuse-only reflectance spectra and the hemispherical (a.k.a. total) reflectance, which represents
the sum of the specular and diffuse components. (The hemispherical reflectance data are shown
in this paper and reported as reflectance from 0 to 1.0, i.e., 0% to 100%.) For the diffuse-only
measurements, a dome is removed from the upper portion of the integrating sphere45 as shown in
Fig. 1(b), allowing the specular component to escape; the dome is of the same curvature as the
sphere and its size corresponds to the solid angle of the reflected IR beam. For certain species,
particularly mineral specimens containing phosphates, carbonates, and silicates that can have
large reststrahlen bands, the diffuse-only spectrum (i.e., without specular component) can be
significantly different than the total spectrum as shown in Fig. 1 for apatite, Ca5ðPO4Þ3
ðF;Cl;OHÞ. The phosphate doublet band near 1100 and 1050 cm−1 is greatly reduced for
the diffuse-only spectrum whereas only a 4% offset is observed between the hemispherical and
diffuse-only spectra for most of the spectrum >1500 cm−1.

Standards, including a thin polystyrene film for λ calibration, a 100% matte gold reflector, a
light trap, and a calibrated diffuse hemispherical 50% reflector standard traceable to the National
Institute of Standards and Technology (NIST), were measured prior to the acquisition of sample
spectra to verify no major deviations in instrument performance. To check for systematic errors,

Fig. 1 Schematic of integrating sphere (top) and measured laboratory spectra of apatite in
the 1600 to 600 cm−1 range for both (a) the total and (b) the diffuse-only spectra. For clarity, the
incoming and specular rays are shown in red, arbitrary diffusely scattered light in green. For both
diagrams, the flip-mirror is shown pointing down toward the sample.
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multiple spectrometers were also used, and the results were compared and vetted. A Bruker IFS
66/S with an integrating sphere was used to collect DHR data for sodium carbonate, calcium
carbonate, and the faux onyx samples. Spectra for the three mixtures, ammonium phosphate
dibasic, sodium phosphate dibasic, and the Nalgene® lid, were recorded using a Bruker Optics
IR Cube FTIR with the sphere bolted on the side as previously described.27 A Bruker Tensor
37/A562 integrating sphere combination was used to record data for the remaining 15 samples.
The spectrometer provided the modulated IR beam as input; the sphere was a Bruker A562
device, a two-port 75-mm matte-gold-coated sphere with a dedicated detector. On a vertical
plane centered at the sphere’s geometric center is a 2.0-cm-diameter entrance port where light
from the interferometer enters the sphere. A small flip mirror near the sphere’s center (Fig. 1) can
rotate such that light entering the sphere can be directed downward to a 1.9-cm-diameter sample
port in the bottom of the sphere, back out the entrance port, or upward to a 3.2-cm-diameter
reference port that also serves as a specular exclusion port for the specular component reflected
from the sample.45–47 When the mirror is pointing down, the angle between the incident IR beam
and the normal to the sample surface is 14.8 deg. The A562 sphere has a matte gold interior
surface, i.e., a gold overcoat on a roughened surface, typical for such IR devices.48 However,
it has been shown45 to display significant specular characteristics.

The sphere has a purge gas connection to provide a constant dry nitrogen purge during
measurement.46 For the mid-IR measurements reported here, the standard SiC source and
Ge/KBr beamsplitter were used. The sphere’s liquid nitrogen-cooled mercury cadmium telluride
(MCT) detector has a 2 × 2 mm element with a 60-deg field of view. In combination, the system
covers the 7500 to 600 cm−1 range. All interferograms were collected using double-sided,
forward-backward acquisition at 4.0 cm−1 resolution, using a Mertz phase correction and
Blackman-Harris 3-term apodization. Typically, 2048 scans were averaged. Key laboratory
FTIR parameters are summarized in Table 1.

As described below, the HSI experiment powder samples were affixed to the boards in cups
that were simply inverted lids of Nalgene® water bottles. To ensure the Nalgene (i.e., polyethyl-
ene) lids themselves would not cause an interference in the sample measurements, the lids were
analyzed in the laboratory to confirm that they were near zero percent reflectance and “spectrally
flat” in the spectral range of the HSI instrument (1300 to 850 cm−1); this is shown in Fig. 2(b)
and confirms that there was minimal reflected light from the holders (lids) in the composite
signal and that the longwave emitted light from the holders was relatively featureless.
During the experiment, the polyethylene lids were filled with just enough powdered sample

Table 1 Typical experimental parameters for Bruker Tensor 37 solids reference measurements.

Parameter Setting Parameter Setting

Infrared source Glow bar Phase resolution 32.0 cm−1

Beamsplitter KBr Phase correction mode Mertz/no pk search

Detector LN2 cooled MCT
2 × 2 mm

Apodization mode Blackman Harris 3-term

Sampling acc. A562 integrating
sphere

Zerofilling factor 4

Mirror velocity 40 kHz Co-added scans 2048 (typical)

Aperture 6 mm High frequency limit 15; 802.4 cm−1

Laser frequency 15; 802.4 cm−1 Low frequency limit 0.0 cm−1

Wavenumber range 7500 to 600 cm−1 Low pass filter 40.0 kHz

Spectral resolution 4.0 cm−1 High pass filter Open

Acquisition mode Dbl-sided forward
backward

Switch gain On – factor 8×
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to avoid spillage at the 45-deg angle, though on a few occasions there was minimal spillage of
some of the looser powders.

As shown in Fig. 3, the samples were regularly spaced with 8 in. between the columns and
11.3 in. between the rows on the plywood. The samples used for the HSI experiment were
chosen to constitute a varied selection of spectral features, particle sizes, and sample forms.
These included silica (SiO2), bauxite ½AlðOHÞ3�, simple aluminosilicates (microcline and pyro-
phyllite), sheet aluminosilicates with additional metals (muscovite and montmorillonite), and
mixtures of minerals, presented as mass percentages, to obtain a diverse representation as sum-
marized in Table 2. We should note that some of these samples are provided in the ASTER
spectral database, which includes spectra for three particle size fractions for over 150 of its min-
eral samples.20 Since not only the particle size but also the sample provenance or origin can lead
to differences in DHR spectra,49 we only used the reference spectra measured in this study.

Some of the materials were selected in part based on known spectra, a few of which contained
a significant peak or peaks that could be easily recognized in the 1300 to 850 cm−1 spectral
range, such as muscovite and pyrophyllite. Conversely, others were selected due to being spec-
trally “flat” with few prominent features in the Telops spectral range. Infrared spectra were
recorded for all the samples and were later used as reference endmembers in the spectral database
that contained 21 pure minerals, 3 mixtures, and the polyethylene reference.

The HSI experiment was conducted over a 2-day period, on October 4 and 5, 2017, at Pacific
Northwest National Laboratory (PNNL) campus (46.319°N, 119.283°W). Measurements were
made over the course of the first day, in local time, from 10:57 until 21:29 Pacific Daylight Time
(PDT) as one of the parameters to be studied was the diurnal variation of the spectral response.
As mentioned, the Telops instrument measured the radiance in the 7.7 to 11.8 μm (1300 to
850 cm−1) spectral range. A spectral resolution of 4 cm−1 was used for all the measurements,
and typically eight datacubes were averaged for each scan, with four scans then averaged to
improve the signal-to-noise ratio. The Telops incorporates an MCT focal plane array of 320 ×
256 pixels with an instantaneous field of view of 350 μrad=pixel with the standard optic. The
frame was placed at a distance of 14 m (45 ft) from the center of frame to center of the Telops

Fig. 3 Images of (a) frame (b) bare plywood board and (c) aluminum-foil coated board that were
used in the experiment. Spring clamps secured the boards to the frame.

Fig. 2 Measured laboratory reflectance spectra of polyethylene (Nalgene) lid in the (a) 7500 to
600 cm−1 and (b) 1300 to 850 cm−1 spectral ranges.
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tripod; thus, the instrument imaged a 1.56 m × 1.25 m patch in object space. In preparing for the
field experiment, a variable-angle plywood frame was constructed to which different pieces of
plywood could be readily attached; each piece of plywood (sample) board was mounted with
24 samples to form a configuration. Each board was clamped to the frame using spring clamps
(Fig. 3), allowing for quick exchange between measurements. The frame to hold the sample

Table 2 Chemicals, minerals, rocks, and materials used. Particle size distributions measured via
optical microscopy.

Material Formula

Grain
size (μm)
or form Supplier/origin

Faux onyx-calcite CaCO3 Rock Arizona tile

Silica sand
(50 to 70 mesh)

SiO2 341� 93 Sigma-Aldrich

Sodium carbonate Na2CO3 579� 184 Sigma-Aldrich

Calcium carbonate CaCO3 59� 25 Sigma-Aldrich

Ammonium phosphate
dibasic

ðNH4Þ2HPO4 446� 417 Sigma-Aldrich

Sodium phosphate
dibasic

Na2HPO4 38� 28 Sigma-Aldrich

Polyethylene (lid) ðC2H2Þn Solid Nalgene

Artinite Mg2ðCO3ÞðOHÞ2 • 3H2O Rock San Benito Co.,
California

Bauxite AlðOHÞ3, AlO(OH), FeOOH 16� 12 Ward Scientific

Dickite Al2Si2O5ðOHÞ4 24� 14 St. George, Utah

Microcline KAlSi3O8 12� 9 Parry Sound, Ontario,
Canada

Nontronite ðCaO0.5;NaÞ0.3Fe3þ2ðSi;AlÞ4O10ðOHÞ2 • nH2O 202� 98 Garfield, Washington

Saponite Ca0.25ðMg;FeÞ3ððSi;AlÞ4O10ÞðOHÞ2 • 4ðH2OÞ Rock Isle of Mull, Scotland

Sericite Mainly muscovite 104� 112 Imperial Co., California

Muscovite KAl2ðAlSi3O10ÞðF;OHÞ2 19� 22 Stoneham, Maine

Pyrophyllite Al2Si4O10ðOHÞ2 Rock Mariposa Co.,
California

Ripidolite ðMg;Fe;AlÞ6ðSi;AlÞ4O10ðOHÞ8 25� 20 El Dorado Co.,
California

Clinoptilolite ðNa;K;CaÞ2-3Al3ðAl;SiÞ2Si13O36 • 12H2O 16� 13 Hector, California

Montmorillonite ðNa;CaÞ0.33ðAl;MgÞ2ðSi4O10ÞðOHÞ2 • nH2O 14� 10 Wyoming

Quincy soil 215� 89 Quincy, Washington

Mica–Schist Micas, talc, hornblende Rock Ft. Collins, Colorado

Vermiculite ðMg;Fe;AlÞ3ðAl;SiÞ4O10ÞðOHÞ2 • 4H2O 20� 15 Transvaal, Africa

Mixture 1 50% Na2CO3, 25% microcline,
25% nontronite

Mixture

Mixture 2 50% silica sand, 50% CaCO3 Mixture

Mixture 3 75% Na2CO3, 25% sericite Mixture
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boards was constructed using stock lumber with the two frame boards each measuring 1.07 m ×
1.22 m (42 × 48 in:) and hinged together at the front base as shown in Fig. 3. To achieve differ-
ent tilt angles for the sample boards, wooden dowels were cut to different lengths and placed in
the corners of the frame to achieve the desired angles for the experiment (25 deg, 35 deg, and
45 deg relative to the ground). The angles were verified using a protractor.

For two of the sample boards, 24 different minerals were attached to the frame—each mineral
arrangement on a board was thus a “configuration.” Of the 24 samples, 5 were in rock (single
specimen) form taped directly to the board and the other 19 were displayed as powdered minerals
(16 pure minerals and 3 mixtures). The powdered minerals were placed in the 2-in.-diameter
polyethylene lids as described previously. Figure 4 shows the layout of the minerals for con-
figuration 1, also shown in photos of Fig. 3. The position of the sample is referred to as [row #,
column #]; for example, the position of sodium phosphate dibasic (Na2HPO4) is [3, 6]. Board 1
had the mineral samples mounted on plywood fully covered with reflective aluminum foil with
the samples positioned as per Fig. 4. Board 3 was bare plywood but with the same minerals and
configuration as board 1. (Board 2 included different samples and is not discussed in this paper.)
The samples were swapped between the two boards using the same configuration, and each
board was successfully staged at the three tilt angles (25 deg, 35 deg, and 45 deg), with (1) the
Telops field of view (FOV) adjusted at each angle and (2) the HSI spectrometer recalibrated
for each FOV. This procedure was repeated five times throughout the first day using different
configurations. In this paper, only the results for the 45-deg orientation and configuration 1 are
discussed.

3 Results

Analysis was performed for two boards: C1B145 and C1B345. C1B145 corresponded to con-
figuration 1, board 1 (plywood coated with aluminum), 45 deg relative to ground, recorded on
October 4, 2017, at 11:20 PDT, and C1B345 corresponded to configuration 1, board 3 (bare
plywood), 45 deg tilt, recorded at 12:28 PDT. Image C1B345 was thus collected approximately
an hour after C1B145, but both had the same configuration corresponding to the 24 mineral and
rock samples mounted in a 4 × 6 pattern. Section 3.1 describes the results of an exploratory
analysis of image C1B145 (i.e., with samples mounted on an aluminum foil background).
Exploratory analysis was used to examine how the measured radiance signal manifests and
if the minerals could be discriminated without extensive signal processing (i.e., no continuum

Fig. 4 RGB false color image of the scores on PCs 2, 3, and 4 for C1B145 (autocontrasted).
The mineral and chemical materials are labeled, and the same configuration also holds for the
other figures.
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removal was used for the exploratory analysis and spectra were not corrected for atmospheric
interferences, most notably ozone ½O3� and water vapor ½H2O� in the 1250 to 1000 cm−1 domain,
as discussed below). The analysis was also used, as described in Sec. 3.2, to select “represen-
tative blackbody and sky radiance” signal as inputs for the subsequent target detection.

Section 3.3 discusses results of target detection applied to the two concatenated images
(C1B145 and C1B345). A simple radiance model is introduced and shows how target detection
was employed using GLS applied to the processed signal. The signal was processed using the
simple radiance model and manual selection of signal corresponding to blackbody and sky radi-
ance, where the Telops measured the radiance of the (solar-heated) mineral samples. Although
this signal processing can be considered rudimentary, it can be used to determine if simple
processing can detect and discriminate mineral target signal in the image(s). Examples are shown
using three representative targets: (1) ammonium phosphate dibasic, ðNH4Þ2HPO4; (2) calcium
carbonate, CaCO3; and (3) silica sand (50 to 70 mesh, i.e., 212 to 300 μm). The target detection
results showed that discrimination was most successful for ammonium phosphate dibasic (due to
its unique spectrum) and calcium carbonate (due primarily to its strong longwave reflectance).
Detection results were poorest for artinite, sodium phosphate dibasic, clinoptilolite, sodium car-
bonate, and the poylethylene lid (all attributed to relatively low reflectance—the results are not
shown). It is noted that detection was more successful when using the plywood background
versus the aluminum background; this was attributed to the wood having an emissivity of
∼0.83 versus an emissivity of ∼0.04 for aluminum foil, i.e., the aluminum surface was reflecting
sky radiance from colder atmospheric layers above.31

3.1 Exploratory Analysis: Principal Component Analysis of Image C1B145

PCA was used in an exploratory analysis of image C1B145. Spectra in the image were mean-
centered prior to PCA decomposition, and the first principal component (PC 1) described >99%

of the variance in the data and primarily captured the difference between the signal that resem-
bles a graybody (Planck function) and the highly reflective aluminum background on board
C1B145. Figure 5 shows that the loadings for PC 1 somewhat resemble a blackbody curve.
The brightest samples on PC 1 (highest PCA scores on PC 1) were ripiodolite, vermiculite, and
Quincy soil, which all have low-to-moderate reflectance values. Both ripidolite and vermiculite
have measured infrared spectra that vaguely resemble a Planck blackbody function; this is dis-
cussed in detail below and is shown in Fig. 10(c); these curves display lower reflectance values,
except for a single moderate reflectance peak in the 1040 to 1020 cm−1 domain. When radiance

Fig. 5 PCA loadings on PCs 1 to 4 for C1B145. Much of the observed fine structure in the 1250 to
1100 cm−1 domain is due to atmospheric water lines. The PC loadings (PC 1 to PC 4) are the four
principal components derived from reducing all the HSI experimental spectra to just the principal
component as described in Sec. 3.1.
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is converted to brightness temperature, the (brightness) temperature of the plywood mounting
board C1B345 is very close to the ambient temperature of the surroundings, as expected. For the
low emissivity aluminum-foil covered board C1B145, however, the sky is being reflected, which
represents on average much cooler temperatures than the surroundings and is similar to the sky
radiance.31 Figure 4 shows an RGB false color image of the scores on PCs 2, 3, and 4 where the
scores have been “autocontrasted” to enhance visualization, i.e., the scores have been mean-cen-
tered, scaled to a range of �2 standard deviations, and saturated at values of �2. This image is
rich in information and shows clear detection and discrimination of the minerals. Rock samples
(e.g., artinite) are easily recognized by their geometric shapes when compared with the round
“dark-blue shadow” from the Nalgene sample cups that contain particulate or powdered mineral
samples. Nalgene was chosen for its very low and flat spectral reflectance (Fig. 2), i.e., it has a
significantly different flat signature than most of the powdered minerals and salts contained in
the lids, causing the blue shadow. Sample labels are also visible on the mounting board as dark
strips below each sample, indicating the configuration of the powders and rock minerals; the
same relative configuration holds for all images in this paper.

The results shown in Figs. 4 and 5 are encouraging because they show that, using just four
principal components and no further spectral processing or atmospheric compensation, the
different materials are qualitatively easy to discriminate from each other, as well as from either
the graybody background or highly reflective aluminum board. This suggests that the HSI signal
can be used to detect and discriminate the mineral materials, but it is not yet clear if the target
spectra in the database can be used to classify the materials. This will be discussed in the next
section.

We note that the sharp spectral features seen in the PCA loadings 2 to 4 of Fig. 5 are due to
the measured but weak “water vapor emission lines seen in the 1250 to 1150 cm−1 region,” as
noted by Farley et al.50 primarily from atmospheric water vapor. Also observed are the branches
of the ν3 band of atmospheric ozone as seen in emission in the 1075 to 1000 cm−1 (9.6 μm)
domain. As expected, emission lines due to water vapor are especially pronounced on the alu-
minum surface (where much of the background is reflected sky radiance) and are significantly
represented in PCs 2 and 3. We note that these particular water ro-vibrational lines were appa-
rently not included in some of the earlier versions of the high-resolution transmission molecular
absorption database (HITRAN),51 but they are included in the 2016 version of HITRAN.52

3.2 Selection of Representative Blackbody and Sky Radiance Signal

Representative values for the blackbody and sky radiance were estimated to provide a simple
atmospheric correction to the data prior to target detection. The representative blackbody cor-
responded to the approximate maximum brightness temperature from a set of measured pixels
that were closest to a blackbody response. In this case, PCA was performed with no signal
processing to both boards, C1B145 and C1B345, which were augmented and analyzed simul-
taneously. Similar to the results in Fig. 5, PC 1 exhibited a near blackbody response and had a
high score on the plywood, off-board background as well as the ripidolite mineral on the ply-
wood board. Since PC1 manifested as approximately blackbody, the pixel with the maximum
score on PC 1 was used to estimate the blackbody response from the Planck function at a temper-
ature of 327 K.

The representative downwelling sky radiance was selected using PCA of the measured radi-
ance processed using mean centered 1-norm normalized spectra. The procedure was similar to
that for the blackbody signal except that preprocessing focused only on the highly reflective
C1B145 board. Since PC 1 highlighted the highly reflective aluminum signal, the measured
radiance from the pixel with the maximum score on PC 1 was used as representative sky radi-
ance. Both the estimated blackbody and sky radiance from the scene are shown in Fig. 6.

3.3 Target Detection: Generalized Least Squares for Augmented Images
C1B145 and C1B345

Target detection was based on a simple radiance model discussed below and was applied to
boards C1B145 and C1B345, which were augmented and analyzed simultaneously for ease
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of comparison of results. Several pixels in the scene corresponded to graybody signal and others
corresponded to highly reflective low emissivity aluminum. Comparison of the two shows that
while water emission lines in the sky radiance are clearly evident in the reflected spectra from
aluminum (see PC loadings of Fig. 5), attenuation due to water vapor was not significant in
the nonreflected graybody signal (not shown). This suggests that attenuation by water vapor,
as the signal traverses the path between the target boards and the imaging spectrometer, was
not significant, so attenuation due to the intervening atmosphere could be neglected in the simple
radiance model. The result is a simple radiance model for the m’th pixel given as

EQ-TARGET;temp:intralink-;e001;116;424xmðvÞ ¼ ½1 − rkðvÞ�bðT; vÞ þ rkðvÞxsðvÞ; (1)

where xmðvÞ is the measured radiance at frequency, v, rk is the estimated reflectance for the k’th
material, b is the Planck blackbody function at temperature T, and xs is the sky-radiance incident
on the scene. To keep the detection problem simple, it was assumed that the temperature and
sky radiance across the scene were constant and “representative” values were selected from
the exploratory analysis given in Sec. 3.2 and shown in Fig. 6. Thus, pixel-to-pixel variance
in temperature and sky-radiance was neglected. For a pixel associated with a single material,
the k’th material can be considered the k’th target of interest.

The hyperspectral image was measured over N frequencies that can be collected into an
N × 1 vector, xm, allowing Eq. (1) to be written as

EQ-TARGET;temp:intralink-;e002;116;289xm ¼ ð1 − rkÞ ∘ bþ rk ∘ xs; (2)

where ∘ is the element-by-element Hadamard product. Recall that b and xs shown in Fig. 6 are
assumed constant across the image. The simple radiance model given in Eq. (2) can be
rearranged to isolate the measured reflectance in a pixel to yield

EQ-TARGET;temp:intralink-;e003;116;224zm ¼ ðb − xmÞ ∘=ðb − xsÞ ¼ cm;krk þ em; (3)

where ∘= is the element-by-element Hadamard division (there is no standard operator symbol for
this operation), cm;k is introduced to allow for changes in the contribution of an individual target
k, and em is introduced to account for modeling error. (Note that em is both target and pixel
dependent and has two extremes: for a pixel that perfectly matches the library target of interest,
em ¼ 0, but for a pixel that does not fit the library target of interest, em ¼ zm.) The right-hand
expression of Eq. (3) approximates the measured reflectance as a linear mixture model of pure
component reflectance spectra.

Signal in a pixel is rarely due to the presence of a single target analyte, and one approach to
account for mixed signal pixels is to use the GLS model (a.k.a., the matched filter and the Aitkin
estimator).53–59 In the following, the objective function is defined as the left-hand expression and
the corresponding estimator is given in the right-hand expression:

Fig. 6 The representative blackbody and sky radiance used for atmospheric correction.
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EQ-TARGET;temp:intralink-;e004;116;723Oðcm;kÞ ¼ ðzm − cm;krkÞTWjðzm − cm;krkÞ → ĉm;k ¼ ðrTkW−1
j rkÞ−1rTkW−1

j zm: (4)

An important attribute of GLS is the use of the weighting (a.k.a., whitening) matrix Wj,
which was implemented in this work iteratively under the assumption that the target signal
in the image is small relative to other sources of signal. In the context of signal processing,
Wj is often called the clutter covariance.60 For the augmented images, there were a total of
M pixels and only the Mj “on-board” pixels were examined, where Mj < M (“off-board” pixels
were ignored). Therefore, the clutter covariance is estimated from

EQ-TARGET;temp:intralink-;e005;116;637Wj ¼
1

Mj
ZT
jZj; (5)

where Zj corresponds to the subset of Mj pixels and each row of Zj is given by the expression
in Eq. (3). It should be noted that mean-centering was not used in this estimate and that
“covariance” should be read as “covariance about the origin.”58 For j ¼ 1, Mj corresponded to
all on-board pixels—including pixels potentially containing the target signal. In the second and
final iteration (j ¼ 2), pixels detected as the target were removed from Zj, resulting in a slightly
more sensitive detection. Of course, iteration could continue, but two iterations sufficed to dem-
onstrate the feasibility and characteristics of the detection strategy. Detections were determined
using the following F-test at the 99% confidence limit:

EQ-TARGET;temp:intralink-;e006;116;497

fm;k ¼ ðssem;k;1 − ssem;k;2Þ
��

1

Mj
ssem;k;2

�

ssem;k;1 ¼ zTmW−1
j zm; ssem;k;2 ¼ ðzm − cm;krkÞTW−1

j ðzm − cm;krkÞ: (6)

Pixels with fm;k > f99% were considered detections. Detection images shown below are
given a value of 0 for nondetections and are saturated at a high level of 2 (i.e., fm;k > 2f99%
were set to a color value of 2).

For visualization, Fig. 7(a) shows PCA autocontrasted scores on PCs 3, 4, and 5 for images
C1B145 (top, aluminum) and C1B345 (bottom, wood) augmented. No centering or scaling was
used, and only on-board pixels were included in the PCA decomposition. The results are con-
sistent with those seen for only C1B145 that used mean-centering (Sec. 3.1) and show that the
minerals used for this study can be discriminated in a qualitative sense. Also, the color on the
aluminum and plywood are similar for each mineral, indicating that the signal for the minerals
was similar regardless of background material with only slight changes in the signal strength.
Grain structure from the plywood is also evident in the lower image. The example targets are
circled and labeled.

Figure 7(b) shows the target detection results for ammonium phosphate dibasic,
ðNH4Þ2HPO4. The color-bar indicates the value of the F-statistic with dark blue corresponding
to no detection and yellow corresponding to a strong detection. Because it is difficult to draw an
exact one-to-one correlation between pixels and actual ground truth, conclusions are drawn by
comparing Figs. 7(a) and 7(b). It is clear that ðNH4Þ2HPO4 was detected and correctly classified
using target detection and that the detections appear somewhat stronger for the plywood mount-
ing board (lower image). No apparent false positives were observed, as the ellipses correspond-
ing to CaCO3 and sand remain blue.

In a similar manner, Fig. 8(a) shows target detection results for the second target, namely
calcium carbonate (CaCO3). Figure 4 shows that pure CaCO3 specimen is located at the [3,5]
position on the mounting boards and that it is also present in a 50–50 mixture with silica sand at
the [4,2] position. For the analysis, Fig. 8(a) shows that CaCO3 was clearly detected and clas-
sified for the pure sample and in the 50–50 mixture for both the hyperspectral image on the
plywood board and on the highly reflective Al board—no false positives are reported from the
non-CaCO3 samples. A comparison of the laboratory measured spectra for CaCO3, sand 50–70
mesh, and the 50–50 mixture is given in Fig. 9 and clearly shows that CaCO3 indeed has both a
strong reflectance and a highly structured spectral signature. It also shows that the spectrum of
the 50–50 mixture is quite similar to the pure CaCO3 spectrum, thus indicating why CaCO3 was
easily detected in the mixture (although the quantitative reflectance is lower for the mixture).
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We also note that the fine CaCO3 particles (59� 25 μm) and the coarser sand particles
(341� 93 μm) were simply combined and shaken in a vial to provide the 50/50 mixture by
mass. This preparation provided a mixture with a wide grain size distribution, and as discussed
by Herzog and Mustard,61 finer particles can dominate the reflectance spectrum, which may also
partially explain why the spectrum of the 50–50 mixture more strongly resembles that of CaCO3.

Fig. 8 (a) Target detection results for CaCO3. The red and white ellipses (Al and plywood boards,
respectively) identify locations of the example targets. (b) Target detection results for 50 to
70 mesh sand. Nominal “false positives” for nontronite/sericite are shown with green ellipses and
discussed in text.

Fig. 7 (a) Scores image (autocontrasted) for visualization for images C1B145 (top) and C1B345
(bottom). (b) Target detection results for ammonium phosphate dibasic, ðNH4Þ2HPO4. Red and
white ellipses circle example targets on the aluminum board and the plywood board, respectively.
The detection for ðNH4Þ2HPO4 is indicated by yellow, whereas empty ellipses show “no detect” for
the other targets.
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Figure 8(b) shows target detection results for sand (50–70 mesh). In this case, sand is clearly
detected for the pure sample but is not found in the 50–50 mixture of CaCO3 and sand.
Comparison of the laboratory spectra [Fig. 9(a)] shows that the 50–50 mixture spectrum far
more strongly resembles the signature of pure CaCO3 than that of pure sand; the SiO2 peaks
from 1250 to 1050 cm−1 are largely masked by the stronger carbonate peaks, which may also
result from the different particle sizes between CaCO3 and sand in the mixture. Thus, it is not
surprising that sand was not detected in the mixtures in the hyperspectral image. In addition to
the true detection for the 50 to 70 mesh sand, Fig. 8(b) also shows apparent false positives for
nontronite and sericite (circled in green). However, upon closer geochemical analysis, these
detections are in fact not surprising; there is good reason for the sand/silica mixtures to be
detected together, as seen by inspection of the spectra in Fig. 9(b). The SiO2 features at
1085 and 1210 cm−1 are well known and are apparent in nearly all silicate spectra; the nontronite
(Fe(III) rich smectite clay) and sericite (a fibrous variety of muscovite) minerals both have sig-
nificant amounts of silicate giving rise to the similar spectral response. The chemical formula of
nontronite is Na0.3Fe2ððSi;AlÞ4O10ÞðOHÞ2 • nH2O, while sericite has the chemical formula
KAl2ðAlSi3O10ÞðOHÞ2. As seen in the reference spectra in Fig. 9(b), nontronite and sericite
both manifest as “low concentration” sand—the spectral peak positions are the same as those
of silica—just with slightly reduced intensities. Thus, it makes physical sense that the silica and
silicate minerals cluster together and generate “apparent” false positives. Interestingly, five pixels
on Quincy soil (in the [2,5] position just above CaCO3) and one pixel on the mixture at the [1,6]
position (50% Na2CO3, 25% microline, and 25% nontronite) were also detected as false positive
for sand on the plywood board. Comparison of the reflectance spectrum for Quincy soil com-
pared with nontronite (not shown) confirms that, in a similar fashion, Quincy soil looks similar to
“low concentration” nontronite, which explains the observed false positives.

4 Discussion

Analysis for both boards showed positive detection for ammonium phosphate dibasic, calcium
carbonate, and silica/sand, although the silica signature was not detected in the sand sample
physically mixed 50/50 with calcium carbonate. Although not shown, positive detections were
also observed for pyrophyllite, mica-schist, and faux onyx-calcite. As expected, the spectra for
targets with good detection or classification results tended to come from those minerals with
the most structured reflectance spectra and larger percent reflectance (%R) values [Fig. 10(a)].
With moderate reflectance values, positive detections were observed for saponite, vermiculite,
and ripidolite, but with false positives on each other. Figure 10(c) shows that this detection
behavior is to be expected given the similarity of the spectra for these three minerals; all three
are phyllosilicates with a moderately strong (14 to 20%R) reflectance peak centered around
1020 cm−1 (9.8 μm).

Fig. 9 (a) Measured laboratory reflectance spectra for calcium carbonate (red trace), 50 to
70 mesh sand (gold trace) and a 50%–50% mixture by mass of calcium carbonate and sand
(blue trace). (b) Measured laboratory reflectance spectra for sand 50–70 mesh, sericite, and
nontronite.
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The above results demonstrate the applicability of the laboratory DHR measurements for
use in detection and classification of hyperspectral images of minerals. However, some targets
are clearly more difficult to detect than others. For example, artinite, clinoptilolite, microline-
silicate, sodium phosphate dibasic, and the polyethylene lid all had false negatives in this study
[Fig. 10(b)]. This set of targets all had low to moderate reflectance values and cluster together
(blue lines) in the K-means clustering dendrogram60 shown in Fig. 11. Extending the spectral
region to the VNIR or other IR regions may prove useful for successful detection of such
species.21 It is interesting to note that the low reflectance Quincy soil target had positive detec-
tions (with a few false positives on the plywood board for nontronite and the 50% Na2CO3, 25%
microline, and 25% nontronite mixture), while sodium carbonate with high reflectance showed
false negatives [Fig. 10(d)]. Muscovite had a similarly high reflectance as sodium carbonate but
had positive detections (with false positives on saponite). The lack of positive detections for
sodium carbonate is attributed to minimal structure in its processed spectral signature [e.g.,
Eq. (3), Fig. 10(d)] compared with muscovite that has a strong doublet feature near 1050 cm−1.

The mixtures yielded varied results most likely due to the choice of minerals in the mixtures.
In addition, the different particle sizes could lead to finer particles dominating the reflectance
spectra since the minerals were simply mixed together. Best results were achieved for the 50%
CaCO3, 50% sand mixture in which the results for CaCO3 showed positive detection for the
50/50 mixture although sand, which consisted of coarser grain sizes, was not detected in the
50/50 mixture. By contrast, both the 50% Na2CO3, 25% microcline-silicate, 25% nontronite
mixture and the 75%Na2CO3, 25% sericite mixture showed false positives on sodium carbonate.
This result, however, is not surprising since sodium carbonate was not observed with target
detection due to its lack of spectral structure in the relevant spectral region [Fig. 10(d)].
Analysis on nontronite, however, did yield positive detection for some of the pixels on the
high-emissivity plywood board with the 25% nontronite mixture but not with the low-emissivity,

Fig. 10 Measured laboratory reflectance spectra. (a) Spectra for targets with good detection and
classification: ammonium phosphate dibasic, calcium carbonate, sand, pyrophyllite, mica-schist,
and faux onyx-calcite. (b) Spectra for targets with poor detection: artinite, bauxite, clinoptilolite,
dickite, microline-silicate, and sodium phosphate dibasic. (c) “Graybody-like” spectra: saponite,
vermiculite, and ripidolite. (d) Additional example spectra: Quincy soil, sodium carbonate, and
muscovite. Note the different ordinate scales for the four plots.
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aluminum-covered board. Neither microcline-silicate nor sericite yielded positive detection for
the mixtures that had either 25% microcline-silicate or 25% sericite, respectively. This is to be
expected for microcline-silicate since it was difficult to detect due to its low to moderate reflec-
tance values [Fig. 10(b)]. Although sericite was clearly detected as the target, it was not detected
in the 75/25 mixture even though it has a finer particle size distribution (104� 112 μm) than
sodium carbonate (579� 184 μm).

Inspection of the dendrogram of Fig. 11 shows, not surprisingly, that many of the same min-
eralogical groups cluster together because of the similarity of their spectra: the carbonates
(Na and Ca) form the most distinct cluster. Interestingly, though, sodium carbonate, unlike cal-
cium carbonate, was not detected; the particle size distribution for CaCO3 corresponded to finer
particles (59� 25 μm) whereas sodium carbonate consisted of larger particles (579� 184 μm).
As discussed by Myers et al.,44 the smaller grain sizes generally lead to higher reflectance values
due to volume scattering, except for the reststrahlen bands. The reststrahlen band for the car-
bonates, however, is around 1420 cm−1, which is outside the spectral range used by the Telops
sensor. Several of the silicates (pyrophyllite, sand, sericite, and mica-schist) form a cluster seen at
the top of the dendrogram due to broad reflectance bands in the 1250 to 1050 cm−1 domain.
As discussed, vermiculite, saponite, and ripidolite are all phyllosilicates and all have spectra
similar to one another [Fig. 10(c)] with a moderate peak near 1020 cm−1; these form the second
cluster (navy blue) near the top of the dendrogram.

Observations from this study suggest that targets with both high reflectance and articulated
spectral structure in the 7.7- to 11.8-μm spectral region of the Telops are the easiest to detect
and classify. However, this study considered only a single simple signal processing and did not
optimize the spectral processing for detection of different spectral forms as this was outside
the present scope. Moreover, no attempt was made to optimize detection thresholds (e.g., 99%
confidence limit for the F-test was used). As expected, it was also observed that mixtures were
somewhat difficult to detect and classify using the single target detection algorithm.

Results from PCA in Sec. 3.1 displayed clear visual evidence that the minerals could be
discriminated and were consistent with results shown in Sec. 3.3. This is important for two rea-
sons. First, no significant signal processing or atmospheric compensation was used before PCA
decomposition. The second reason is that a simple atmospheric correction followed by target
detection was shown to be useful in Sec. 3.3, suggesting that this method may offer a rapid
survey mode to identify images that require additional processing. This simple model, however,
required some knowledge of the scenario and reflectance in the scene (e.g., the aluminum board

Fig. 11 K -means clustering dendrogram analysis results for the reflectance spectra for 21 differ-
ent minerals and the Nalgene lid. The threshold for using different colors was set at 0.464.
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was used to estimate the downwelling sky radiance). The model also assumed the same sky-
radiance and the same temperature across the image and neglected attenuation of the atmosphere
between the target scene and the sensing spectrometer. It is anticipated that improvements over
these assumptions could improve the detection and classification performance. Unfortunately,
radiance modeling may still present limits to fully realizing the potential of target-based algo-
rithms. Target detection yielded false negatives for artinite, while the scores image shown in
Fig. 4 clearly showed that artinite had a signal different from other minerals. It has been shown
that combining target and anomaly detection approaches (e.g., PCA can be considered
an anomaly detection approach) allows for empirically enabling target detection to be more
sensitive and more relevant to image specific scenarios.62 Thus, “targeted anomaly detection”
synergistically employs laboratory measured spectra with empirical detection methods to pro-
vide an approach optimized for individual scenarios and will be investigated in future studies.

As discussed above, the PCA analysis quickly recognized that some of the brightest samples
(i.e., least reflective) had measured infrared spectra that most looked like a Planck function with
only one moderate band, e.g., ripidolite and vermiculite. This was shown in Fig. 10(c); the sam-
ples all display low reflectance values, with a modest peak near ∼1020 cm−1. While other spe-
cies in this study have similar spectral profiles, namely low reflectance, some of these materials
have distinct spectral features that can be used for identification. In fact, the ðNH4Þ2HPO4 spec-
trum displays some distinct features that can be used for identification, namely the NH4

þ cation
peak at 970 cm−1, as well as the 1060, 1100 cm−1 doublet that we have previously associated as
being two of the phosphate anion band modes.27

As to the strong reflectance peaks associated with symmetric cations46,63–65 such as NH4
þ or

UO2
2þ as well as anions27,44 such as PO4

3− or SO4
2−, these peaks arise from the first surface

scattering of reststrahlen bands. As we have previously reported in studies that quantified reflec-
tion versus wavelength as a function of particle size,44 the amplitude of the other bands relative to
the reststrahlen bands varies significantly with particle size. It was shown that the various spec-
tral phenomena (reststrahlen bands, Christensen minima, volume scattering, and transparency
bands) could largely be understood by particle size in combination with the relative amplitudes
of n and k, the real and imaginary components of the refractive index, respectively. For these
reasons, it is recommended to construct solids spectral databases that either (a) include different
particle sizes (e.g., the ASTER data set)20 or (b) have methods to generate the spectral response
for different particle sizes starting only with the n=k values and a few morphological parameters.
This is especially true as we have extended the use of laboratory reflectance data for detection to
infrared wavelengths where morphological effects can cause great spectral variation in the IR,
especially for mixtures and for mixed particle sizes. Such particle size and morphological effects
are far less pronounced for studies at visible or near-infrared wavelengths.66 The infrared studies
reported here all used the same physical samples for the HSI experiment as were used for the
laboratory DHR reference data, so it was not necessary to account for such morphological
factors; in most HSI experiments, this is not the case.

5 Conclusions

The present experiment has shown that a spectral database of minerals, mineral powders, and
related solids that were recorded as DHR data in the laboratory can be readily deployed for HSI
field detection in the LWIR. By constructing a synthetic mosaic of different minerals and mount-
ing them on a target board, we were able to simulate LWIR detection of different minerals in the
field or natural environment including both in rock and powdered forms, similar to other studies
in the visible and near-infrared.67 The reference library consisted of strictly laboratory DHR end-
member spectra of 21 pure minerals, 3 mixtures, and the Nalgene reference. Using relatively
simple methods, we demonstrated good detection and classification for ammonium phosphate
dibasic, calcium carbonate, and silica sand, although the silica was not detected in the silica/
calcium carbonate (50/50) mixture. PCA showed that the majority of the signal in the measured
images could be attributed to differences between the signal from nonreflective blackbody signal
and highly reflective aluminum surfaces. This result is consistent with the interpretation of the
simple radiance model used here [Eq. (1)]. It was encouraging to note that a minor signal
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associated with other principal components clearly showed qualitative (visual) discrimination of
the target minerals and that target detection using laboratory measured spectra could detect and
discriminate several minerals using a fairly simple signal processing coupled with target detec-
tion. These results demonstrate the feasibility of mineral detection and classification using a
portable HSI spectrometer and simple algorithms for a rapid, exploitation approach to indicate
which cubes might need further processing. It is anticipated that better results can be obtained
with more sophisticated algorithms39,68,69 such as the moderate resolution atmospheric transmis-
sion (MODTRAN) module,68 that adequately account for the effects of the atmosphere including
its radiance, absorption by water vapor and other absorbers, aerosols, solar angle, etc. These
methods are actively being explored.
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