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Abstract. Object-based approaches in the segmentation and classification of remotely sensed
images yield more promising results compared to pixel-based approaches. However, the devel-
opment of an object-based approach presents challenges in terms of algorithm selection and
parameter tuning. Subjective methods are often used, but yield less than optimal results.
Objective methods are warranted, especially for rapid deployment in time-sensitive applications,
such as earthquake damage assessment. Herein, we used a systematic approach in evaluating
object-based image segmentation and machine learning algorithms for the classification of earth-
quake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on
post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were
compared against manually selected test cases representing different classes. In doing so, we can
evaluate the effectiveness of the segmentation and classification of different classes and compare
different levels of multistep image segmentations. Our classifier is compared against recent
pixel-based and object-based classification studies for postevent imagery of earthquake damage.
Our results show an improvement against both pixel-based and object-based methods for clas-
sifying earthquake damage in high resolution, post-event imagery. © 2016 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.10.036025]
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1 Introduction

Earthquakes are a major natural disaster that can cause significant loss of life and property dam-
age. The dangers are not limited to the immediate event. Damage to manmade structures can
further endanger the public and emergency responders as a result of structural instability that
may be intensified by following aftershocks. Damage to roads and other infrastructure can ham-
per response by emergency responders as well as evacuation of the public from affected areas.1

A clear and accurate picture of both the intensity and the extent of the damage is an important
tool in organizing emergency response to an earthquake.2 Imagery from earth observation plat-
forms has shown much promise in this role.3 However, there is room for improvement in the
classification accuracy of earthquake damage before it can be cataloged and acted upon by emer-
gency responders.

Remote sensing technologies, including imagery from Earth observation systems, have
a long history of use in identifying and assessing earthquake damage. With regards to
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two-dimensional imagery, classification has been used to quantify, assess, and locate damage
within. Traditionally, this classification has been done by human operators or increasingly with
pixel-based classifiers applied to multispectral satellite imagery. As satellite sensors increase in
resolution and aerial platforms, such as unmanned aerial vehicles provide increasingly high
spatial resolution imagery, this presents a benefit in the form of more detailed maps but also
a classification challenge. As spatial resolution increases, often with reduced spectral resolution,
traditional pixel-based classifiers become less effective.4

While there is a vast body of work discussing the theory and application of object-based
image analysis, there is limited work in the task of classifying earthquake damage in remotely
sensed imagery, particularly when considering only postevent imagery without any sort of
digital elevation model or height information. Reference 3 provides a thorough overview
of the field of earthquake damage detection with remote sensing by surveying existing
work. Studies making use of aerial imagery, satellite imagery, LiDAR data, SAR data, and
ancillary data, such as building vector data and other GIS maps are considered. Overall,
most studies achieve somewhere in the range of 70% to 90% accuracy in damage identification
using either pixel-based or object-based methods. Studies that consider both pre- and postevent
data as well as studies that make use of multiple data sources tend to provide better results.
However, for studies that look at postevent imagery only, results tend to improve only as spa-
tial resolution increases.3

Reference 5 takes a pixel-based approach looking at 0.61-m pan-sharpened multispectral
Quickbird imagery of the 2010 Haitian earthquake. Using a pixel-based method with a support
vector machine (SVM) classifier, they achieve 81.5% overall accuracy with 63.4% user accuracy
and 71.3% producer accuracy for the damage class, where results were generated from an in-
dependent validation set.5 Using similar imagery, Ref. 6 published the best object-based analysis
results. This study is based on Quickbird panchromatic data of 0.61-m resolution and pan-
sharpened multispectral imagery of the Wenchuan earthquake of May 12, 2008, in China.
Using a watershed-based multilevel segmentation, a single class SVM classifier, and features
such as spectral values and moment invariants, they show 60% producer accuracy and 91%
user accuracy in building damage detection with 79% overall classification accuracy.6

Numerous studies comparing pixel and object-based results have also been completed using
a variety of data from various applications. Some are applicable to our specific study as they
compare object- and pixel-based results using either different methods or applications.
Reference 7 compared pixel-based and object-based methods to data obtained from a visual
inspection of pre-event and postevent Quickbird imagery. Data was from the 2003 Boumerdes,
Algeria earthquake. Unfortunately, results were not very good with damage producer/user accu-
racies of 32%/23% for pixel-based and 50%/20% for object-based methods. Maximum likeli-
hood was used for the pixel-based classification and nearest neighbor for the object-based
approach.7

Reference 8 performed a thorough investigation of object versus pixel results within the con-
text of high urban density classification. The study data consisted of Quickbird imagery of both
Phoenix and Tempe, Arizona used for the classification of buildings, vegetation, lakes, imper-
vious surfaces, and others. The pixel-based classifier is a traditional maximum likelihood clas-
sifier. The object-based method is more complex, using a multilevel segmentation along with
nearest neighbor or rule-based classifiers for different classes. Ultimately, for the test image of
Tempe, overall accuracies of 87.8% for pixel-based and 95.2% for object-based classifications
were achieved when compared against manually delineated validation data sets created through
visual interpretation. In the larger Phoenix image, the results were not quite as good, but it is
important to consider in our work that the worst case building producer/user classification results
were 50%/81.25% for pixel-based and 83.91%/91.25% for object-based.8

While the literature seems to indicate that for higher resolution images, object-based methods
will produce better results, a robust comparison has yet to be done in the context of earthquake
damage. As Ref. 5 demonstrates, pixel-based methods are already a reasonable means of damage
classification. We propose that a systematic approach to object-based classification can improve
the results in earthquake damage detection over pixel-based methods. Furthermore, a systematic
approach to parameter selection in object-based classification can improve the results of the
classifier over subjective methods.

Bialas et al.: Object-based classification of earthquake damage from high-resolution optical imagery using. . .

Journal of Applied Remote Sensing 036025-2 Jul–Sep 2016 • Vol. 10(3)



2 Study Area and Data

In this paper, we consider the example of the Christchurch, New Zealand, 6.2 magnitude
earthquake that occurred February 22nd, 2011. 181 lives were lost and 900 buildings and
10,000 residential structures were destroyed. Damages from the event was estimated at NZ
$15-20 billion.9 The study area and earthquake impacts are depicted in Fig. 1.

Postevent imagery was obtained from Land Information New Zealand.10 Imagery was
obtained on the 24th of February by New Zealand Aerial Mapping Limited at the request of
the Christchurch Response Center. The imagery has a 10-cm per pixel spatial resolution and
comprises red, green, and blue spectral bands. The resulting orthophotos were generated

Table 1 Number of training and validation pixels, as well as objects covered at 75% overlap.
Overlap parameters and their impact on results are addressed in Sec. 4.

Class Training pixels Validation pixels Training objects

Building 1,561,546 180,232 983

Pavement 304,553 165,393 114

Vehicle 12,532 9222 19

Vegetation 42,920 69,150 13

Rubble 314,096 235,490 252

Fig. 1 Earthquake intensity in Canterbury, New Zealand, area and study area in Christchurch,
New Zealand.
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from a pre-existing digital elevation model (DEM) and were not checked against ground truth
to verify if there was any earthquake damage that may not be accounted for in the DEM.10

This study is based on tiles 1-0003-0002 and 1-0003-0003. Tiles were projected to
WGS_84_UTM_zone_59S and combined into one image in ArcGIS. The resulting image is
6335 × 8393 pixels in size.

Training and validation data were generated manually in ArcGIS by a single operator. Five
classes were able to cover all the land cover seen in the image: building, pavement, vehicle,
vegetation, and rubble. The operator selected clearly identifiable examples of different classes.
Polygons were used to delineate classes. Generally, polygons were drawn at the edges of visually
recognizable objects, such that the polygon enclosed the object as best as possible without
including extraneous pixels. This was somewhat challenging with the rubble class as the delin-
eations were not always very clear. It was also impossible with the pavement class as pavement
objects are all connected and form a large contiguous recognizable object in the image. As such,
sample polygons were drawn only around clear sections of pavement. A set of polygons was
created and a randomly chosen subset split off to form the validation data set. Table 1 outlines the
number of training samples used both in terms of number of pixels as well as number of objects
that result from segmentation.

3 Methods

3.1 Pixel-Based Classification

All results are compared against a typical pixel-based classification. Pixel-based classification
techniques are highly established. Although many variations of pixel-based methods exist, clas-
sification of very high-resolution imagery based purely on spectral values using an SVM
classifier is an established method for similar imagery and situations.5,6 We compare systems
using the same training data and classification hierarchies. Final results are compared on a per
pixel basis for both object-based and pixel-based methods. Reasoning for this comparison
method is further discussed in Sec. 3.3.

We use the Orfeo Toolbox, an open source package, to do our pixel-based classification and
accuracy assessment. Figure 2 shows the output of a pixel-based classifier using the Orfeo
Toolbox. The workflow for a pixel-based classification is similar to the steps for an object-
based classifier outlined in Sec. 3.2, but we ignore the segmentation step.

Fig. 2 Output results of a pixel-based classifier delineating the different classes.
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3.2 Object-Based Classification

Given the wide-ranging objectives, a classification system needs to be able to accommodate
numerous variables such as imagery type, classifications needed, feature importance, and train-
ing data quality. There are four phases in this system: planning, segmenting, sampling, and
classifying. The latter three phases require human interpretation of the results. Based on this
interpretation, modifications can be made to improve the results before moving on. Figure 3
provides a flowchart outlining these phases.

In the planning phase, we identify the items in the image we wish to classify. It is important to
not only consider the object of interest, rubble in our case, but all readily identifiable objects. By
classifying as many objects as possible, we can attempt to achieve more readily distinguishable
objects to aid in classification later. It is also important to consider how items differ in spectral,
spatial, and texture values. A strategy that aims to classify objects that are most different in these
categories will be more successful.

All portions of the object-based classifier are performed with the eCognition software pack-
age. Segmentation, feature generation, and optimization, as well as classification, are completed
using built in software functions. We perform our final results evaluation by exporting a clas-
sified image and doing a pixel-based comparison with the validation data using the Orfeo
Toolbox.

3.2.1 Segmentation

In the segmentation phase, we use eCognition’s multiresolution segmentation algorithm to delin-
eate the image into objects for classification. This segmentation algorithm is a merging algo-
rithm. When starting from an unsegmented image, single pixels are considered first. A merging
cost is calculated for each possible merge, known as the degree of fitting. If the result is less than
the least degree of fitting calculated by the algorithm parameters, a merge is performed. Objects
are continually merged until no merges are possible given the initial parameters. For subsequent
levels after the base image, the input is the segments from the previous level that are then merged
until the given parameters are met.11

Segmentation is driven by three main parameters. The most important is the scale parameter,
which drives the size of the resulting segments. Scale represents the average size in pixels of the
resulting objects. The shape and compactness numbers range from 0 to 1. Shape determines how
much influence color versus shape has on the segmentation. A higher value means a lower in-
fluence of color. The resulting influence of shape is then further influenced by the compactness

Fig. 3 Flow chart representing a systematic approach to building an object-based classifier.
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parameter. A higher compactness value results in more compact objects while a lower value
results in objects with smoother borders. We use shape and compactness parameters of 0.5
and 0.5.

An important feature of eCognition’s multiresolution segmentation is its ability to create
multilevel segmentations. The operator must decide on the number of levels needed. Ideally,
the items we wish to classify will be perfectly delineated by the object boundaries and com-
prise a single object. If the objects of interest differ in size to a significant degree, several
levels of segmentation may be needed using different parameters at each level. Then, inde-
pendent classifications can be run at each level. Objects at upper levels are large objects
comprised of smaller objects at the next lowest level. A logical relationship between super-
objects and subobjects at lower levels is maintained, so classifications can be easily shared
between levels. Although several tools have been developed to automate some of the param-
eter selection,12 human interpretation of the results and subsequent adjustments to the param-
eters is still a common practice that yields acceptable results. Suitable segmentation is
achieved by adjusting the parameters such that we minimize the number of image objects
that comprise a physical item in the image while avoiding objects that span to areas outside
of said physical object. Figures 3–5 provide examples of segmentation results at different
scale parameters.

Fig. 4 Example of different scale parameter and segmentation results. A scale parameter of 50
(denoted by green) results in an oversegmented image while a scale parameter of 900 (denoted by
pink) results in an undersegmented image. A scale parameter of 200 (denoted by cyan) most
closely delineates physical objects.
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3.2.2 Sampling

In the sampling phase, we identify samples of classes to use in training a supervised classifi-
cation algorithm. It is important to create training samples for not only the classes we are inter-
ested in (rubble and buildings) but also to identify training samples of all recognizable object
classes within the whole image. The ideal result is a set of classes that are highly separable by
some set of features. We consider a set of 66 features, comprising spectral, geometrical, and
textural values, and extract the 10 best features. The 66 features are a subset of preconfigured
features available in eCognition. While eCognition offers more features, many of these require
configuration in regards to the spectral bands available or parameters specific to the scene being
evaluated.

To extract the 10 best features, we use eCognition’s feature space optimization (FSO) tool.
By providing a set of training samples and feature names, the FSO tool determines which fea-
tures provide the best class separability. A list of the features considered is listed in Table 2.
Based on the experience, separation values of greater than or equal to one provide good clas-
sification results. We also consider that it is important to observe a nondecreasing separation
curve, which means that the addition of features does not improve the classifier performance.
A curve that is not nondecreasing may indicate problems with the sample selection and lead to
poor classification results. Typically, adding or removing random samples resolves this issue in

Table 2 All features considered by the FSO tool.

Layer Texture

Geometry

Extent Shape Based on polygons Based on skeletons

Brightness GLCM
homogeneity

Area Asymmetry Area (excluding
inner polygons)

Average branch
length

Mean value GLCM contrast Border
length

Border index Area (including inner
polygons)

Average area
represented by
segments

Standard
deviation

GLCM
dissimilarity

Length Compactness Average length of
edges (polygon)

Curvature/length
(only main line)

Max. diff. GLCM entropy Length/
thickness

Density Compactness
(polygon)

Degree of skeleton
branching

Hue GLCM angular
second
momentum

Length/
width

Elliptic fit Length of longest
edge (polygon)

Length of main line
(no cycles)

Saturation GLCM mean Number
of pixels

Main direction Number of edges
(polygon)

Length of main line
(regarding cycles)

Intensity GLCM Std. Dev. Thickness Radius of largest
enclosed ellipse

Number of inner
objects (polygon)

Length/width (only
main line)

GLCM
correlation

Volume Radius of
smallest
enclosed ellipse

Perimeter (polygon) Maximum branch
length

GLDV angular
second
momentum

Width Rectangular fit Polygon self-
intersection
(polygon)

Number of
segments

GLDV entropy Roundness Std. dev. of length
of edges

Std. dev. curvature
(only main line)

Shape index Std. dev. of area
represented by
segments

Width (only main
line)
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one or two tries. If poor separation results are achieved, we return to the start of the sampling
phase and build upon the sample selection by adding more classes or subclasses to improve
segment separation until a nondecreasing separation curve is observed. Features selected in
this study for segmentation levels 2 and 4 are shown in Table 5.

3.2.3 Object-based classification

In the classifying phase, we use the features and samples identified in the previous step to clas-
sify objects from the planning phase. Training segments and features are input into a training
algorithm. The output classifier is then used to predict the label of new image segments. Different
classification algorithms can be assessed and their parameters adjusted to improve performance.
From there, an accuracy assessment can be generated in eCognition against either the existing
training samples or a separate validation dataset. If the results are not acceptable, we return to the
sample phase to further refine the training inputs or the classifier parameters. If the results are
accessible, we apply them to any lower levels in the segmentation hierarchy and start the process
over again on the next level below the current level if such exists. Below is the classification map
for all levels (Fig. 5).

3.3 Evaluation of Classifier Performance

There are two important considerations to be made when comparing object-based and pixel-
based results. First, as seen in Fig. 7, image objects may not represent training and validation
data the same as pixels, eliminating the possibility of a fair comparison. Pixels considered in a
pixel-based evaluation as part of one class may be considered as a part of a different class in
object-based results depending on where the image object boundaries fall. Second, because the
image objects differ in the number of pixels they contain, especially in a multilevel object-based
classification, they must be weighted to ensure a fair comparison with pixel-based results. The
easiest way to address both concerns is to evaluate both pixel-based and object-based results on
a per-pixel basis in the final classification maps they produce.8

Image segments were assigned to the appropriate training class on level 2 based on howmuch
the segment overlaped the training polygon. Different mounts of overlap were considered with
75% of pixels yielding the best results. Level 4 training data were assigned based on whether the
level 4 object contained any subobjects of either the building class or classes other than building.
If at least one subobject was classified on level 2, the entire level 4 object was assigned the class.
In the case of conflicting subobjects, the building class would prevail.

Results of a classification process are compared using a confusion matrix (as seen in Tables 3
and 4). A confusion matrix is a table with actual classification in rows, and the predicted clas-
sification in columns. As such, the diagonal of this chart represents correct predictions. Items in

Fig. 5 Output results of an object-based classifier delineating the different classes.
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the columns that do not match are known ground truth items that have been misclassified by
the classifier.

For a given class, the accuracy values can be calculated as such

EQ-TARGET;temp:intralink-;sec3.3;116;699Produce accuracy ¼ Correctly classified items

Sum of all items in validation sample ðrowÞ ;

EQ-TARGET;temp:intralink-;sec3.3;116;656User accuracy ¼ Correctly classified items

Sum of all items as classified ðcolumnÞ :

We calculate the overall accuracy for the entire classification by averaging the producer and
user accuracies for all classes.13

User accuracy can be considered as a measure of the reliability of classified pixels in the
image. User accuracy measures the number of correctly classified pixels compared to the
total number of validation pixels for that class. Given an 88% user accuracy for the rubble
class in our object-based classifier, we can state that 88% of the pixels classified as rubble
in the output map are correctly classified.

Producer accuracy considers the opposite scenario; it is a measure of how accurately the
classifier predicted pixels in the validation data as compared to the total of validation pixels.
Given a 94% producer accuracy for the rubble class in our object-based classifier, we state
that 94% of the ground truth pixels were correctly classified.

Finally, we consider classifier performance on rubble class pixels. Damage inflicted by earth-
quakes can take many forms; we use the existence of the rubble class as an indicator of areas
affected by an earthquake. While it is important to consider overall performance in general image
classification problems, in the context of earthquake damage, we are only concerned with dam-
aged versus undamaged areas. While we do consider multiple classes to improve the classifi-
cation of undamaged areas, ultimately it is a binary problem of damaged and undamaged areas
we are considering.

4 Results and Discussion

When considering postevent 10-cm RGB orthophotos, our pixel-based classification system pro-
duced a 62% overall accuracy and rubble user and producer accuracies of 88% and 62%. Our
object-based approach ultimately improved this to 77% overall accuracy with rubble user and
producer accuracies of 88% and 94%. Both cases were evaluated at the pixel level using an
independent validation data set. Producer and user accuracies for different classes are shown
in Fig. 6 for both object-based and pixel-based classifications. The corresponding confusion
matrices can be found in Tables 3 and 4.

Fig. 6 Object-based and pixel-based results as compared against validation data.
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Table 3 Confusion matrix for object-based classifier.

Building Pavement Vehicle Vegetation Rubble Sum

Building 164,640 110,59 2 0 4504 180,205

Pavement 20,945 132,207 0 0 12,213 165,365

Vehicle 2616 1599 524 0 4512 9251

Vegetation 0 4141 0 55,680 9171 68,992

Rubble 5319 7980 373 1 221,726 235,399

Sum 193,520 156,986 899 55,681 252,126

User accuracy 0.85 0.84 0.58 1.00 0.88

Producer accuracy 0.91 0.80 0.06 0.81 0.94

Average 0.77

Table 4 Confusion matrix for pixel-based classifier.

Building Pavement Vehicle Vegetation Rubble Sum

Building 76,974 79,392 18,558 735 11,885 187,544

Pavement 6239 156,428 2220 8 7355 172,250

Vehicle 3165 3511 2318 91 472 9557

Vegetation 227 753 0 70,968 72 72,020

Rubble 53,718 32,666 5828 567 152,535 245,314

Sum 140,323 272,750 28,924 72,369 172,319

User accuracy 0.55 0.57 0.08 0.98 0.89

Producer accuracy 0.41 0.91 0.24 0.99 0.62

Average 0.62

Table 5 Features returned by the FSO tool used in object-based classifier.

Level four features Level two features

(Extent) Length/width (Layer value) mean GREEN

(Shape) compactness (Layer value) saturation

(Shape) main direction (Extent) area

(Based on polygons) average length of edges (Shape) asymmetry

(Based on skeletons) degree of skeleton branching (Shape) main direction

(Based on skeletons) length of mainline (regarding cycles) (Shape) radius of largest enclosed ellipse

(Texture) GLCM contrast (Based on polygons) number of edges

(Texture) GLCM correlation (Texture) GLCM entropy

(Texture) GLDV mean (Texture) GLCM stddev

(Texture) GLDV contrast
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Ultimately, the systematic approach (outlined in Sec. 3.2) resulted in a multilevel segmen-
tation comprised of four levels using scale parameters of 20, 50, 100, and 200. All the levels used
shape and compactness factors of 0.5. Classification was ultimately carried out on the fourth
level (scale parameter 200) for buildings, and second level (scale parameter 50) for classes of
pavement, rubble, vehicle, and vegetation. A Naïve Bayes classifier was used on level four
and an SVM on level 2 using the default linear kernel with c parameter of 2. Features used in
training the classifier are listed in Table 5.

The feedback mechanism outlined in Sec. 3.2 provides several opportunities to improve upon
our results. The first to consider is object selection. In order to provide a more similar comparison
between object- and pixel-based results, training samples are taken from polygons in shape files.
As shown in Fig. 7, the resulting objects do not always line up exactly with the polygons and
some criteria must be used to decide if an object should be classified as a training object or not.
We considered percentage of overlap between the object and the polygon. Classification results
are compared when looking at overlap of training polygons with image objects of 0%, 25%,
50%, 75%, and 100%. As we can see in Figs. 8 and 9, different classes benefit differently

Fig. 8 Producer accuracies measured at various overlap parameter percentages.

Fig. 7 Example of a training polygon showing overlap with image objects.
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from the various settings. An overlap of 0% would still imply at least some degree of overlap, but
the extent of which does not matter.

We also considered multilevel versus single level classification. Instead of classifying build-
ings on one level and everything else on another level of smaller objects, we classified everything
on level 2. Notice how building classification goes from 91% producer accuracy to 32%
(as shown in Figs. 5 and 10, respectively) when classifying them at an inappropriate level.

In an attempt to improve class separability and overall classifier performance, we break down
the rubble class into four individual subclasses: building chunks-rubble that contained visibly
identifiable pieces of building, high density-rubble that contained discernible pieces of debris,
low density (a class for rubble with no discernable contents), and sticks (a class used to identify
debris containing long structural elements, such as steel beams or lumber). Breaking classes up
into subclasses offers an encouraging boost in performance when comparing results against the
training data. This is likely because a smaller subclass allows greater over fitting. As would be
expected in over fitting, comparison against the validation data shows poorer results as shown
in Fig. 11.

Choice in classifier algorithm and parameters can have a significant impact on results.
Techniques for seeking improvements in results revolve around the reduction of over fitting,
this is readily apparent when the classifier does very well on the training data, but returns
poor results when looking at the validation data. eCognition offers five different classifier train-
ing algorithms: decision trees, random trees, SVMs, k-nearest neighbor, and Naïve Bayes. We
test the classifiers against the validation data both at levels 2 and 4 as well as tuned versions of
these algorithms intended to reduce over fitting. To try and reduce over fitting we adjust the

Fig. 10 Performance of an object-based classifier that only consider objects from level 1 to level 2.

Fig. 9 User accuracies measured at various overlap parameter percentages.
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following parameters. On decision trees, enable the 1SE rule for pruning. On random trees, we
increase the minimum sample count to two. For SVMs, we use a radial basis function kernel with
a C parameter of 3. For k-nearest neighbor, the k parameter is increased to 3. Naïve Bayes has no
parameters that can be adjusted. Figures 12 and 13 show the accuracy of different algorithms.

Often, the choice is not clear as to which classifier is superior. Some may offer excellent
producer performance while poor user accuracy performance or vice versa. We attempt to

Fig. 12 Performance of various classifier algorithms on building classification.

Fig. 13 Performance of various classifier algorithms on rubble classification.

Fig. 11 Effect of using more specific subclasses of rubble.
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balance these by selecting the classifier, which produces the best average user or producer per-
formance by choosing Naïve Bayes for level four and an SVM for level 2. However, some appli-
cations may favor better performance in certain categories. For example, if we wanted to make
sure we classified as much earthquake damage as possible without regard to false positives, we
should consider the highest possible producer accuracy without regard to user accuracy.

5 Conclusions and Future Work

As is demonstrated above, our pixel-based and object-based classifications of this particular
imagery of the 2011 Christchurch, New Zealand, earthquake perform better than established,
successful classification methods. Our pixel-based classifier has rubble user and producer accu-
racies of 89% and 62% compared with that achieved by Ref. 5 of 63.4% and 71.3%. Our object-
based classifier has rubble user and producer accuracies of 88% and 94% compared with that
achieved by Ref. 6 of 91% and 60%.

Having established robust identification of earthquake damage that is equivalent to current
methods, we can make valid comparisons between pixel-based and object-based methods. In
both instances, we are comparing results from the same imagery, using the same training and
validation data. We conclude that object-based methods can produce better results than pixel-
based methods. Furthermore, object-based methods are capable of exceeding 85% overall accuracy
in considering image pixels representing rubble versus those of other classes, a metric used by
organizations, such as the United States Geological Survey for evaluating classifier performance.14

Another important conclusion is that object-based methods alone do not necessarily produce
better results than pixel-based methods. As we demonstrate, a systematic approach is necessary
to ensure proper classifier parameter choice. Poor choices in classifier design can impact results
by 25% or more. Our systematic approach provides a more organized and directed method than
subjective trial and error methods.

Future work on this subject is focused on the human decision key points shown in Fig. 3.
Elimination of human interpretation of these results and the trial and error necessary in their
creation can make for a faster, more robust classification system. For example, rather than trying
numerous segmentation parameters and choosing the one considered best, a supervised or unsu-
pervised method of image segmentation might be applied. This has the potential to both save
time and eliminate human error.

Recent advances in deep learning methods also hold much promise for improving results.
Popular deep learning methods have achieved strong results but unfortunately rely on a large
dataset of similar imagery for training.15 While publicly available datasets containing high res-
olution remotely sensed imagery of earthquake damage are currently limited, more and more
data are being made available making these methods much more promising. While deep learning
methods may not be able to outright replace current classification methods, they do hold much
promise in improving aspects of our method, such as the feature selection process.16,17

Furthermore, these methods may be applicable to individual classes with large amounts of avail-
able data, such as the building classification problem. As we have seen with the multilevel
classification approach show in this paper, identifying nondamaged areas before considering
damage alone greatly improves classifier accuracy.
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