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Abstract. The SPIE Computer-Aided Diagnosis conference has been held for 16 consecutive
years at the annual SPIE Medical Imaging symposium. The conference remains vibrant, with a
core group of submitters as well as new submitters and attendees each year. Recent developments
include a marked shift in submissions relating to the artificial intelligence revolution in medical
image analysis. This review describes the topics and trends observed in research presented at the
Computer-Aided Diagnosis conference as part of the 50th-anniversary celebration of SPIE
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1 Introduction

The Computer-Aided Diagnosis (CAD) conference at the annual SPIE Medical Imaging sym-
posium reaches its 16th anniversary in 2022. An outgrowth of the tremendous interest in com-
puter-aided diagnosis in biomedical imaging in the 1990s and early 2000s led to the creation of
this separate conference. Prior to that time, computer-aided diagnosis papers were included in the
Image Processing, Biomedical Applications, Picture Archiving and Communication Systems,
and Perception conferences, all held within the annual SPIE Medical Imaging symposium.
There are many commonalities between the Image Processing and CAD conferences at the
annual Medical Imaging meeting. However, the evolution of the CAD conference from the
Imaging Processing conference was the recognition that additional aspects of the overall research
task included a greater need for both clinical input (on both the clinical question and the clinical
outcomes) and a systems approach to the detection (localization) and diagnosis (classification)
problems. Interestingly, many of the very early “firsts” in CAD were presented in the Imaging
Processing conference prior to the launch of the CAD conference.

The inaugural CAD conference was held in San Diego, California, in 2007 and spanned
3 days (Fig. 1). The conference was chaired by Maryellen Giger and Nico Karssemeijer. There
were 12 program committee members with international representation including the United
States, United Kingdom, France, Japan, and the Netherlands, and hailing from academia,
government agencies (such as NIH and FDA), industry, and clinical practice. Over the years,
new program committee members have been added. By 2022, the committee had grown to
48 members, including the two conference chairs, with international representation including
the United States, Brazil, China, France, Germany, Israel, Japan, Korea, the Netherlands, and
the United Kingdom. The chairs and cochairs for each year's CAD conference are listed in
Table 1.

At the inaugural conference in 2007, the oral sessions were divided into 12 separate sessions.
The section topics were mammogram analysis, CT colon, a keynote session, pathology imaging,
thoracic CT, MRI applications, CT lung nodules, breast tomosynthesis, cardiac/new applica-
tions, breast imaging, and thoracic/skeletal imaging. The conference had 179 submissions
and 136 accepted papers. These were divided into 1 keynote, 59 oral, and 77 poster exhibits.
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The conference proceedings included 132 published full papers. In 2021, the oral sessions were
divided into 13 separate sessions. The topics included a keynote session, lung (three separate
sessions), breast (two sessions), abdomen (two sessions), cardiovascular and ophthalmology,
musculoskeletal, pediatric/fetal applications, methodology, and neuroradiology including head
and neck. The conference had 162 submissions and 110 accepted papers. These were divided
into 64 oral and 44 poster exhibits. The conference proceedings included 99 published full
papers and 102 presentations. Figure 2 shows statistics of submissions, acceptances, oral and
poster presentations, and publications. The acceptance rate averaged 79% (range 68% to 97%).

The CAD conference included a number of special sessions, frequently co-organized with
one of the other SPIE Medical Imaging conferences. Many of the special sessions included panel
discussions. Special sessions included Critical Issues in Adapting CAD into Clinical Practice
(2008), Digital Pathology (2012), Challenges in CAD Development and Commercialization
(2013), CAD Successes and Failures (2014), CAD Grand Challenge—Present and Future
(2015), SPIE/IFCARS Joint Workshop on Information Management, Systems Integration,
Standards, and Approval Issues for the Digital Operating Room (2016 and 2017), and
Simulated Tumor Board: Brain and Breast (2020). These panel discussions, such as the
2020 Simulated Tumor Board, often included clinicians, beyond the regular scientific and tech-
nical attendees of SPIE MI, to expand the clinical knowledge base of the CAD researchers, many
of whom might not have access to clinicians.

Many of the other CAD conference special sessions included Grand Challenges with their
discussions and outcomes including the SPIE-AAPM-NCI Lung Nodule Classification
Challenge (LUNGx) (2015), SPIE-AAPM-NCI CAD Grand Challenges: Paving the Way for
Imaging in the Era of Precision Medicine (2016), PROSTATEx Challenge and Digital
Mammography DREAM Challenge (2017), PROSTATEx Lessons Learned and 2019 Challenge
(2018), and BreastPathQ: Cancer Cellularity Challenge (2019).

Fig. 1 Extract from the 2007 SPIE Medical Imaging program showing the inaugural CAD
conference program committee.
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Keynote speakers are highlights of the annual conference. The conference’s inaugural key-
note speaker in 2007 was Robert F. Wagner from the FDA. His keynote topic was “Computer-
aided diagnosis and the general bioinformatics problem.” The keynote speakers and topics
presented are shown in Table 2.

Live demonstrations, initiated by the CAD conference at the SPIE Medical Imaging meeting,
are a popular session at the CAD conference. Begun at the inaugural CAD conference in 2007
and led by Maryellen L. Giger, The Univ. of Chicago (United States); Nico Karssemeijer,
Radboud, Univ. Nijmegen (The Netherlands); and Michael F. McNitt-Gray, Univ. of California/
Los Angeles (United States), live hands-on demonstrations continued annually thereafter.
Organizers of the live demonstrations in later years included Bram van Ginneken, Univ.
Medisch Ctr. Utrecht (The Netherlands); Stephen R. Aylward, Kitware, Inc. (United States);
Heang-Ping Chan, Univ. of Michigan (United States); Horst Hahn, Fraunhofer MEVIS,
(Germany); Lubomir Hadjiiski, Univ. of Michigan Health System (United States); and
Karen Drukker, Univ. of Chicago (United States). Attendees vote for their favorite demonstration
each year and awards are given for the highest vote-getter.

The top contributors to the CAD conference are shown in Tables 3 and 4. Over the years, the
most prolific contributor to the CAD conference has been Heang-Ping Chan, PhD, from the
University of Michigan. The top contributing institution has been the University of Chicago.

The most downloaded papers of all time and from 2021 are shown in Tables 5 and 6, respec-
tively. The all-time most downloaded papers cover a variety of topics including breast, brain,
cardiac, and prostate imaging. The most downloaded papers from 2021 emphasized deep learn-
ing and COVID-19.

The sessions at the CAD conference are typically organized by body organ rather than by
methodology. Lung and breast have been two consistently presented areas throughout the life of
the CAD conference. Other frequent topics include the abdomen, colon, cardiac and vascular,
musculoskeletal, radiomics, deep learning, brain, head and neck, eye, and pathology imaging
(which later became the separate Digital Pathology conference). As COVID-19 arose, it also
became a topic within the CAD conference.

While artificial neural networks, including deep learning with early versions of convolutional
neural networks, had been included in SPIE CAD presentations since the mid-1990s, deep learn-
ing became a major focus in about 2016 and became the preeminent method of machine learning
in subsequent years.

In the next section, we review some of the topics covered during the life of the CAD
conference. Because of the large number of oral and poster presentations over the years, only
a small number of representative examples can be listed.

Lung nodule analysis has been a consistent theme throughout the history of the SPIE Medical
Imaging symposium and was a major theme that transferred from the Image Processing

Fig. 2 Statistics for the SPIE Medical Imaging Computer-Aided Diagnosis conference. Numbers
of submissions, accepted, oral, and poster presentations and published proceedings articles are
shown. Data courtesy of SPIE.
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conference to the CAD conference.22–24 The Lung Image Database Consortium had several early
papers.25 Lung nodule phantoms were a popular theme.26 Temporal analysis of lung disease also
attracted attention.27 Other thoracic disease topics of recurrent interest included chronic obstruc-
tive pulmonary disease (COPD) and emphysema, diffuse lung parenchymal disease, lung cancer,
pneumothorax detection, pneumoconiosis, tuberculosis, pleural effusions, and pulmonary embo-
lism detection.28–35 Pulmonary patterns including texture analysis were a popular topic in 2010.36

In 2016, texture analysis was combined with deep learning.37 Chest radiograph diagnosis was
notably enhanced with deep learning thereafter.38–41 Other notable topics included H1N1 pneu-
monia and population screening using chest radiography.42,43 Anatomic topics included inter-
lobar fissure detection, mediastinal lymph node station mapping, airway analysis, and guidance
for interventions.44–48 Introduction of thoracic low-dose CT (LDCT) led to the development of AI
for emphysema, coronary artery calcifications, and osteoporosis.49,50 As COVID-19 arose with
its presentation on chest radiographs and thoracic CTs, AI methods for COVID became a part of
the CAD conference presentations.15,51

Table 1 Conference cochairs.

Year Chair Cochair

2007 Maryellen L. Giger, The Univ. of Chicago
(United States)

Nico Karssemeijer, Radboud Univ. Nijmegen
Medical Ctr. (The Netherlands)

2008 Maryellen L. Giger, The Univ. of Chicago
(United States)

Nico Karssemeijer, Radboud Univ. Nijmegen
Medical Ctr. (The Netherlands)

2009 Nico Karssemeijer, Radboud Univ. Nijmegen
Medical Ctr. (The Netherlands)

Maryellen L. Giger, The Univ. of Chicago
(United States)

2010 Nico Karssemeijer, Radboud Univ. Nijmegen
Medical Ctr. (The Netherlands)

Ronald M. Summers, National Institutes of
Health (United States)

2011 Ronald M. Summers, National Institutes of
Health (United States)

Bram van Ginneken, Univ. Medical Ctr. Utrecht
(The Netherlands)

2012 Bram van Ginneken, Radboud Univ. Nijmegen
(The Netherlands)

Carol L. Novak, Siemens Corporate Research
(United States)

2013 Carol L. Novak, Siemens Corporate Research &
Technology (United States)

Stephen Aylward, Kitware, Inc. (United States)

2014 Stephen Aylward, Kitware, Inc. (United States) Lubomir M. Hadjiiski, Univ. of Michigan Health
System (United States)

2015 Lubomir M. Hadjiiski, Univ. of Michigan Health
System (United States)

Georgia D. Tourassi, Oak Ridge National Lab.
(United States)

2016 Georgia D. Tourassi, Oak Ridge National Lab.
(United States)

Samuel G. Armato III, The Univ. of Chicago
(United States)

2017 Samuel G. Armato III, The Univ. of Chicago
(United States)

Nicholas A. Petrick, U.S. Food and Drug
Administration (United States)

2018 Nicholas A. Petrick, U.S. Food and Drug
Administration (United States)

Kensaku Mori, Nagoya Univ. (Japan)

2019 Kensaku Mori, Nagoya Univ. (Japan) Horst K. Hahn, Fraunhofer MEVIS (Germany)

2020 Horst K. Hahn, Fraunhofer MEVIS (Germany),
Jacobs Univ. Bremen (Germany)

Maciej A. Mazurowski, Duke Univ.
(United States)

2021 Maciej A. Mazurowski, Duke Univ.
(United States)

Karen Drukker, The Univ. of Chicago
(United States)

2022 Karen Drukker, The Univ. of Chicago
(United States)

Khan M. Iftekharuddin, Old Dominion Univ.
(United States)
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With the continuing rise in mammographic screening and multimodality breast diagnosis
computer vision and machine learning systems, it is not surprising that breast has been a main-
stay in the CAD conference. Many of the presenters on breast CAD had previously submitted to
the image processing conference. Beyond full-field digital mammograms and breast ultrasound,
CAD on breast tomosynthesis was an early topic for emerging technology.52–54 Other breast
imaging technologies and topics with CAD applications included dynamic breast MRI, utiliza-
tion of multiple views, lesion segmentation and classification, breast segmentation and density

Table 2 Keynote speakers and topics.

Year Speaker Topic

2007 Robert F. Wagner, U.S. Food and Drug
Administration (United States)

Computer-aided diagnosis and the general
bioinformatics problem

2008 Heinz-Otto Peitgen, MeVis Research GmbH
(Germany) and Florida Atlantic Univ.
(United States)

Clinical relevance of computer-aided diagnosis
and visualization

2009 Kyle J. Myers, U.S. Food and Drug
Administration. (United States)

(Joint Keynote Session) Medical Imaging
and Radiological Health: Contributions of
Dr. Robert F. Wagner

2010 Kunio Doi, The Univ. of Chicago (United States) Computer-aided diagnosis in medical imaging:
achievements and challenges

2011 Heang-Ping Chan, Univ. of Michigan Health
System (United States)

CAD: past, present, and future

2012 Michael D. Abramoff, The Univ. of IowaHospitals
and Clinics and Univ. of Iowa (United States)

Automated detection of retinal disease: when
Moore’s law meets Baumol’s cost disease

2013 Panel discussion Challenges in CAD development and
commercialization

2014 Nico Karssemeijer, Radboud Univ. Nijmegen
Medical Ctr. (Netherlands); Eliot L. Siegel, Univ.
of Maryland Medical Ctr. (United States)

(Joint Keynote Session) Opportunities and
challenges for diagnostic decision support
systems, and rethinking CAD for the future:
a clinical perspective

2015 Tanveer F. Syeda-Mahmood, IBM Research—
Almaden (United States)

Role of machine learning in clinical decision
support

2016 Hugo Aerts, Dana-Farber Cancer Institute
(United States) and Brigham and Women’s
Hospital (United States) and Harvard
Medical School (United States)

Radiomics: there is more than meets the eye
in medical imaging

2017 Kyle J. Myers, U.S. Food and Drug
Administration (United States)

FDA’s role in the innovation and evaluation of
evolving CAD solutions

2018 Gustavo A. Stolovitzky, IBM Thomas J. Watson
Research Ctr. (United States) and Icahn School
of Medicine at Mount Sinai (United States)

Crowdsourcing Biomedical Research:
Leveraging Communities as Innovation Engines

2019 Bernardino Romera-Paredes, Google DeepMind
(United Kingdom)

The U-net and its impact on medical imaging

2020 Jonathan I. Wiener, Boca Radiology Group
and FAU Medical School (United States)

Will AI make me a better doctor?

2021 Saurabh Jha, Univ. of Pennsylvania
(United States)

Decoding radiology: a brief history

2022 Jayashree Kalpathy-Cramer, MGH/Harvard
Medical School (United States)

Deep learning in medical imaging: a practical
guide to opportunities and challenges
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assessment, predictive models for cancer risk assessment, dedicated breast CT, 3D ultrasound,
and breast cancer diagnosis with deep learning.55–62 In addition, AI methods for assessing prog-
nosis and response to therapy have been presented.63

Abdominal imaging with a focus on bowel and liver was a frequent topic. Automated colonic
polyp detection, classification, and measurement of CTC with or without traditional cathartic

Table 3 Top contributors to proceeding papers from the SPIE Medical Imaging
CAD conferences.

Author
Number of published proceeding papers from
the SPIE Medical Imaging CAD conference

Heang-Ping Chan 97

Lubomir M. Hadjiiski 89

Chuan Zhou 59

Hiroshi Fujita 57

Jun Wei 54

Maryellen L. Giger 49

Bin Zheng 42

Ronald M. Summers 42

Kensaku Mori 37

Berkman Sahiner 35

Note: Numbers of articles published in the conference proceedings and co-authored by the
given author. Search terms (Date of search October 29, 2021; only includes published pro-
ceedings articles, not abstracts that did not lead to a published proceedings article): scholarly
works (1974) = [SPIE AND (Medical AND Imaging)] AND Source Title: (computer-aided AND
diagnosis).1

Table 4 Top contributing institutions to proceeding papers from the SPIE Medical
Imaging CAD conferences.

Authors’ institution
Number of published proceeding papers from
the SPIE Medical Imaging CAD conference

University of Chicago 107

University of Michigan 102

National Institutes of Health 77

Gifu University 57

Rabdoud University 55

Duke University 52

University of Pennsylvania 50

Siemens 48

Harvard University 45

Nagoya University 42

Note: Search terms (Date of search October 29, 2021; only includes published proceedings
articles, not abstracts that did not lead to a published proceedings article): Scholarly Works
(1974) = [SPIE AND (Medical AND Imaging)] AND source title: (Computer-aided AND
Diagnosis).1
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Table 5 Top 10 CAD proceedings paper downloads, 2007 to 2021.

Paper Downloads

Wu S. D. et al. (2012), Fully automated chest wall line segmentation in breast MRI by
using context information2

4030

Koenrades M. A. et al. (2017), Validation of an image registration and segmentation method to
measure stent graft motion on ECG-gated CT using a physical dynamic stent graft model3

2860

Wegmayr V. et al. (2018), Classification of brain MRI with big data and deep 3D convolutional
neural networks4

1913

Bar Y. et al. (2015), Deep learning with non-medical training used for chest pathology identification5 1482

Sun W. Q. et al. (2016), Computer aided lung cancer diagnosis with deep learning algorithms6 1454

Ramachandran S. S. et al. (2018), Using YOLO based deep learning network for real time
detection and localization of lung nodules from low dose CT scans7

1383

Jnawali K. et al. (2018), Deep 3D convolution neural network for CT brain hemorrhage
classification8

1238

Wei Q. et al. (2018), Anomaly detection for medical images based on a oneclass classification9 1161

Liu S. F. et al. (2017), Prostate cancer diagnosis using deep learning with 3D multiparametric MRI10 817

Tsehay Y. K. et al. (2017), Convolutional neural network based deep-learning architecture for
prostate cancer detection on multiparametric magnetic resonance images11

723

Note: Data as of January 10, 2022, courtesy of SPIE.

Table 6 Top 10 CAD proceedings paper downloads from 2021 (Vol. 11597).

Paper Downloads

Heidari M. et al., Detecting COVID-19 infected pneumonia from x-ray images using
a deep learning model with image preprocessing algorithm12

340

Paul R. et al., Deep radiomics: deep learning on radiomics texture images13 255

Sriker D. et al., Improved segmentation by adversarial U-Net14 198

Hu Q. Y. et al., Role of standard and soft tissue chest radiography images in COVID-19
diagnosis using deep learning15

195

Pan M. Q. et al., Deep learning-based aggressive progression prediction from CT images of
hepatocellular carcinoma16

182

Prasad P. J. R. et al., Modifying U-Net for small dataset: a simplified U-Net version for
liver parenchyma segmentation17

175

Moreau N. et al., Comparison between threshold-based and deep learning-based bone
segmentation on whole-body CT images18

159

Luna J. M. et al., Radiomic features predict local failure-free survival in stage III NSCLC
adenocarcinoma treated with chemoradiation19

159

Vu Y. N. T. et al., An improved mammography malignancy model with selfsupervised learning20 159

Agarwal C. et al., CoroNet: a deep network architecture for enhanced identification of
COVID-19 from chest x-ray images21

157

Note: Data as of January 10, 2022, courtesy of SPIE.

Summers and Giger: SPIE Computer-Aided Diagnosis conference anniversary review

Journal of Medical Imaging 012208-7 Vol. 9(S1)



colon cleansing were popular topics in the early years of the conference before CT colonography
became a mainstream clinical technique.64–69 Colon and colonic polyp analysis further included
dual-energy CT colonography, taeniae coli detection, supine-prone colonic polyp registration,
colitis detection, and colonoscopy video analysis.70–74 Other abdominal topics have included
bladder segmentation, small bowel analysis including segmentation and Crohn disease detection,
endoscopic image analysis for polyps and cancers, liver organ and lesion segmentation, liver
elastography, kidney segmentation, renal calculi detection, pancreas segmentation, pancreatic
cyst classification, and uterine and placental segmentation.75–85

Prostate MRI analysis, including whole gland segmentation, cancerous and noncancerous
lesion detection and classification, and multiparametric and dynamic contrast-enhanced prostate
MRI analysis, was also presented as part of various topics.11,86–91 Occasional presentations have
focused on CAD in other oncologic diseases including assessment of lymphadenopathy, cervical
cancer, esophageal cancer, pancreatic tumors, and multiple myeloma.92–98

CAD of cardiac and vascular imaging included coronary artery calcium scoring with deep
learning, coronary artery detection, and stenosis analysis on angiography and CT, intravascular
OCT, cardiomegaly assessment, and cardiac wall and chamber assessment.99–104 Atherosclerotic
disease outside the heart was also assessed.105,106

CAD of brain imaging included detection, segmentation, and classification of brain tumors,
Alzheimer’s dementia, neonatal brain analysis, stroke outcome prediction, radiogenomics of
glioblastoma, intracranial hemorrhage and aneurysms, hydrocephalus diagnosis, glioma muta-
tion assessment, and traumatic brain injury.8,107–116 A notable topic was the detection of head
malformations in craniosynostosis from 3D photographs.117

CAD approaches in musculoskeletal imaging have focused on the spine and appendicular
skeleton and the muscles and joints. Topics included fracture and metastases detection, bone
quality, vertebral segmentation, spinal and neural foraminal stenosis detection, scoliosis and
intervertebral disk degeneration assessment, localization of the epiphyses, automated bone
mineral densitometry, osteoporosis, osteolysis, and muscle segmentation including analysis of
the psoas muscles in amyotrophic lateral sclerosis.118–127

Analysis of pathology images was initially in the CAD conference including cytologic and
histologic automated diagnosis, and multispectral fluorescence microscopy.128,129 However, now
with the digital pathology conference at the SPIE Medical Imaging meeting, most papers have
moved there.

CAD of ophthalmological imaging has included analysis of images for diabetic retinopathy,
retinal vascular analysis including microaneurysm detection, macular degeneration, malaria
retinopathy, retinal cone photoreceptor detection, and retinopathy of prematurity.130–136

Radiomics, a more recent term for the human-engineered features extracted in many CAD
algorithms, was first included as a session topic in 2016. Radiomics topics have included asso-
ciations between breast MRI features and gene expression, associations of radiomics features
with acquisition-related parameters such as interscanner variations and MR magnet strengths,
harmonization methods, and prediction of molecular subtypes of pediatric medulloblastoma,
as well as assessment of the effect of variations in texture software packages on algorithm
performance and robustness.137–141

Other topics have included multiorgan segmentation, CAD methodology, CAD software,
dental applications including arthritis of the temporomandibular joint (TMJ), and analysis of
chronic wound, skin lesion, and eardrum images.142–150 Endocrine analysis included thyroid and
parotid gland segmentation.151,152 Surgical applications included detection of retained foreign
bodies.153

With 2085 accepted papers and 1985 published proceedings articles through 2021, the SPIE
Medical Imaging CAD conference continues to thrive. The deep learning revolution in medical
image processing has greatly contributed to this growth. It is expected that deep learning will
continue to be one of the main drivers of scientific advances in computer-aided diagnosis over
the next 5 to 10 years.

The authors thank the many program committee members, conference chairs, session
chairs, and authors whose ongoing participation contributed to the success of the CAD
conference.
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