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Abstract

Purpose: Ensembles of convolutional neural networks (CNNs) often outperform a single
CNN in medical image segmentation tasks, but inference is computationally more expensive
and makes ensembles unattractive for some applications. We compared the performance of dif-
ferently constructed ensembles with the performance of CNNs derived from these ensembles
using knowledge distillation, a technique for reducing the footprint of large models such as
ensembles.

Approach: We investigated two different types of ensembles, namely, diverse ensembles of
networks with three different architectures and two different loss-functions, and uniform ensem-
bles of networks with the same architecture but initialized with different random seeds. For each
ensemble, additionally, a single student network was trained to mimic the class probabilities
predicted by the teacher model, the ensemble. We evaluated the performance of each network,
the ensembles, and the corresponding distilled networks across three different publicly available
datasets. These included chest computed tomography scans with four annotated organs of inter-
est, brain magnetic resonance imaging (MRI) with six annotated brain structures, and cardiac
cine-MRI with three annotated heart structures.

Results: Both uniform and diverse ensembles obtained better results than any of the individual
networks in the ensemble. Furthermore, applying knowledge distillation resulted in a single net-
work that was smaller and faster without compromising performance compared with the ensem-
ble it learned from. The distilled networks significantly outperformed the same network trained
with reference segmentation instead of knowledge distillation.

Conclusion: Knowledge distillation can compress segmentation ensembles of uniform or
diverse composition into a single CNN while maintaining the performance of the ensemble.
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1 Introduction

Convolutional neural networks (CNNs) achieve state-of-the-art performance in many
medical image analysis tasks,1 such as automatic detection, classification, and in particular
segmentation.2 A large variety of different network architectures have been proposed of which
some are now widely used, such as U-Net,3 residual neural network (ResNet),4 and CNNs with
dilated convolutions.5 These architectures have different properties: the U-Net architecture uses
upsampling and skip-connections to produce a high-resolution output, the ResNet architecture
uses residual connections to construct very deep networks, and CNNs with dilated convolutions
are distinguished by a particularly large receptive field with a limited number of parameters. It is
well known that combining multiple networks into an ensemble often improves results compared
to using a single CNN.6–8 Ensembles of CNNs have also won several recent segmentation
challenges.6,9,10 However, even though ensembles often outperform a single network, they are
more computationally expensive and time-consuming during inference. Due to their high
computational demand and slow inference speed, ensembles are harder to deploy than single
networks and can be less attractive for certain applications, such as clinical workstations.11

Techniques that reduce the footprint of CNN ensembles and other large and complex models
are known as model compression techniques. A strategy for model compression is knowledge
distillation, which refers to compressing the knowledge of a large and complex model and trans-
ferring it to a smaller, faster, and easier to deploy model without negatively impacting perfor-
mance. Knowledge distillation is often explained with the analogy of a teacher teaching a
student, where the large and complex model is referred to as the teacher model and the smaller
model, to which the knowledge from the teacher model is transferred, is referred to as the stu-
dent model.

Knowledge distillation from a large teacher model to a smaller student model was first pro-
posed by Bucilă et al.,12 who trained compact neural networks with data automatically labeled by
an ensemble of complex neural network classifiers trained for the classification of natural
images. Ba and Caruana13 applied this approach to train shallower CNNs that mimic the function
learned by deep CNNs and used it for natural image classification and speech recognition.
Hinton et al.14 showed that an ensemble containing neural networks with identical architecture
and trained procedure but with different parameter initialization can be compressed into a single
neural network of a similar depth without performance loss. The single network was trained to
predict both the class probabilities produced by the ensemble and the ground truth classification
labels. The predicted class probabilities were used because they contain more information about
the generalization performance of the ensemble compared to using predicted classes only.14 The
method was applied to the classification of natural images and speech recognition. Chebotar and
Waters15 showed that this technique can also be applied to ensembles of networks with different
architectures for speech recognition.

Various other approaches for knowledge distillation that build on the work of Hinton et al.14

have been proposed and applied to different computer vision tasks such as natural image
classification16–18 or segmentation.19 These studies focused on improving performance of the
student network by adding extra loss terms to the distillation loss that focused on the similarity
between intermediate network layers of the teacher model and the student model,16 the similarity
between spatial attention maps of the teacher network and the student network,17 or the pair-wise
pixel similarity between the output of the teacher and the student network.19 To surpass the need
for the initial training of a strong teacher network,18 we proposed to train a teacher network as a
single multi-branch network that served as an ensemble. The class distribution output of the
teacher network was obtained by combining the output of all branches.

Knowledge distillation has also been used for a few applications in medical image analysis,
such as classification,20,21 detection,22,23 and segmentation8,24–29 tasks. Knowledge distillation
has been applied to obtain a smaller student network from a large teacher network such as a
Google Inception V3 network for automatic detection of invasive cancer in whole slide images,22

a U-Net for automatic segmentation of neurons in microscope images24, or for liver26,27 and
kidney26 segmentation in computed tomography images. An ensemble consisting of CNNs with
the same architecture but trained with different training data has been combined with knowledge
distillation to obtain a single CNN with a similar performance as the ensemble, which was then
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used for mitosis detection in histology images,23 and whole-brain segmentation in magnetic res-
onance imaging (MRI).8 Knowledge distillation has also been used to develop semi-supervised
learning strategies21,25,28 where only a portion of the data is annotated and where the teacher
network is used to obtained additional weak labels, aiming to distill more knowledge into a
new network than just visible on the annotated training data. Knowledge distillation has also
been combined with adversarial learning29 to increase the performance and robustness of the
student network. In a federated learning context, knowledge distillation has been advocated
as a strategy to preserve privacy but still allow for transfer of model knowledge between sites
by training a model on the local data, but using knowledge distillation with the model outputs for
public datasets to transfer the model knowledge.30

Furthermore, knowledge distillation has been used as a technique to enable multi-modal
learning, such as from multiple MR sequences or entirely different modalities such as CT and
MR. For instance, the knowledge of a model trained with multi-modal data has been distilled into
models specialized on a specific modality or sequence.31,32 Knowledge distillation has also been
used to enable learning from unpaired multi-modal data33 and to enable consistent multi-modal
segmentation robust to missing modalities.34

1.1 Contributions

For medical image analysis tasks, knowledge distillation has the potential to enable the use of
large ensembles to achieve better performance while maintaining the practical value of these
algorithms and allowing for implementation in time-sensitive environments. However, there
is a knowledge gap and this technique has only been studied for very specific applications, with
teacher models consisting of only one large network,22,24 or an ensemble of networks with the
same architecture but trained with different data.8,23 Ensembles can also consist of a diverse set of
networks, such as networks differing in architecture, which might even further improve the per-
formance of the ensemble. Therefore, this paper compares the application of knowledge distil-
lation to two types of ensembles, namely, diverse ensembles of networks with different network
architecture or trained with different loss-functions, and uniform ensembles of identical networks
and training procedure but different random initialization. We apply knowledge distillation to
each ensemble to obtain a single CNN, referred to as the distilled CNN, and test whether this
network achieves a similar performance with substantially lower computational demand and
faster inference compared to the ensemble (Fig. 1). Furthermore, we also compare the perfor-
mance of the distilled network with the performance of a CNN with the same architecture but
trained with reference segmentations alone, without the application of knowledge distillation.
Instead of focusing on a single application, we perform these experiments for segmentation tasks
in multiple datasets, differing in image modality, image dimensionality, and anatomical
coverage.
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Fig. 1 Schematics of the ensembling and knowledge distillation process for automatic segmen-
tation of medical images. This paper uses an ensemble of six networks, which either have different
architectures and different loss-functions (diverse ensemble), or the same architecture and the
same loss-function (uniform ensemble). Subsequently, obtained classification probabilities from
the ensemble are used to train the distilled network, which is a single, smaller network that per-
forms the segmentation task more efficiently but has the same performance as the ensemble.
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2 Materials and Methods

2.1 Ensembles

Ensembles can consist of several networks with different architectures, or several networks
with the same architecture. Either way, ensembles are most likely to outperform a single network
when the individual networks in the ensemble make different mistakes as typically only a
minority of the networks will make a specific mistake.35 Diversity can be established, for
instance, by including different network architectures, using different loss functions during train-
ing of the separate networks, by initializing networks with different random seeds or by training
networks with different data. We consider ensembles diverse if they differ in structure or training
procedure, and we consider ensembles uniform if they differ only in initialization or training
data.

Awide variety of CNN architectures and design principles are available for medical segmen-
tation tasks. For the diverse ensemble that we evaluate in this paper, we selected three popular
medical segmentation network architectures that differ in the number and type of network layers,
connections between network layers, and kernels in convolutional layers. We use a three-
dimensional (3D) CNN with an architecture inspired by U-Net, a 3D CNN with residual
connections, and a two-dimensional (2D) CNN containing dilated convolutions. The diverse
ensemble uses all three network architectures in two variants that are trained with different loss
functions. One instance of each architecture is trained with a cross-entropy loss and the other
with a soft Dice coefficient loss function. Hence, our diverse ensemble consists of six networks
in total, differing in network architecture and loss-function used during training. The uniform
ensemble consists of six instances of the same network architecture, each initialized with a differ-
ent random seed to ensure a minimal level of diversity between the networks in the ensemble.
Since the performance of network architectures could be task-dependent, the uniform ensemble
uses the architecture that obtains the best performance for the task at hand. To obtain the output
of an ensemble, the posterior classification probabilities predicted by the separate networks
present in an ensemble are averaged.

2.1.1 U-Net

The U-Net3,36 network architecture in the ensemble is a 3D U-Net-like network with the typical
compression and decompression path and skip connections [Fig. 2(a)]. Zero-padding is applied
in all convolutional layers. All layers use the rectified linear units (ReLUs) for activation except
for the output layer which uses the softmax activation function. Batch normalization is applied to
stabilize training and reduce covariate shift.37

2.1.2 ResNet

The ResNet4 network architecture in the ensemble is a 3D CNN with residual connections
[Fig. 2(b)]. All convolutional layers apply zero-padding. ReLUs are used for activation in all
layers, except the output layer which uses the softmax activation function. Batch normalization
is applied in all layers except the dense and output layer to stabilize training and reduce covariate
shift.37 Furthermore, dropout38 (p ¼ 0.5) is applied during training to reduce the risk of
overfitting.

2.1.3 Dilated network

The dilated network architecture in the ensemble is a 2D CNN with dilated convolution layers
[Fig. 2(c)]. Dilated convolutions increase the receptive field of the network while keeping the
number of parameters low. The proposed network architecture is inspired by the design of Yu
and Koltun5 and the network used by Wolterink et al.39 ReLUs are used in all layers as activation
function, except for the output layer which uses the softmax activation function. Batch
normalization37 and dropout38 (p ¼ 0.5) are applied to the two dense layers to stabilize training
and reduce covariate shift, and reduce the risk of overfitting.
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2.2 Knowledge Distillation

The aim of knowledge distillation is to transfer the knowledge from the teacher model to a dis-
tilled model without performance loss. This distilled model is trained to mimic the output of the
teacher model,14 which here is an ensemble of segmentation networks (Sec. 2.1). After training
all networks in the ensemble, we pick the network architecture with best performance, i.e., the
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Fig. 2 Architecture of the segmentation networks present in an ensemble. Blue blocks represent
convolutional layers, green blocks represent max-pooling layers and gray blocks represent skip
connection layers, consisting of an upsampling and a feature concatenation operation. For con-
volutional layers, the number of filters followed by (@) the size of the filters is given. For pooling
layers, the size of the pooling area is given. For skip connections, the number of concatenated
features is given. (a) A 3D CNN with a U-Net-like architecture. (b) A 3D CNN with residual con-
nections, indicated by a light blue arrow. (c) A 2D CNN containing dilated convolutions with
increasing dilation factors, indicated by green numbers above the shown network layers.
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highest average Dice score on the validation set, for the architecture of the distilled model. The
same architecture was also used in the uniform ensembles.

The distilled model is trained to mimic the output of the ensemble, specifically the average of
the posterior classification probabilities that the individual networks in the ensemble predict for a
sample. These averaged posterior classification probabilities, referred to as soft labels, are aver-
aged per class and thus represent for each pixel in the image the probability distribution over all
classes rather than just the class with highest probability. This probability distribution might
contain information about the generalization performance of the ensemble and the ambiguity
of different samples, and might thus allow the distilled student model to derive knowledge that
is not contained in the manual reference segmentations, referred to as hard labels. These hard
labels are additionally also supplied to the student model during training by combining a soft
label loss Ls with a hard label loss Lh in the distillation loss

EQ-TARGET;temp:intralink-;e001;116;592Ld ¼ Ls þ Lh: (1)

We use the mean squared error between the softmax output of the distilled model and the soft
labels for Ls, and the categorical cross-entropy between the output of the distilled model and the
hard labels for Lh.

2.3 Evaluation

Evaluation of each separate network in an ensemble, the ensembles, and the distilled networks
was performed by computing two different evaluation metrics. For each foreground class sep-
arately, the Dice coefficient was computed to evaluate the volume overlap between predicted and
reference segmentations as

EQ-TARGET;temp:intralink-;e002;116;438DiceðXC; YCÞ ¼
2jXC ∩ YCj
jXCj þ jYCj

; (2)

where XC is the set of voxels in the image predicted by the model as part of class C and YC is the
set of foreground voxels of class C according to the reference standard.

Moreover, the average symmetrical surface distance (ASSD) was computed for evaluation of
the borders of predicted segmentations. This metric expresses the average minimal distance of
each point on the surface of the segmentation result to the surface of the reference segmentation,
and vice versa, and is computed as

EQ-TARGET;temp:intralink-;e003;116;321ASSDðXC; YCÞ ¼
1

2
ðASDðXC; YCÞ þ ASDðYC; XCÞÞ; (3)

with

EQ-TARGET;temp:intralink-;e004;116;268ASDðX; YÞ ¼
P

x∈X miny∈Ykx − yk
jXj ; (4)

where XC and YC and sets of points on the surface of the predicted and the reference segmen-
tations for class C, respectively.

Throughout the manuscript, we sometimes report also the Hausdorff distance (HD), which
was used in some of the segmentation challenges that we included in our evaluation. The HD
expresses the maximum of all distances between points on surface X to the closest point on
surface Y, and vice versa, and was thus calculated as

EQ-TARGET;temp:intralink-;e005;116;151HDðXC; YCÞ ¼ maxðhðXC; YCÞ; hðYC; XCÞÞ; (5)

with

EQ-TARGET;temp:intralink-;e006;116;108hðX; YÞ ¼ max
x∈X

min
y∈Y

kx − yk: (6)
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The Wilcoxon signed-rank test was used to test for significant differences in performance of
each separate network in an ensemble and the ensemble, a distilled network and an ensemble,
and a distilled network and the best performing network present in an ensemble, using a cut off
of 0.005, which corresponds to 0.05 corrected for multiple testing on each dataset.

3 Data

In this study, three public datasets have used the segmentation of thoracic organs at risk
(SegTHOR) dataset, the brain dataset, and the automated cardiac diagnosis challenge (ACDC)
dataset. The SegTHOR dataset consists of radiotherapy treatment CT scans of the chest, while
the brain dataset consists of brain MRI, and the ACDC dataset consists of cardiac cine-MRI. We
deliberately selected datasets that differ in image modality (CT with and without contrast
enhancement, MRI, and cine-MRI) and delineated anatomy (chest, brain, and heart).

3.1 Radiotherapy Chest CT (SegTHOR)

The dataset contains 60 thoracic CT scans of patients that were referred for curative-intent radio-
therapy for non-small cell lung cancer and was provided by the International Symposium on
Biomedical Imaging (ISBI) 2019 challenge on SegTHOR in CT images.40 Scans were acquired
with or without intravenous contrast injection, had an in-plane voxel size ranging from 0.90 to
1.37 mm, and a slice thickness ranging from 2 to 3.7 mm. For each scan in the dataset, manual
reference segmentations of the aorta, trachea, heart, and esophagus were available [Fig. 3(a)].
The dataset was divided by the challenge organizers into a training dataset containing 40 scans,
and a test dataset containing 20 scans.

3.2 Brain MRI

The dataset contains 35 brain MRI of patients aged 23� 4.1 years and was introduced in
the Medical Image Computing and Computer Assisted Intervention (MICCAI) 2012 challenge
on multi-atlas labeling in brain MRI.41 MR images originate from the OASIS project.42 Images
were acquired in the sagittal plane with a Siemens Vision 1.5 T scanner. Slices had an isotropic
in-plane voxel size of 1 mm2 and a slice thickness of 1.25 mm. Subsequently, images were
resized to an isotropic voxel size of 1 mm3. Marcus et al.42 and the OASIS website43 provide
a detailed description of the image acquisition. For each MRI, reference segmentations were
available for 134 tissue classes, which were merged into six different tissue classes by
Moeskops et al.:44 the cortical gray matter (cGM), brain stem (BS), white matter (WM), ven-
tricular cerebrospinal fluid (vCSF), basal ganglia and thalami (BGT), and cerebellum (CB)
[Fig. 3(b)]. The dataset was divided by the MICCAI challenge organizers into a training dataset
containing 15 scans and a test dataset containing 20 scans.

3.3 Cardiac Cine-MRI (ACDC)

The dataset contains the cine-MRI of 150 patients acquired for clinical analysis. The set
was introduced by the MICCAI 2017 ACDC.45 Patients were divided into one of five disease
categories: healthy, systolic heart failure with infarction, dilated cardiomyopathy, hypertrophic
cardiomyopathy, or abnormal right ventricle. MR images were obtained with a 1.5 T Siemens
or a 3.0 T Siemens scanner. Images were acquired during breath hold with a conventional
SSFP sequence. Whole short-axis slices covering the left ventricle were acquired. Slices had
an isotropic in-plane resolution ranging from 1.34 to 1.68 mm, and a slice thickness ranging
from 5 to 10 mm with sometimes an inter-slice gap of 5 mm. For each patient end-systole and
end-diastole frames were available. However, in this study, only the end-diastole frames were
used. The dataset was divided by the challenge organizers into a training dataset containing
100 scans, and a test dataset containing 50 scans. For each scan in the training dataset, manual
reference segmentations of the left ventricle, myocardium, and right ventricle were provided
[Fig. 3(c)].
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4 Experiments and Results

Before performing any experiments, all training datasets as provided by the challenges were
randomly divided into a training set and validation set used for method development. These
subsets contained 35 training and five validation scans for the SegTHOR dataset, 13 training
and 2 validation scans for the Brain dataset, and 90 training and 10 validation scans for the
ACDC dataset. Only for final evaluation, the hold-out test sets as provided by the organizers

(a) Reference thoracic organ segmentation in CT

(b) Reference brain tissue segmentation in MRI

(c) Reference heart segmentation in cine-MRI

Fig. 3 Example of the three datasets that were used to train and evaluate ensembles and knowl-
edge distillation. (a) An axial, sagittal, and coronal slice from a CT scan, provided by the ISBI 2019
challenge on SegTHOR in CT images, in which the corresponding reference segmentation of the
aorta (purple), trachea (red), heart (yellow), and esophagus (blue) are shown. (b) An axial, sagittal,
and coronal slice from an MRI, provided by the MICCAI 2012 challenge on multi-atlas labeling in
brain MRI, in which the corresponding reference segmentation of the cGM (orange), BS (green),
WM (purple), vCSF (red), BGT (yellow), and CB (blue) are shown. (c) Short-axis view of the heart
from an end-diastole cine-MRI, provided by the MICCAI 2017 automated cardiac diagnosis chal-
lenge, in which the corresponding reference segmentation of the left ventricle (red), myocardium
(yellow), and right ventricle (blue) are shown.

Noothout et al.: Knowledge distillation with ensembles of convolutional neural networks for medical image. . .

Journal of Medical Imaging 052407-8 Sep∕Oct 2022 • Vol. 9(5)



of the challenges were used. The networks were implemented in Python using PyTorch46 on a
NVIDIA 2080 Ti with 11 GB of memory.

4.1 Training Procedure

For each of the three datasets, 11 separate networks were trained. These were six networks for the
diverse ensemble, consisting of two 3D CNNs with a U-Net-like architecture, two 3D CNNs
with residual connections, and two 2D dilated CNNs, each trained once with the Dice coefficient
loss function and once with the cross-entropy loss. For the uniform ensemble, the best perform-
ing network was trained five more times with each model initialized with a different ran-
dom seed.

For each network, network parameters were optimized for up to 100,000 iterations, using
Adam47 with a fixed learning rate of 0.001. The networks were evaluated every 10,000 iterations
on the full validation set until the validation loss did not decrease anymore. All networks were
trained with mini-batches containing randomly chosen sub-images (patches) with all tissue
classes equally represented. Additionally, data augmentation was employed by rotating each
sub-image in a mini-batch with a random rotation angle between −10 deg and þ10 deg.

During training of CNNs with the U-Net-like architecture, at every iteration, a mini-batch
containing 4 randomly sampled 3D 72 × 72 × 72 sub-images was shown to the networks. During
training of CNNs with residual blocks, at every iteration, a mini-batch containing 12 randomly
sampled 3D 64 × 64 × 64 sub-images was shown to the networks. During inference, full images
were analyzed.

During training of 2D dilated networks, at every iteration a mini-batch containing 40 ran-
domly sampled 2D 186 × 186 sub-images extracted from the axial, coronal, or sagittal plane,
was shown to the networks, which classified the 55 × 55 voxels in the center of the sub-images.
Networks were trained to classify each voxel in a scan based on the analysis of three orthogonal
slices. During inference, all slices from the axial, coronal, and sagittal planes of a scan were
analyzed. This resulted in three 3D multi-class probability maps, which were subsequently aver-
aged to obtain a final probability map. Finally, each voxel was assigned the class with the highest
class probability.

4.2 Individual Networks

4.2.1 Radiotherapy chest CT

Initially, to deal with varying voxel sizes, images were resampled to an isotropic in-plane voxel
size of 0.98 mm and a slice thickness of 2.5 mm, which was the most common voxel size present
in the dataset. During inference, results were resampled to the original image resolution.
Preliminary experiments showed that using the cross-entropy as a loss function led to more
segmentation errors. Therefore, during training of separate networks with the cross-entropy loss,
errors made on a foreground class were penalized 10 times stronger than errors made on the
background class. Furthermore, all sub-images in a mini-batch contained at least one foreground
voxel. Results obtained on the test dataset are shown in Figs. 4(a) and 4(b). Overall, the best
performance was achieved with the U-Net-like network trained with Dice coefficient loss func-
tion. Five additional instances of this network were initialized with different random seeds and
trained with otherwise identical training settings to form a uniform ensemble. Differences in
obtained Dice coefficients and ASSDs between the six U-Net-like networks trained with the
Dice coefficient as loss-function were below 0.02 and 1.20 mm, respectively [Figs. 4(a)
and 4(b)].

4.2.2 Brain MRI

Results of automatic segmentation of the six brain tissue classes in the independent test set are
shown in Figs. 4(c) and 4(d). Overall, the U-Net-like network trained with the cross-entropy loss
obtained the best performance. Five additional instances of this network were initialized with
different random seeds and trained with otherwise identical training settings. Differences in
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obtained Dice coefficients and ASSDs between the six U-Net-like networks trained with the
cross-entropy loss were below 0.01 and 0.17 mm, respectively [Figs 4(c) and 4(d)].

4.2.3 Cardiac cine-MRI

Contrary to the brain and SegTHOR datasets, the ACDC dataset contains images with a
very large slice thickness compared to the in-plane voxel size. Therefore, only 2D axial slices
of MR images were analyzed. The architectures of the two ResNets the two U-Net-like net-
works were adapted to analyze only 2D images instead of 3D images by replacing 3D con-
volutions with 2D convolutions. Results are shown in Figs. 4(e) and 4(f). Because overall
the best performance was obtained with the dilated network trained with cross-entropy loss,
five additional instances were initialized with different random seeds and trained with otherwise
identical training settings. Differences in obtained Dice coefficients and HDs between the six
dilated networks trained with the cross-entropy loss were below 0.03 and 41 mm, respectively
[Figs. 4(e) and 4(f)].

(a) Dice coefficient SegTHOR (b) Surface distance (mm) SegTHOR

(c) Dice coefficient Brains (d) Surface distance (mm) Brains

(e) Dice coefficient ACDC (f) Surface distance (mm) ACDC

Fig. 4 Results for the hold-out test sets of the three datasets (a,b: SegTHOR; c,d: Brains; e,f:
ACDC) obtained with individual networks and uniform (U) and diverse (D) ensembles and the
corresponding distilled networks. The network architecture used in the uniform ensemble is indi-
cated in bold. In each line, a dot indicates the average across the test set while the correspond-
ing horizontal line indicates the standard deviation. Significance outcome by the Wilcoxon
signed-rank test compared to the performance of the diverse ensemble with the top six networks
and the corresponding distilled network, and the uniform ensemble with the networks with the
same architecture and the corresponding distilled network is indicated by a black circle (i.e.,
p < 0.005).
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4.3 Uniform and Diverse Ensembles

Segmentation results obtained by the uniform and diverse ensembles for various anatomical
structures in the three test datasets are shown in Fig. 4. Both the diverse and the uniform ensem-
ble performed better than any of the individual networks. However, there was no substantial
difference in the performance of the uniform and diverse ensembles themselves. Figure 5 shows
automatic segmentations in three different scans of the test dataset, obtained with the diverse and
uniform ensemble and the separate networks present in the ensembles. Networks present in the
diverse ensemble made errors in different areas compared to networks present in the uniform
ensemble.

4.4 Ensembles Distilled into a Single Network

The performance of separate networks varied between the datasets, i.e., there was not a single
network that performed best across all datasets. For each ensemble, the network architecture that
obtained the highest Dice coefficients and lowest distance errors, averaged over all classes, was
used as the preferred network architecture for the distilled network (indicated in bold letters in
Fig. 4). This enables a direct comparison between the distilled network and the best performing
network present in the ensemble. For each dataset, two distilled networks were trained: one from
the diverse ensemble and one from the uniform ensemble. These networks were trained with the
combined loss function that includes soft and hard labels [Eq. (1)] and the network parameters
were initialized with those of the best performing network in the ensemble.

EnsembleReferenceImage Separate networks

D

U

D

U

D

U

Fig. 5 Automatic heart segmentation results for three different scans from the SegTHOR test
dataset. The six right-most columns show the automatic segmentations obtained with the individ-
ual networks in the uniform (U) and diverse (D) ensemble. The uniform ensemble contained six U-
Nets, trained with the Dice coefficient as loss-function but with different random seeds, while the
diverse ensemble contained two dilated networks, two ResNets, and two U-Nets, trained with the
cross-entropy or the Dice coefficient as loss-function. The right-most column shows the results
obtained with the network that is part of both the uniform and the diverse ensemble, i.e., the seg-
mentations are identical.

Noothout et al.: Knowledge distillation with ensembles of convolutional neural networks for medical image. . .

Journal of Medical Imaging 052407-11 Sep∕Oct 2022 • Vol. 9(5)



Across all three datasets, the distilled networks achieved better segmentation performance than
the individual networks that were trained only with reference segmentations (Fig. 4). Except for
some tasks in the ACDC dataset, the distilled networks also reached the performance of the ensem-
bles they were derived from. Similar to the minor differences between uniform and diverse ensem-
bles, networks derived from these different types of ensembles also performed very similar to each
other, with networks derived from diverse ensembles performing minimally better overall.

For each dataset, Table 1 lists the difference at inference between an ensemble and its cor-
responding distilled network with respect to network size, GPU memory usage, and average
analysis time per scan. Distilled networks contained 4 to 89 times fewer trainable parameters,
needed 4 to 10 times less GPU memory at inference, and were 5 to 8 times faster compared to the
ensembles.

4.5 Ablation Study

Using the SegTHOR dataset, we investigated whether it is beneficial to use the architecture of the
best performing network of an ensemble as architecture of the distilled network. We trained two
additional distilled networks using the two other network architectures from the ensemble,
namely the architecture containing residual connections and the architecture containing dilated
convolutions, and compared their performance with the distilled network using the architecture
of the best performing network, namely, the U-Net-like architecture. Results are shown in Fig. 6.
Overall, when using the best performing individual architecture for the distilled network, better
performance was achieved compared to using one of the other two architectures for the distilled
network.

Additionally, knowledge distillation can be seen as a form of regularization, where the dis-
tillation loss used during training of a distilled network discourages the prediction of probabil-
ities if they do not agree with the prediction of the ensemble. Similarly, L2-regularization
discourages the network to obtain large network weights during training and it is commonly
used as regularization technique for training CNNs. To investigate whether knowledge distilla-
tion is more beneficial than simple L2-regularization, we trained a network with U-Net-like

Table 1 Difference in network size in terms of the number of trainable parameters, GPU memory
usage, and the average time needed to process one scan. Compared are a diverse ensemble (D),
a uniform ensemble (U), and their corresponding distilled networks for three different datasets
(SegTHOR, brain, and ACDC).

Trainable
parameters

GPU memory
requirement (GB)

Inference
time per scan (s)

SegTHOR ensemble (D) 23.17 × 106 14.00 602.2� 143.0

SegTHOR distilled (D) 5.64 × 106 1.37 123.0� 28.8

SegTHOR ensemble (U) 33.84 × 106 8.22 738.0� 172.8

SegTHOR distilled (U) 5.64 × 106 1.37 123.0� 28.8

Brain ensemble (D) 23.20 × 106 6.10 312.8� 21.0

Brain distilled (D) 5.64 × 106 1.10 59.9� 4.9

Brain ensemble (U) 33.84 × 106 6.60 359.4� 29.4

Brain distilled (U) 5.64 × 106 1.10 59.9� 4.9

ACDC ensemble (D) 7.97 × 106 5.44 16.7� 1.9

ACDC distilled (D) 0.09 × 106 1.36 2.1� 0.3

ACDC ensemble (U) 0.54 × 106 8.16 12.6� 1.8

ACDC distilled (U) 0.09 × 106 1.36 2.1� 0.3
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architecture and Dice coefficient loss, which were the settings used for the distilled network, and
L2-regularization instead of the soft label loss term. Results are shown in Fig. 6. For all organs
of interest, automatic segmentation with a distilled network obtained better Dice coefficients
and ASSDs compared to automatic segmentation with a U-Net trained with L2-regularization.

4.6 Comparison with Other Methods

Previously, several methods have been proposed for automatic segmentation of organs at risk in
the SegTHOR dataset, brain tissue in the brain dataset, and cardiac structures in the ACDC
dataset. The purpose of this paper was not to present a new state-of-the-art segmentation method
for any of these datasets, but to investigate how well the concept of knowledge distillation works
across different datasets and with different types of ensembles. However, we still compared the
performance of the ensembles and the networks derived with knowledge distillation with a num-
ber of previously presented methods to demonstrate that the ensembles that our ensembles
achieved comparable performance.

4.6.1 Radiotherapy chest CT

We compare the performance of our two ensembles and the corresponding distilled networks
with the five best performing methods that participated in the SegTHOR challenge. Four of these
methods also employed an ensemble of CNNs. Van Harten et al.7 employed an ensemble con-
sisting of a 2D dilated network and a 3D ResNet. Wang et al.48 created an ensemble consisting of
three cascaded V-Nets and averaged the output of networks preserved during the last five training
iterations, while Han et al.49 trained multiple instances of two single-class cascaded V-nets. He
et al.50 used an ensemble of multi-task U-Net like networks performing simultaneous classifi-
cation and segmentation. Finally, Zhang et al.51 used two cascaded V-Nets which shared skip
connections between corresponding convolution blocks.

For postprocessing, previous methods employed largest component selection, with or with-
out data-specific rules, to improve their results.7,48–51 Therefore, for comparison, we also post-
processed our results obtained by our two ensembles and the corresponding distilled networks in
the same way. Table 2(a) lists the results as reported in previous work and our postprocessed
results. The results show that our ensembles and distilled networks obtain Dice coefficients and
HDs which were close to the results of the best performing method. Overall, our diverse ensem-
ble and distilled network obtain slightly better results compared to their uniform counter parts.
For segmentation of the aorta, heart, trachea, and esophagus differences in Dice coefficients
between the distilled network from the diverse ensemble and the best performing method were
<0.01, while differences in HDs were below 0.10 mm, which is less than a voxel in size.

Fig. 6 Segmentation performance on the SegTHOR test set obtained with different distilled
networks, derived from diverse (D) and uniform (U) ensembles. Additionally, results obtained with
a U-Net-like architecture trained with the Dice coefficient as loss-function and additional L2-
regularization are shown. In each line, a dot indicates the average over the test set while the cor-
responding horizontal line shows the standard deviation. The performance of the distilled ResNet
and the distilled dilated network is compared to the performance of the distilled U-Net-like network
from the diverse ensemble, while the performance of the two distilled U-Net-like networks is com-
pared to the performance of the L2-regularized network. Significance in these comparisons by the
Wilcoxon signed-rank test is indicated with a black circle (i.e., p < 0.005).
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Table 2 Results obtained on (a) SegTHOR test dataset, (b) brain test dataset, and (c) ACDC test
dataset.

(a) SegTHOR dataset

Aorta Trachea Heart Esophagus

Dice HD Dice HD Dice HD Dice HD

van Harten et al.7 0.93 2.7 0.91 2.1 0.94 2.0 0.84 3.4

Wang et al.48 0.94 0.16 0.92 0.21 0.95 0.16 0.86 0.29

Han et al.49 0.95 0.12 0.93 0.15 0.95 0.13 0.87 0.26

He et al.50 0.95 0.11 0.92 0.18 0.95 0.14 0.86 0.27

Zhang et al.51 0.92 0.35 0.89 0.57 0.93 0.63 0.84 0.40

Ensemble (D) 0.93 0.25 0.91 0.22 0.94 0.20 0.86 0.27

Distilled (D) 0.94 0.22 0.92 0.23 0.94 0.18 0.86 0.30

Ensemble (U) 0.93 0.24 0.92 0.21 0.94 0.20 0.84 1.07

Distilled (U) 0.94 0.24 0.92 0.23 0.94 0.18 0.83 1.98

(b) Brain dataset

cGM BS WM vCSF BGT CB

Dice MSD Dice MSD Dice MSD Dice MSD Dice MSD Dice MSD

Moeskops et al.44 0.91 0.39 0.93 0.46 0.93 0.28 0.86 0.52 0.86 0.72 0.95 0.61

Moeskops et al.52 0.94 — 0.93 — 0.95 — 0.88 — 0.91 — 0.96 —

Ensemble (D) 0.94 0.19 0.95 0.25 0.95 0.16 0.92 0.17 0.93 0.30 0.97 0.24

Distilled (D) 0.94 0.20 0.95 0.26 0.95 0.18 0.91 0.28 0.92 0.38 0.97 0.26

Ensemble (U) 0.94 0.19 0.95 0.26 0.95 0.17 0.91 0.24 0.92 0.40 0.97 0.25

Distilled (U) 0.94 0.25 0.95 0.27 0.95 0.19 0.91 0.30 0.92 0.40 0.97 0.31

(c) ACDC dataset

Left
ventricle Myocardium Right ventricle

Method Dice HD Dice HD Dice HD

Isensee et al.53 0.95 7.15 0.91 8.70 0.92 11.13

Calisto and Lai-Yuen54 0.96 5.59 0.87 8.20 0.94 10.18

Baumgartner et al.55 0.96 6.53 0.89 8.70 0.93 12.67

Khened et al.56 0.96 8.13 0.89 9.84 0.94 13.99

Zotti et al.57 0.96 6.18 0.89 9.59 0.93 11.05

Painchaud et al.58 0.96 6.15 0.88 8.65 0.93 13.72

Ensemble (D) 0.97 6.68 0.90 8.94 0.94 11.53

Distilled (D) 0.96 7.84 0.89 11.10 0.93 14.72

Ensemble (U) 0.96 7.64 0.89 10.29 0.93 11.73

Distilled (U) 0.96 8.97 0.88 10.71 0.92 15.41

Results for the aorta, trachea, heart, and esophagus in the SegTHOR dataset, the cortical gray matter (cGM),
brain stem (BS), white matter (WM), ventricular cerebrospinal fluid (vCSF), basal ganglia and thalami (BGT), and
cerebellum (CB) in the brain dataset, and the left ventricle, myocardium, and right ventricle in the ACDC dataset
are shown separately for different evaluationmetrics: theDice coefficient (Dice), and theHD inmmorMSD inmm.
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4.6.2 Brain MRI

We compare the performance of our two ensembles and the corresponding distilled networks
with two earlier methods that performed segmentation of the six merged tissue classes in the
brain MRI dataset. None of these methods employed an ensemble of CNNs. For automatic seg-
mentation of brain tissue in the brain dataset, Moeskops et al.44 used a multi-scale CNN. Later,
Moeskops et al.52 used a 2D dilated network that was trained with an adversarial loss.

Table 2(b) lists the results obtained with our two ensembles and the corresponding distilled
networks on the Brain dataset and compares them with results as reported in previous work. For
all tissue classes, our ensembles and distilled networks obtain better or the same Dice coefficients
compared to earlier methods [Table 2(b)]. Simultaneously, for every tissue class, our ensembles
and distilled networks obtain lower mean surface distances (MSD). Overall, for all tissue classes,
our diverse ensemble obtained the highest Dice coefficients and lowest MSD.

4.6.3 Cardiac cine-MRI

We compare the performance of our two ensembles and the corresponding distilled networks
with the six best performing methods that participated in the ACDC challenge. Two of these
methods also employed an ensemble of CNNs. For automatic segmentation of cardiac structures
in the ACDC dataset, Isensee et al.53 used an ensemble consisting of a 2D and 3D U-Net while
Calisto and Lai-Yuen54 used an ensemble consisting of a 2D and 3D network with hyperpara-
meters optimized for the specific segmentation task. Baumgartner et al.55 used a single 2D
U-Net. Khened et al.56 first extracted a region of interest with Fourier analyses after which a
dense-Net analyzed the region. Zotti et al.57 used a multi-resolution U-Net and additionally
incorporated a cardiac shape prior. Painchaud et al.58 used a U-Net to obtain segmentation pre-
dictions of the cardiac structures, which were subsequently converted into anatomically correct
ones using an adversarial variational auto-encoder.

Similar to methods proposed for automatic segmentation of organs at risk in the SegTHOR
dataset (Sec. 4.6.1), most previously proposed methods perform selection of the largest com-
ponent, with or without data-specific rules, to improve results.54–56,58 Therefore, for comparison,
we also postprocessed our results obtained by the two ensembles and the corresponding distilled
networks in the same way. They are given in Table 2(c).

For automatic segmentation of the left ventricle, our diverse ensemble obtained the highest
Dice coefficient [Table 2(c)]. For all other structures, Dice coefficients obtained with our two
ensembles and the corresponding distilled networks were similar or close to the best performing
method in the challenge, with our diverse ensemble and distilled network slightly outperforming
the uniform ensemble and distilled network, respectively. For segmentation of the left ventricle,
the myocardium, and the right ventricle differences in Dice coefficients between the distilled
network and the best performing method were <0.03, while differences in HDs were <5.23 mm.

5 Discussion

Knowledge distillation aims to reduce the footprint of large models such as ensembles which are
often used for segmentation tasks in medical imaging. This work shows that ensembles consist-
ing of networks with different architectures and loss-functions or networks with the same archi-
tecture and loss-function achieve excellent performance across several segmentation tasks.
Additionally, this work shows that knowledge distillation can be used to compress a diverse
or uniform ensemble into a single, distilled network which deploys more easily compared to
the ensemble due to a lower computational demand and a higher computational speed.

Due to the high number of images that need to be processed on a daily basis, a fast inference
with a low computational demand can be very important requirements for method deployment in
the clinic.11 Therefore, this work focused on deployability of ensembles for segmentation of
structures in medical images. Although training multiple networks for an ensemble demands
more time compared to training a single network, training is performed only during development
whereas inference will be performed every time the final network is deployed. Hence, this paper
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aimed to investigate ways to perform image segmentation while decreasing computational
demand and increasing inference speed of successful approaches such as ensembles.

This paper investigated the application of knowledge distillation on two types of ensembles: a
diverse ensemble containing networks that differed in architecture and loss-function, and a uni-
form ensemble containing network with the same architecture and loss-function but initialized
with different random seeds. To ensure diversity among network architectures, three popular
medical image segmentation network architectures were chosen that differed in the number
and type of network layers, connections between network layers, and kernels in convolutional
layers. These network architectures were a U-Net inspired architecture, a 3D CNN with residual
connections, and a 2D CNN containing dilated convolutions, which were included in the di-
verse ensemble. In recent years, all three network architectures have shown a good performance
for medical image segmentation tasks.7,39,50,52,53,55,57,58 Other network architectures, such as
DeepLabV3 with atrous spatial pyramid pooling59 or multi-scale CNNs44,60 could also have been
included in our ensemble to increase diversity or to obtain a larger ensemble. Increasing the
number of networks in an ensemble might also lead to a better performance and would therefore
be an interesting topic for future research.

The uniform and diverse ensemble, and subsequent knowledge distillation were evaluated
using three different datasets: the SegTHOR dataset, in which four organs were segmented in
contrast enhanced and non-contrast enhanced chest CT scans,40 the brain dataset, in which six
different brain structures were segmented in brain MRI,41,42 and the ACDC dataset, in which
three different heart structures were segmented in cardiac cine-MRI.45 Results show that for all
three datasets, the uniform and diverse ensembles outperformed individual networks present in
those ensembles. For the SegTHOR and ACDC dataset, the diverse ensembles obtained slightly
better performance compared to the uniform ensembles but results were not always significant.
Results also showed that for all three datasets, different networks performed best for the different
tasks. There was no specific architecture trained with a specific loss-function that performed best
on all three datasets. Therefore, for each dataset the best performing architecture was chosen
based on obtained results and used as the preferred architecture for the networks in the uniform
ensemble. Furthermore, this network architecture was also used as architecture for the distilled
networks, which enabled a direct comparison between the best performing network in the
ensemble and the distilled network. Using the SegTHOR dataset, it was additionally shown that
employing other network architectures for the distilled network resulted in a significantly lower
performance of the distilled network compared to using the best performing architecture from an
ensemble.

The output of ensembles was obtained by averaging the posterior classification probabilities
predicted by the separate networks. Besides averaging the predictions of the separate networks,
different forms of combining the predictions could be considered, such as weighted averaging
or majority voting. In this study, networks in an ensemble were trained using identical datasets
during training. Ensembles are most likely to outperform a single network when the networks
present in the ensemble are diverse and can compensate for errors made by some of them.
Therefore, using different subsets of the training dataset to train separate networks might also
lead to diverse networks. Hence, in future work, we will investigate whether combining predic-
tions of separate networks in a different way or training separate networks on different subsets of
the training data leads to a better performance of the ensemble.

For the SegTHOR and brain dataset, knowledge distillation led to a single, smaller network
that performed the same or better compared to the corresponding ensemble. For the ACDC data-
set, compared to the corresponding ensemble, the distilled network from the diverse ensemble
performed the same for segmentation of the left ventricle, while the distilled network from the
uniform ensemble performed the same for segmentation of the right ventricle. For other struc-
tures, the ensembles outperformed the distilled networks. Inspection of automatic segmentations
of images in the ACDC dataset obtained with the ensembles and distilled networks showed that
most differences did not occur between foreground classes but near the border of foreground
classes and the background. Showing more examples of the border between foreground classes
and the background during training of the distilled network could improve the performance
of the distilled network. Nonetheless, for all three datasets, both distilled networks obtained
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significantly better results compared to the best performing network present in the corresponding
ensemble, showing the added value of the distillation step.

During knowledge distillation, soft labels were considered as the knowledge to be transferred
from the ensemble to the distilled network. Soft labels contain information about the generali-
zation performance of an ensemble. It could be argued that besides soft labels, features from
intermediate layers of separate networks could also be considered as transferable knowledge and
thus should be mimicked by the distilled network. However, for this, it needs to be ensured that
the features of interest are the same size between the separate networks in the ensemble and the
distilled network, which could make training more complex when the ensemble consists of net-
works with different architectures.

The knowledge distillation loss discourages predicted probabilities from the distilled network if
they do not agree with the prediction of the ensemble, i.e., the prediction of the ensemble is used as
a boundary to guide the distilled network during training and might therefore act as a form of
regularization. Similarly, L2-regularization essentially discourages a network to obtain large net-
work weights, i.e., it enforces a boundary on the network weights. Using the SegTHOR dataset, we
therefore, compared knowledge distillation with L2-regularization which is a popular regulariza-
tion method for training CNNs. Results showed that the distilled networks outperformed the same
network trained with additional L2-regularization. Other regularization techniques, such as
Dropout and data augmentation, could also have been investigated. However, Dropout and aug-
mentation by random image rotation were already applied during training of the separate networks.
Hence, a comparison with those regularization techniques was not investigated.

We compared our ensembles and corresponding distilled networks with previously proposed
methods. Several previous methods also employed ensembles containing networks with
different7,53,54 or identical48 architectures. Knowledge distillation could have also been applied
on these ensembles or previously proposed methods could have been added to our ensemble or
used as architecture for the distilled network. However, the methods that participated in the
challenges were often developed and optimized for a specific dataset, and therefore, a good
performance might be data-dependent. In this work, we aimed to develop a robust automatic
segmentation method that performed well on diverse datasets. For all datasets, our ensembles
and corresponding distilled networks outperformed or obtained a performance close to previ-
ously proposed methods. This shows that our ensembles and subsequent knowledge distillation
could be applied for automatic segmentation of structures of interest in medical images, differing
in image modality, image dimensionality, and anatomical coverage.

6 Conclusion

The application of knowledge distillation allows for obtaining a single, smaller, and faster net-
work for the segmentation of structures of interest in medical images. Employing an ensemble of
networks with diverse architectures and loss functions does not necessary result in better per-
formance compared with a more uniform ensemble. However, both types of ensembles outper-
form individual networks. Subsequent knowledge distillation of an ensemble results in a network
that outperforms separate networks and furthermore could make the application of ensembles
suitable in clinical practise.
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Source code

The code for training segmentation models, creating ensembles, and performing knowledge
distillation is available at https://github.com/qurAI-amsterdam/ensemble-knowledge-distillation.

References

1. F. Altaf et al., “Going deep in medical image analysis: concepts, methods, challenges, and
future directions,” IEEE Access 7, 99540–99572 (2019).

2. M. H. Hesamian et al., “Deep learning techniques for medical image segmentation: achieve-
ments and challenges,” J. Digit. Imaging 32(4), 582–596 (2019).

3. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical
image segmentation,” Lect. Notes Comput. Sci. 9351, 234–241 (2015).

4. K. He et al., “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput.
Vision and Pattern Recognit., pp. 770–778 (2016).

5. F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in Int. Conf.
Learn. Represent. (2016).

6. H. Li et al., “Fully convolutional network ensembles for white matter hyperintensities seg-
mentation in MR images,” NeuroImage 183, 650–665 (2018).

7. L. D. Van Harten et al., “Automatic segmentation of organs at risk in thoracic CT scans by
combining 2D and 3D convolutional neural networks,” in Proc. SegTHOR Challenge at
IEEE Int. Symp. Biomed. Imaging (2019).

8. Y.-X. Zhao et al., “Multi-view semi-supervised 3D whole brain segmentation with a self-
ensemble network,” Lect. Notes Comput. Sci. 11766, 256–265 (2019).

9. K. Kamnitsas et al., “Ensembles of multiple models and architectures for robust brain
tumour segmentation,” Lect. Notes Comput. Sci. 10670, 450–462 (2017).

10. H. J. Kuijf et al., “Standardized assessment of automatic segmentation of white matter
hyperintensities; results of the wmh segmentation challenge,” IEEE Trans. Med. Imaging
38(11), 2556–2568 (2019).

11. Y. Cheng et al., “Model compression and acceleration for deep neural networks: the
principles, progress, and challenges,” IEEE Signal Process. Mag. 35(1), 126–136
(2018).

12. C. Bucilă, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proc. 12th ACM
SIGKDD Int. Conf. Knowl. Discov. and Data Min., pp. 535–541 (2006).

13. J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Adv. in Neural Inf. Process.
Syst., pp. 2654–2662 (2014).

14. G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv:1503.02531, pp. 1–9 (2015).

15. Y. Chebotar and A. Waters, “Distilling knowledge from ensembles of neural networks for
speech recognition,” in Interspeech, pp. 3439–3443 (2016).

16. A. Romero et al., “FitNets: hints for thin deep nets,” in Int. Conf. Learn. Represent.
(2015).

17. S. Zagoruyko and N. Komodakis, “Paying more attention to attention: improving the per-
formance of convolutional neural networks via attention transfer,” in Int. Conf. Learn.
Represent. (2017).

18. X. Lan, X. Zhu, and S. Gong, “Knowledge distillation by on-the-fly native ensemble,” in
Proc. 32nd Int. Conf. Neural Inf. Process. Syst., pp. 7528–7538, Curran Associates Inc.
(2018).

19. Y. Liu et al., “Structured knowledge distillation for semantic segmentation,” in Proc. IEEE
Conf. Comput. Vision and Pattern Recognit., pp. 2604–2613 (2019).

20. T. K. K. Ho and J. Gwak, “Utilizing knowledge distillation in deep learning for classification
of chest x-ray abnormalities,” IEEE Access 8, 160749–160761 (2020).

21. S. Abbasi et al., “Classification of diabetic retinopathy using unlabeled data and knowledge
distillation,” Artif. Intell. Med. 121, 102176 (2021).

22. B. Kong et al., “Invasive cancer detection utilizing compressed convolutional neural net-
work and transfer learning,” Lect. Notes Comput. Sci. 11071, 156–164 (2018).

Noothout et al.: Knowledge distillation with ensembles of convolutional neural networks for medical image. . .

Journal of Medical Imaging 052407-18 Sep∕Oct 2022 • Vol. 9(5)

https://github.com/qurAI-amsterdam/ensemble-knowledge-distillation
https://github.com/qurAI-amsterdam/ensemble-knowledge-distillation
https://doi.org/10.1109/ACCESS.2019.2929365
https://doi.org/10.1007/s10278-019-00227-x
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.neuroimage.2018.07.005
https://doi.org/10.1007/978-3-030-32248-9_29
https://doi.org/10.1007/978-3-319-75238-9_38
https://doi.org/10.1109/TMI.2019.2905770
https://doi.org/10.1109/MSP.2017.2765695
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1109/ACCESS.2020.3020802
https://doi.org/10.1016/j.artmed.2021.102176
https://doi.org/10.1007/978-3-030-00934-2_18


23. D. Tellez et al., “Whole-slide mitosis detection in H&E breast histology using PHH3 as
a reference to train distilled stain-invariant convolutional networks,” IEEE Trans. Med.
Imaging 37(9), 2126–2136 (2018).

24. H. Wang et al., “Segmenting neuronal structure in 3D optical microscope images via knowl-
edge distillation with teacher-student network,” in IEEE 16th Int. Symp. Biomed. Imaging,
IEEE, pp. 228–231 (2019).

25. Y. Zhou et al., “Deep semi-supervised knowledge distillation for overlapping cervical cell
instance segmentation,” Lect. Notes Comput. Sci. 12261, 521–531 (2020).

26. D. Qin et al., “Efficient medical image segmentation based on knowledge distillation,” IEEE
Trans. Med. Imaging 40(12), 3820–3831 (2021).

27. P. Xu et al., “Efficient knowledge distillation for liver CT segmentation using growing
assistant network,” Phys. Med. Biol. 66(23), 235005 (2021).

28. J. Shi and J. Wu, “Distilling effective supervision for robust medical image segmentation
with noisy labels,” Lect. Notes Comput. Sci. 12901, 668–677 (2021).

29. Y. Hou et al., “Brain tumor segmentation based on knowledge distillation and adversarial
training,” in Int. Joint Conf. Neural Netw., IEEE, Shenzhen, China, pp. 1–7 (2021).

30. X. Gong et al., “Ensemble attention distillation for privacy-preserving federated learning,”
in IEEE/CVF Int. Conf. Comput. Vision, IEEE, Montreal, QC, Canada, pp. 15056–15066
(2021).

31. Q. Dou et al., “Unpaired multi-modal segmentation via knowledge distillation,” IEEE Trans.
Med. Imaging 39(7), 2415–2425 (2020).

32. M. Hu et al., “Knowledge distillation from multi-modal to mono-modal segmentation net-
works,” Lect. Notes Comput. Sci. 12261, 772–781 (2020).

33. Y. Zhang et al., “Modality-aware mutual learning for multi-modal medical image segmen-
tation,” Lect. Notes Comput. Sci. 12901, 589–599 (2021).

34. C. Chen et al., “Learning with privileged multimodal knowledge for unimodal segmenta-
tion,” IEEE Trans. Med. Imaging 41(3), 621–632 (2022).

35. T. G. Dietterich, “Ensemble methods in machine learning,” Lect. Notes Comput. Sci. 1857,
1–15 (2000).

36. Ö. Çiçek et al., “3D U-Net: learning dense volumetric segmentation from sparse annota-
tion,” Lect. Notes Comput. Sci. 9901, 424–432 (2016).

37. S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by
reducing internal covariate shift,” in Proc. 32nd Int. Conf. Mach. Learn. Res., Vol. 37,
pp. 448–456 (2015).

38. N. Srivastava et al., “Dropout: a simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res. 15(1), 1929–1958 (2014).

39. J. M. Wolterink et al., “Dilated convolutional neural networks for cardiovascular MR
segmentation in congenital heart disease,” Lect. Notes Comput. Sci. 10129, 95–102
(2016).

40. R. Trullo et al., “Multiorgan segmentation using distance-aware adversarial networks,”
J. Med. Imaging 6(1), 014001 (2019).

41. B. A. Landman and S. Warfield, “MICCAI 2012: grand challenge and workshop on multi-
atlas labeling,” in Int. Conf. Med. Image Comput. and Comput.-Assist. Interv., Vol. 2012
(2012).

42. D. S. Marcus et al., “Open access series of imaging studies (OASIS): cross-sectional MRI
data in young, middle aged, nondemented, and demented older adults,” J. Cogn. Neurosci.
19(9), 1498–1507 (2007).

43. “OASIS Brains project,” http://www.oasis-brains.org/ (accessed 13 September 2021).
44. P. Moeskops et al., “Automatic segmentation of MR brain images with a convolutional

neural network,” IEEE Trans. Med. Imaging 35(5), 1252–1261 (2016).
45. O. Bernard et al., “Deep learning techniques for automatic mri cardiac multi-structures

segmentation and diagnosis: is the problem solved?” IEEE Trans. Med. Imaging 37(11),
2514–2525 (2018).

46. A. Paszke et al., “PyTorch: an imperative style, high-performance deep learning library,”
in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, and
A. Beygelzimer, et al., Eds., pp. 8024–8035, Curran Associates, Inc. (2019).

Noothout et al.: Knowledge distillation with ensembles of convolutional neural networks for medical image. . .

Journal of Medical Imaging 052407-19 Sep∕Oct 2022 • Vol. 9(5)

https://doi.org/10.1109/TMI.2018.2820199
https://doi.org/10.1109/TMI.2018.2820199
https://doi.org/10.1109/ISBI.2019.8759326
https://doi.org/10.1007/978-3-030-59710-8_51
https://doi.org/10.1109/TMI.2021.3098703
https://doi.org/10.1109/TMI.2021.3098703
https://doi.org/10.1088/1361-6560/ac3935
https://doi.org/10.1007/978-3-030-87193-2_63
https://doi.org/10.1109/IJCNN52387.2021.9534245
https://doi.org/10.1109/ICCV48922.2021.01480
https://doi.org/10.1109/TMI.2019.2963882
https://doi.org/10.1109/TMI.2019.2963882
https://doi.org/10.1007/978-3-030-59710-8_75
https://doi.org/10.1007/978-3-030-87193-2_56
https://doi.org/10.1109/TMI.2021.3119385
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-52280-7_9
https://doi.org/10.1117/1.JMI.6.1.014001
https://doi.org/10.1162/jocn.2007.19.9.1498
http://www.oasis-brains.org/
http://www.oasis-brains.org/
http://www.oasis-brains.org/
https://doi.org/10.1109/TMI.2016.2548501
https://doi.org/10.1109/TMI.2018.2837502


47. D. Kingma and J. Ba, “Adam: a method for stochastic optimization,” in Int. Conf. Learn.
Represent. (2015).

48. Q. Wang et al., “3D enhanced multi-scale network for thoracic organs segmentation,” in
Proc. SegTHOR Chall. at IEEE Int. Symp. Biomed. Imaging (2019).

49. M. Han et al., “Segmentation of CT thoracic organs by multi-resolution VB-nets,” in Proc.
SegTHOR Chall. at IEEE Int. Symp. Biomed. Imaging (2019).10.24926/548719.003

50. T. He et al., “Multi-task learning for the segmentation of thoracic organs at risk in
CT images,” in Proc. SegTHOR Chall. at IEEE Int. Symp. Biomed. Imaging (2019).

51. L. Zhang et al., “Block level skip connections across cascaded V-Net for multi-organ
segmentation,” IEEE Trans. Med. Imaging 39(9), 2782–2793 (2020).

52. P. Moeskops et al., “Adversarial training and dilated convolutions for brain MRI segmen-
tation,” Lect. Notes Comput. Sci. 10553, 56–64 (2017).

53. F. Isensee et al., “Automatic cardiac disease assessment on cine-MRI via time-series
segmentation and domain specific features,” Lect. Notes Comput. Sci. 10663, 120–129
(2017).

54. M. B. Calisto and S. K. Lai-Yuen, “AdaEn-Net: an ensemble of adaptive 2D–3D fully
convolutional networks for medical image segmentation,” Neural Networks (2020).

55. C. F. Baumgartner et al., “An exploration of 2D and 3D deep learning techniques for cardiac
MR image segmentation,” Lect. Notes Comput. Sci. 10663, 111–119 (2017).

56. M. Khened, V. Alex, and G. Krishnamurthi, “Densely connected fully convolutional net-
work for short-axis cardiac cine MR image segmentation and heart diagnosis using random
forest,” Lect. Notes Comput. Sci. 10663, 140–151 (2017).

57. C. Zotti et al., “Convolutional neural network with shape prior applied to cardiac MRI
segmentation,” IEEE J. Biomed. Health Inf. 23(3), 1119–1128 (2019).

58. N. Painchaud et al., “Cardiac MRI segmentation with strong anatomical guarantees,” Lect.
Notes Comput. Sci. 11765, 632–640 (2019).

59. L.-C. Chen et al., “Rethinking atrous convolution for semantic image segmentation,” arXiv:
1706.05587 (2017).

60. K. Kamnitsas et al., “Efficient multi-scale 3D CNN with fully connected CRF for accurate
brain lesion segmentation,” Med. Image Anal. 36, 61–78 (2017).

Biographies of the authors are not available.

Noothout et al.: Knowledge distillation with ensembles of convolutional neural networks for medical image. . .

Journal of Medical Imaging 052407-20 Sep∕Oct 2022 • Vol. 9(5)

https://doi.org/10.12122/j.issn.1673-4254.2020.04.07
https://doi.org/10.1016/j.media.2020.101666
https://doi.org/10.1109/TMI.2020.2975347
https://doi.org/10.1007/978-3-319-67558-9_7
https://doi.org/10.1007/978-3-319-75541-0_13
https://doi.org/10.1016/j.neunet.2020.03.007
https://doi.org/10.1007/978-3-319-75541-0_12
https://doi.org/10.1007/978-3-319-75541-0_15
https://doi.org/10.1109/JBHI.2018.2865450
https://doi.org/10.1007/978-3-030-32245-8_70
https://doi.org/10.1007/978-3-030-32245-8_70
https://doi.org/10.1016/j.media.2016.10.004

