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Abstract

Purpose: The pattern of dense tissue on a mammogram appears to provide additional informa-
tion than overall density for risk assessment, but there has been little consistency in measures of
texture identified. The purpose of this study is thus to validate a mammographic texture feature
developed from a previous study in a new setting.

Approach: A case—control study (316 invasive cases and 1339 controls) of women in
Virginia, USA was used to validate a mammographic texture feature (MMTEXT) derived in
a independent previous study. Analysis of predictive ability was adjusted for age, demographic
factors, questionnaire risk factors (combined through the Tyrer-Cuzick model), and optionally
BI-RADS breast density. Odds ratios per interquartile range (IQ-OR) in controls were estimated.
Subgroup analysis assessed heterogeneity by mode of cancer detection (94 not detected by
mammography).

Results: MMTEXT was not a significant risk factor at 0.05 level after adjusting for classical risk
factors (IQ-OR = 1.16, 95%CI1 0.92 to 1.46), nor after further adjustment for BI-RADS density
(IQ-OR = 0.92, 95%C1 0.76 to 1.10). There was weak evidence that MMTEXT was more pre-
dictive for cancers that were not detected by mammography (unadjusted for density:
IQ-OR = 1.46, 95%CI 0.99 to 2.15 versus 1.03, 95%CI 0.79 to 1.35, Phet 0.10; adjusted for
density: IQ-OR = 1.11, 95%CI 0.70 to 1.77 versus 0.76, 95%CI 0.55 to 1.05, Phet 0.21).

Conclusions: MMTEXT is unlikely to be a useful imaging marker for invasive breast cancer risk
assessment in women attending mammography screening. Future studies may benefit from
a larger sample size to confirm this as well as developing and validating other measures of risk.
This negative finding demonstrates the importance of external validation.
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1 Introduction

Over the past few decades, there has been increasing interest in individual risk assessment
for breast cancer.'~ Motivations for this include the identification of individuals at extremely
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high risk who would be potential candidates for risk-reducing surgery or preventive therapy;*
delineation of populations at moderately enhanced risk who might benefit from enhanced
screening;’ and more recently, identification of populations at sufficiently low risk as not to
require screening or risk management.®

Breast cancer has a relatively well established hormonal aetiology, in addition to a growing
body of knowledge on genetic risk factors.”® Although existing risk models have shown a degree
of accuracy in prediction [the area under the receiver operating characteristic curve (AUC) ranges
around 0.56 to 0.77 for different predictors], it is clear that there is room for improvement.”!”
One area that offers hope for improved risk assessment is utilization of digital mammographic
image features. Mammographic density, which is broadly defined as the amount of radio-opaque
tissue, is well known as an important independent risk factor for breast cancer.''!* Some pre-
vious research has tried to improve mammographic density risk assessment by looking at other
image features of a mammogram, and computational advances in machine learning are starting
to spur more work.'"*!7 A limitation with much of the literature looking at textural or other
features from mammograms has been reproducibility.'®

This study was performed to validate a previously developed texture marker as a breast
cancer risk feature by testing its use in an independent case—control dataset.'” The texture marker
measures the dispersion of breast density within the mammogram. It was previously found to be
associated with breast cancer risk in a case—control study of women in Manchester, UK [odds
ratio per standard deviation (SD-OR) = 1.36], where a subgroup analysis suggested it was most
predictive for interval cancers that were detected between routine screening rounds
(SD-OR = 2.09)."” We refer to the marker as MMTEXT for the rest of this paper. Our primary
objective was to assess whether MMTEXT is a risk factor for breast cancer in Virginia, USA,
after allowing for other classical risk factors from a questionnaire, and for BI-RADS breast den-
sity. The prespecified hypothesis was MMTEXT is a risk factor after adjusting for classical risk
factors.

2 Methods

2.1 Study Design

All women, 18 to 89 years of age, diagnosed with breast cancer for the first time at the University
of Virginia (UVa) between 2003 and 2013 who had a digital contralateral mammogram at the
time of diagnosis were eligible as cases. Case status (invasive breast cancer) was confirmed
through chart review. The average time from mammogram to diagnosis of breast cancer is 6
months. All women without a breast cancer diagnosis but identified as having a digital mammo-
gram at UVa during 2003 to 2008 (the more recent being at most 5 years prior to completing the
questionnaire, and also one at least 5 years before the questionnaire) were eligible as controls. To
ensure a similar age distribution controls were selected based on frequency matching of current
age. Risk factor information at the time of questionnaire was retrospectively collected for cases
or controls between May 2012 and December 2013, using a self-reported electronic question-
naire that was administered in breast imaging, breast surgery clinic, or medical oncology clinic
as previously described.”’ Women who were eligible as cases but not seen at UVa in more than
two years from initiation of patient recruitment were sent a letter for either survey completion by
mail or Internet through an electronic token. Women were excluded if they had breast augmen-
tation, prior contralateral mastectomy, or bilateral breast cancer at the time of initial diagnosis as
these may affect breast density measurement.

UVa is a public institution that provides reduced fee health care based on need, such that
women with greater burden of disease and low resources are frequently referred for care. Thus
some differences between cases and controls were expected because controls would mostly
include women attending regular screening provided by a health plan, but cases might not.
As aresult we included several demographic factors for inclusion as adjustments in the analysis.
These were the concentric geographical area surrounding UVa, health insurance, whether the
woman had been assessed for financial assistance, ethnicity, education, and body mass index
(BMI); age in 5-year groups was also adjusted following the study design. Classic hormonal and
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reproductive risk factors from the questionnaire were combined for adjustment using 10-year
risk from the Tyrer-Cuzick (version 7.02; note this version does not incorporate breast density).’
Only women aged 40 to 79 years at mammogram were included in order to reflect risk assess-
ment for women attending screening.

Full field digital mammograms (“for processing”) DICOM files from Senographe 2000D,
Senographe DS, and Senographe Essential (GE Healthcare, Chicago, Illinois) and Lorad Selenia
and Selenia Dimensions (Hologic, Marlborough, Massachusetts) machines were retrieved.
Approximately 80% were from GE machines, and data from Hologic were excluded to assess
validation of MMTEXT. The reason is that Hologic machines were not used to train MMTEXT,
and MMTEXT was higher in Hologic machine (readers are referred to Sec. 5 for regression
analysis results showing the impact of different machines). The native resolution of these was
100 pm for the Senographe systems. MMTEXT only uses cranial caudal (CC) views. BI-RADS
density category was obtained from clinical records, which were based on the fourth edition
lexicon due to the time frame of the study population.

This case—control study was approved by the institutional review boards at the University of
Virginia and Sunnybrook Research Institute. The study was compliant with the Health Insurance
Portability and Accountability Act. Patients participating on site gave written consent. Patients
participating remotely through electronic media were granted waiver of consent.

2.2 Risk Marker

MMTEXT was calculated as previously described.'” Briefly, image resolution was first down-
sized by three factors (16, 32, and 64 using images at the same resolution as previously'®)
leading to three new images for which each pixel had a much larger physical area than the
original (respectively, 167> = 256, 1024, and 4096 times greater), and with an “average”
intensity in that area. To ensure the resulting images are comparable with potential images
with different resolutions, all images were downsized to the same target resolutions as
previously.' Pixel intensities within the breast were standardized by histogram equalization
into 10 bins so that the darkest 10% of all pixels were in bin 1 and the whitest 10% of pixels are
in bin 10. A co-occurrence matrix was obtained to give the proportion py (i, j) of pixel bin i =

1,...,10 next to pixel bin j = 1, ..., 10 (in all eight directions) for downsize factor k = 1,2, 3
(Q2i 22 pil(is j) = 1). MMTEXT was calculated as a weighted summation of the so-called

“sum average” f; = > ;% 3710

ardized scale, where the mean and standard deviation of 7, are, respectively, zero and unity for
each downsize factor k =1, 2, 3, the weights were 30%, 25%, and 45%, respectively, as
earlier."”

Code to extract MMTEXT from digital mammograms was written by CW using MATLAB
software.”! Only JM had access to the mammograms for this study and was blinded to case—
control status. JM provided the mammographic texture risk score to ARB for analysis, and a list
of mammograms to exclude on the basis of automated quality-control software for the images
(e.g., to remove mammograms with a nonstandard view, spot compression).

(i + j)pi(i, j) for downsize factors k =1, 2, 3. On a stand-

2.3 Statistical Methods

The mean value of MMTEXT from left and right CC views was used for controls, but only
the contralateral breast was used for cases to limit bias from a dense area due to cancer.
MMTEXT was standardized to unit standard deviation and zero mean in controls. It was
assessed as a risk factor after adjustment for differences between cases and controls due
to demographic factors, age at mammogram, BMI, estimated risk from the Tyrer-Cuzick
model (version 7.02),>?* and with or without adjustment for BI-RADS breast density.
Ten-year Tyrer-Cuzick risk was calculated using age at the mammogram, and age at meno-
pause data input was updated accordingly. Other factors in the model were entered following
the questionnaire. The only variables that were not included in the Tyrer-Cuzick risk assess-
ment were prior benign breast disease and hormone replacement therapy use, because they
were not available.
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Spearman correlation was calculated in controls between MMTEXT and standard prognostic
variables: age, BMI, 10-year Tyrer-Cuzick risk, and breast density. A generalized additive model
was used to show trend lines for age and BMI using tensor splines in controls;** association
between MMTEXT and BI-RADS density was inspected using boxplots.

ORs and likelihood-ratio y? statistics for MMTEXT were obtained from a logistic regression
model that was adjusted for demographic factors, the logarithm 10-year Tyrer-Cuzick risk
and optionally BI-RADS density. To compare MMTEXT risk with categorical BI-RADS den-
sity, frequency matching of controls was applied, and likelihood-ratio y? trend tests were used.
Adjusted receiver operating characteristic curves based on the empirical distribution of errors
from linear regression models for density and MMTEXT in controls were used to compute
adjusted area under the curves (aAUC),>* with nonparametric empirical bootstrap confidence
intervals.

Heterogeneity of MMTEXT by age, BMI, Tyrer-Cuzick risk, and density was assessed using
adjusted logistic regression interaction y? tests. Heterogeneity of MMTEXT by mode of detec-
tion (mammography/unknown versus none) was tested using a logistic regression for cases only
with specific mode of detection as the outcome, adjusted for demographic factors, Tyrer-Cuzick
risk, and optionally BI-RADS density. This subgroup analysis was predefined and tested because
of results from the development study.'” The model fit and assumed linear effect of MMTEXT in
the logistic regression was assessed using a generalized additive model with tensor splines for the
predictor.

All analyses were undertaken using statistical software R 3.4.1, and with the boot and mgcv
packages.”’

3 Results

The flow of patients is shown in a flow diagram (Fig. 1). Demographic differences were, as
expected, apparent between cases and controls (Table 1): cases were more likely to live further
away from UVA than controls and be assessed for financial assistance; controls were more likely
than cases to have a higher level of education, private health insurance, and be white. Cases were
at a higher risk from classical risk factors (Tyrer-Cuzick risk) after adjustment for age and

Image database from UVa study

3041 women (651 cases)
with digital mammograms (GE and Hologic)

Exclusions

71 cases deceased prior to survey

56 cases did not complete questionnaire

34 cases no contralateral image passed image QC

>| 21 cases age 80y+ at mammogram

19 cases age <40y at mammogram

9 cases with unknown side of cancer

6 cases no prior mammogram available <5y before diagnosis
2 cases without CC view for the contralateral breast

1 case no BI-RADS density available

125 cases not GE mammograms

v 70 controls without a mammogram <5y before questionnaire
74 aged 80y+ at mammogram

Case-control study 9 aged <40y at mammogram

9 controls missing data on demographic variables (region,

insurance, payment assistance or education)

889 controls not GE mammograms

1655 women (316 cases)

Cases detected by:
* mammography (n=219)
* not mammography or unknown (n=97)
- self detecting a lump (n=70)
- imaging other than mammography (n=16)
- other breast symptoms (pain, nipple discharge; n=8)
- unknown (n=3)

Fig. 1 Data flows: sample tested and evaluated for MMTEXT.
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Table 1 Demographic and breast cancer risk factors in cases and controls. For the continuous
variables the median and interquartile range (IQR) are given in the case and control columns, with
OR for the IQR difference in controls. ORs for demographic factors and age are unadjusted; for risk
factors other than age they are adjusted for age and the demographic factors shown.

Factor Value Control Case OR (95%Cl) LR —4? het

(a) Demographic factors

Region Outer 647/1339 99/316 2.05 30.6 (df = 1),
(48%) (31%) (1.58t02.66) P <0.001
Insurance Yes 927 (69%) 168 (53%) Ref 27.6 (df =1),
P < 0.001
Medicare/aid 387 (29%) 137 (43%) 1.95

(1.51 to 2.52)

No 25 (2%) 11 (3%) 2.43
(1.17 to 5.03)

Financial screening Yes 50/1339 (4%) 50/316 (16%) 4.85 52.2 (df = 1),
(3.20t0 7.33) P <0.001

Education Less 386/1339 (29%)  146/316 (46%) 2.12 33.9 (df = 1),
(1.65102.72) P <0.001

Ethnicity Not white 96/1339 (7%)  55/316 (17%) 2.73 27.8 (df = 1),
(1.91103.90) P <0.001

(b) Classic risk factors

Age at mammogram Years 59 (53 to 65) 57 (50 to 65) 0.82 4.3 (df = 1),
(0.68 to 0.99) P 0.038
40 to 44 61 (5%) 24 (8%) ref
45 to 49 143 (11%) 48 (15%) 0.85

(0.48 to 1.52)

50 to 54 227 (17%) 57 (18%) 0.64
(0.37 to 1.11)

55 to 59 268 (20%) 55 (17%) 0.52
(0.30 to 0.91)

60 to 64 249 (19%) 51 (16%) 0.52
(0.30 to 0.91)

65 to 69 181 (14%) 30 (9%) 0.42
(0.23 to0 0.78)

70 to 74 149 (11%) 27 (9%) 0.46
(0.25 to 0.86)

75 to 79 61 (5%) 24 (8%) 1.00
(0.51 to 1.95)

Age at menarche Years 13 (12 to 14) 12 (12 to 13) 0.82 5.6 (df = 1),
(0.69 t0 0.97) P 0.018

Unknown (n) 1 1 NA
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Table 1 (Continued).

Factor Value Control Case OR (95%Cl) LR -2 het
Age first child <20 112 (8.4%) 46 (14.6%) 1.11 1.2 (df = 4),
(0.71 t0 1.72) P 0.9
20 to 29 729 (54.4%) 162 (51.3%) Ref
30+ 208 (15.5%) 44 (13.9%) 1.20
(0.80 to 1.78)
None 77 (5.8%) 18 (5.7%) 1.16
(0.65 to 2.07)
Unknown 213 (15.9%) 46 (14.6%) 1.15
(0.79 to 1.69)
Menopausal status Pre 276 (20.6%) 78 (24.7%) Ref 1.2 (df =2),
P 0.5
Post 1042 (77.8%) 235 (74.4%) 1.01
(0.64 to 1.58)
Unknown 21 (1.6%) 3 (0.9%) 0.51
(0.13 to 1.95)
Age menopause Years 50 (45 to 52) 49 (42 to 53) 0.89 1.9 (df = 1),
(0.75 to 1.05) P 0.17
Unknown (n) 436 112 NA
First degree relatives None 1031 (77.1%) 229 (72.9%) Ref 4.7 (df = 2),
P 0.095
1 286 (21.4%) 77 (24.5%) 1.30
(0.96 to 1.77)
2+ 21 (1.6%) 8 (2.5%) 2.02
(0.85 to 4.81)
Height M 1.63 (1.60 to 1.68) 1.63 1.10 1.5 (df = 1),

(15710 1.68) (0.95t01.27) P 0.22

BMI kg/m? 24.4 26.9 1.40 21.0 (df = 1),
(21910275)  (22710306) (1.21101.62) P <0.001

Tyrer-Cuzick 10 year % 3.14 3.22 1.31 16.8 (df = 1),
(2.36 to 4.50) (2.27 10 5.02) (1.15t0 1.49) P <0.001

demographic differences (Table 1). It is interesting to note that BMI has a surprisingly higher
LR — »? compared with Tyrer-Cuzick risk (Table 1). However, the effect size of BMI was attenu-
ated in a fully adjusted model (IQ-OR 1.08 for BMI versus 1.53 for Tyrer-Cuzick; Table 3).

MMTEXT was negatively correlated with age at mammogram (Spearman correlation
p =—0.19) and BMI (p = —0.37), with an overall nonlinear association shown by Fig. 2.
MMTEXT had a small correlation with 10-year risk from the Tyrer-Cuzick model (Spearman
p =0.07, P =0.007). MMTEXT was strongly positively associated with BI-RADS breast
density (Fig. 3, Spearman p = 0.67).

BI-RADS density was associated with close to a threefold difference in risk between the
very dense and fatty categories [OR 2.97 (95%CI 1.58 to 5.57), LR — ;(% 15.2 (trend),
aAUC 0.54 (95%CI 0.50 to 0.57)] after adjustment for demographic factors and classical risk
factors (Table 2). A much less strong risk difference was observed for MMTEXT [OR 1.27
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MMTEXT (standardized)
MMTEXT (standardized)

40 50 60 70 15 25 35 45
Age BMI

Fig. 2 Association between MMTEXT and age and BMI in controls. The points show standardized
MMTEXT for each woman. The line in the first plot corresponds to the expected MMTEXT for
a woman with average BMI, similarly for the second plot. Standard errors are shaded around
each line.
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Fig. 3 Boxplot distributions of MMTEXT by BIRADS density category.

(95%CI 0.72 to 2.24)] based on frequency matching dense and fatty categories in controls, LR —
)(% 1.7 (continuous), aAUC 0.50 (95%CI 0.49 to 0.54). On a continuous scale for MMTEXT
IQ-OR = 1.16 (95%CI 0.92 to 1.46). There was no predictive information in MMTEXT after
further adjustment for BI-RADS density [IQ-OR 0.92 (95%CI 0.76 to 1.10), P = 0.35]. The
fully adjusted logistic regression model fit is shown in Table 3.

Subgroup analysis by mode of cancer detection suggested potential merit of MMTEXT
for cancers that were not detected by mammography [unadjusted for density: IQ-OR 1.46
(0.99 to 2.15) versus 1.03 (0.79 to 1.35), Phet 0.10, aAUC 0.55 (95%CI 0.48 to 0.60); adjusted
for density: IQ-OR 1.11 (0.70 to 1.77) versus 0.76 (0.55 to 1.05), Phet 0.21; Table 4].

Other exploratory analysis found little evidence for heterogeneity of MMTEXT by age,
breast density, or Tyrer-Cuzick risk.

4 Discussion

This independent study aimed to validate MMTEXT as a risk factor for breast cancer and
whether it provides additional information to classical risk factors for risk assessment.
Unlike the earlier study,]9 the estimated IQ-OR = 1.16 (0.92 to 1.46) is, however, not sta-
tistically significant at 0.05 level. After further adjustment for density the overall predictive
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Table 2 Comparison between adjusted ORs associated with breast density and MMTEXT in the
study. OR adjusted for age, BMI, and demographic and classical risk factors. Continuous odds
ratios per interquartile range (IQ-OR) in controls are shown in to four categories with the same
number of controls as BI-RADS density, for comparison. *Median (IQR).

Factor

Controls (%)

Cases (%)

OR (95%Cl)

LR — 4?2
(trend, df = 1)

(a) BI-RADS density

+ Categories
Fatty

Scattered
Heterogeneous
Very dense

(b) MMTEXT

+ Continuous

+ Categories
1

2

188 (14%)
545 (40.7%)
468 (35%)

138 (10.3%)

-0.06
(~0.82 to 0.70)*

188 (14%)
545 (40.7%)
468 (35%)

138 (10.3%)

35 (11.1%)
126 (39.9%)
121 (38.3%)

34 (10.8%)

-0.08
(~0.78 to 0.75)*

50 (15.8%)
129 (40.8%)
105 (33.2%)

32 (10.1%)

Ref
1.83 (1.15 to 2.90)
2.56 (1.56 to 4.19)

2.97 (1.58 to0 5.57)

IQ-OR = 1.16
(0.92 to 1.46)

Ref
0.81 (0.54 to 1.21)
0.98 (0.64 to 1.48)

1.27 (0.72 to 2.24)

15.2

1.7

ability of MMTEXT was reduced, indicating that much of the information for risk assessment is
related to breast density. There was weak evidence that MMTEXT was more predictive for can-
cers that were not detected mammography (IQ-OR 1.46, 95%CI 0.99 to 2.15); however, after
adjustment for breast density, the predictive ability decreases (IQ-OR = 1.11, 95%CI 0.70
to 1.77).

This is the first study to assess external validity of MMTEXT and we were able to adjust for
classical risk factors using a validated risk model, which is the most important test of a new
biomarker.”® Image quality was high because full-field digital mammography was used (not
scanned film as much previous work'®) and comparable with the development study.

This study nevertheless differs from the earlier study'® in a number of aspects, which might
partly explain the different findings. The assessment used a different population than the devel-
opment sample. A notable difference is that all the cancer cases in this study are invasive, and
almost a quarter of cases used for variable selection and model training in the development study
were ductal carcinoma in situ (DCIS). Invasive cancers differ from DCIS cancers mammograph-
ically, as invasive cancers are most often manifest as noncalcified masses so more subtle or
occult compared to DCIS cancers.” It is possible that different composition types of cancers
affected the results. The demographic factors between the two studies also differ: for example,
the percentage of age over 70 years was around 7% in the development study but around 16% in
this validation study; the percentage of non-white was also much higher for cases in this study
(17% versus 8%).

Although this study failed to find evidence of predictive ability of MMTEXT, BI-RADS was
a strong predictor for breast cancer (also in the wider cohort, see Ref. 30). It is arguable that
(currently) there is no better measure of mammographic density than visual assessment from an
expert,’! and in our previous analysis of mammographic density for risk assessment we found
that BI-RADS density conferred slightly more predictive information than a volumetric method
on the same data.*® Another cohort study has confirmed the association of BI-RADS density
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Table 3 Multivariable logistic regression analysis of breast cancer risk, showing the impact of
adding the imaging biomarker MMTEXT to a base model with variables to adjust based on

demographic characteristics, classical risk factors, and mammographic density.

Factor OR (95%Cl) LR —»? P
Base model

Age (years) 19.7 (df =7) 0.006
(45 to 49) 0.72 (0.38 to 1.37)

(50 to 54) 0.57 (0.31 to 1.06)

(55 to 59) 0.50 (0.27 to 0.93)

(60 to 64) 0.32 (0.16 to 0.63)

(65 to 69) 0.14 (0.06 to 0.30)

(70 to 74) 0.12 (0.05 to 0.27)

(75 to 79) 0.28 (0.12 to 0.66)

Region 38.7 (df = 4) <0.001
(Outer region 1) 1.40 (0.99 to 1.99)

(Outer region 2) 1.60 (1.07 to 2.39)

(Outer region 3) 2.21 (1.45 to 3.36)

(Outer region 4) 2.70 (1.47 to 4.96)

Insurance 75.7 (df =2) <0.001
(Medicare or Medicaid) 4.68 (2.92 to 7.51)

(None) 0.73 (0.28 to 1.90)

Financial screening 13.1 (df =1) <0.001
(Yes) 1.99 (1.07 to 3.70)

Education 7.0 (df =1) 0.008
(Less) 1.45 (1.06 to 1.99)

Ethnicity 7.5 (df = 1) 0.006
(Not white) 1.69 (1.09 to 2.61)

Adiposity 17.5 (df = 1) <0.001
(BMI, kg/m?) 1.08 (1.04 to 1.11)

Classical risk factors 11.6 (df =1) <0.001
Tyrer-Cuzick (log 10 years) 1.53 (1.16 to 2.01)

Breast density 17.2 (df = 3) <0.001
(Fatty) 0.53 (0.33 to 0.84)

(Hetero) 1.50 (1.06 to 2.11)

(Very dense) 1.84 (1.06 to 3.19)

New biomarker 0.9 (df =1) 0.35

MMTEXT (per IQR control)

0.92 (0.76 to 1.10)

Journal of Medical Imaging
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Table 4 Logistic regression results for breast cancer risk from MMTEXT for subgroups based on
mode of detection.

Factor Controls (n) Cases (n) 1Q-OR (95%Cl) LR — 42 P

(a) Not adjusted for density

Mammo detected 1339 222 1.03 (0.79 to 1.35) 0.1 0.8
Not mammo detected 1339 94 1.46 (0.99 to 2.15) 3.6 0.057
Heterogeneity 2.6 0.10

(b) Fully adjusted

Mammo detected 1339 222 0.76 (0.55 to 1.05) 2.8 0.094
Not mammo detected 1339 94 1.11 (0.70 to 1.77) 0.2 0.6
Heterogeneity 1.6 0.21

with risk in this case—control study, when used in the combination with classic risk factors during
a follow-up of 19 years.”

As discussed above, our subgroup analysis indicate that there may be potential merit of
MMTEXT for cancers that were not detected by mammography. If this can be supported by
future study with larger sample, there are potential implications for future clinical value. If true,
then potentially MMTEXT might have a role as a marker for risk of interval cancer due to masking
from mammography. One area this would be useful is to determine eligibility for supplemental
screening modalities, such as ultrasound or magnetic resonance imaging. Inspection of the math-
ematical formula shows that MMTEXT is associated with breast density because it is maximized
when white areas of the image are surrounded by other white areas so that images with breast
density widely dispersed on the mammogram will have greater MMTEXT values than those with
smaller dense areas. A limitation of visual assessment of breast density is the time and expert
resources required. In situations where these are important issues, the fully automatic, objective,
and freely available MMTEXT might be considered.”’ MMTEXT currently requires raw mammo-
graphic images as it was developed on such images, which may limit its application. Although the
same method' can also be trained on processed images, making it suitable for processed images,
a potential barrier is that manufacturers’ proprietary processing algorithms may result in images
less comparable between different machines. It would nevertheless be interesting for a future
study to apply the algorithm describe previously'® and test it on processed images.

There are other limitations of the study include the following. First, controls differed from
cases due to geography and other socioeconomic and demographic factors, and we needed to
adjust for these differences as far as possible in the analysis. Second, self-reported BMI at the
time of questionnaire was used, and we had no validation of the self-reported anthropomorphic
measures. This is similar to the development study but is expected to have a minimal impact on
the overall findings, because it has been seen elsewhere that self-reported measures are likely to
be sufficiently accurate.*” Third, there is a possible survivorship bias because some women died
with breast cancer before the questionnaire was available. However, this is unlikely to lead to an
overstatement the main findings and is more likely to weaken them, because on average the
deceased cases will have been diagnosed at a more advanced stage than those alive and since
density is associated with later diagnosis (masking), this bias might be expected to attenuate the
predictive ability of MMTEXT. Fourth, it was not possible to include cases who did not respond
to the request to complete a questionnaire (n = 47 aged 40 to 79 years). However, if they had
been available then the number of cases would only increase by 10%, and it seems unlikely that
nonresponse is associated with mammographic density or MMTEXT other than through the
factors adjusted for in the analysis such as age and demographics; this issue is also expected
to have minimal impact on the main findings. Finally, both the UVa and earlier Manchester
studies were predominantly white women and case—control designs.
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In conclusion, data from this study do not support risk assessment for invasive breast cancers
using MMTEXT, a fully automatic digital mammographic texture risk factor based on raw
(“for processing””) DICOM files. This negative finding demonstrates the importance of external
validation. Future studies may focus on developing and validating other measures of risk.
MMTEXT may, however, have its potential for cancers not detected primarily due to mammog-
raphy. Further studies are required to verify this, including longer-term effects in cohort studies.

5 Appendix

The regression analysis results after adjustment for different machines are shown in Tables 5 and
6 below. The tables include data from women with GE or Hologic machines; data from Hologic
machines were excluded in the primary analysis (see Fig. 1).

Table 5 Multivariable logistic regression analysis of breast cancer risk, showing the impact of
adding the imaging biomarker MMTEXT to a base model with variables to adjust based on dem-
ographic characteristics, classical risk factors, and machine type.

Factor OR (95%Cl) LR — 4?2 P
Base model

Age (years) 20.6 (df =7) 0.004
(45 to 49) 0.77 (0.44 to 1.33)

(50 to 54) 0.70 (0.41 to 1.19)

(5510 59) 0.54 (0.31 to 0.93)

(60 to 64) 0.45 (0.25 to 0.78)

(65 to 69) 0.26 (0.13 to 0.49)

(70 to 74) 0.24 (0.12 to 0.46)

(75 to 79) 0.48 (0.23 to 0.98)

Region 47.1 (df = 4) <0.001
(Outer region 1) 1.42 (1.08 to 1.88)

(Outer region 2) 1.49 (1.07 to 2.08)

(Outer region 3) 2.04 (1.46 to 2.86)

(Outer region 4) 3.31 (2.01 to 5.46)

Insurance 60.1 (df =2) <0.001
(Medicare or Medicaid) 2.76 (1.92 to 3.98)

(None) 0.87 (0.44 to 1.73)

Financial screening 10.3 (df =1) 0.001
(Yes) 1.64 (1.04 to 2.60)

Education 7.2 (df =1) 0.007
(Less) 1.39 (1.08 to 1.79)

Ethnicity 4.1 (df =1) 0.042
(Not white) 1.38 (0.99 to 1.93)
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Table 5 (Continued).

Factor OR (95%Cl) LR — 42 P
Adiposity 7.8 (df =1) 0.005
(BMI, kg/m?) 1.05 (1.03 to 1.07)

Classical risk factors 12.5 (df =1) <0.001
Tyrer-Cuzick (log 10 years) 1.49 (1.19 to 1.85)

Machine type 36.5 (df =1) <0.001
(Hologic versus GE) 0.54 (0.41 to 0.70)

New marker 6.2 (df = 1) 0.013
MMTEXT (per IQR control) 1.19 (1.04 to 1.36)

Table 6 Multivariable logistic regression analysis of breast cancer risk, showing the impact of
adding the imaging biomarker MMTEXT to a base model with variables to adjust based on
demographic characteristics, classical risk factors, machine type, and mammographic density.

Factor OR (95%Cl) LR — 42 P
Base model

Age (years) 20.6 (df =7) 0.004
(45 to 49) 0.76 (0.44 to 1.32)

(50 to 54) 0.72 (0.42 to 1.23)

(55 to 59) 0.56 (0.33 to 0.97)

(60 to 64) 0.48 (0.28 to 0.85)

(65 to 69) 0.28 (0.14 to 0.53)

(70 to 74) 0.26 (0.13 to 0.51)

(75 to 79) 0.55 (0.27 to 1.14)

Region 471 (df = 4) <0.001
(Outer region 1) 1.42 (1.07 to 1.87)

(Outer region 2) 1.49 (1.07 to 2.07)

(Outer region 3) 2.03 (1.45 to 2.85)

(Outer region 4) 3.27 (1.98 to 5.40)

Insurance 60.1 (df =2) <0.001
(Medicare or Medicaid) 2.82 (1.95 to 4.07)

(none) 0.84 (0.42 to 1.68)

Financial screening 10.3 (df =1) 0.001
(Yes) 1.73 (1.09 to 2.75)

Education 7.2 (df =1) 0.007

Journal of Medical Imaging 014003-12 Jan/Feb 2020 « Vol. 7(1)



Wang et al.: External validation of a mammographic texture marker for breast cancer risk in a case-control. . .

Table 6 (Continued).

Factor OR (95%Cl) LR — 42 P
(Less) 1.41 (1.10 to 1.81)

Ethnicity 4.1 (df =1) 0.042
(Not white) 1.39 (0.99 to 1.95)

Adiposity 7.8 (df = 1) 0.005
(BMI, kg/m?) 1.06 (1.04 to 1.08)

Classical risk factors 12,5 (df =1) <0.001
Tyrer-Cuzick (log 10 years) 1.46 (1.17 to 1.82)

Machine type 36.5 (df =1) <0.001
(Hologic versus GE) 0.51 (0.39 to 0.67)

Breast density 21.4 (df =3) <0.001
(Fatty) 0.62 (0.44 to 0.86)

(Hetero) 1.33 (1.00 to 1.77)

(Very dense) 1.51 (0.94 to 2.43)

New marker 0.0 (df =1) 0.9
MMTEXT (per IQR control) 1.01 (0.85 to 1.19)
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