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ABSTRACT. Significance: The conventional optical properties (OPs) reconstruction in spatial
frequency domain (SFD) imaging, like the lookup table (LUT) method, causes
OPs aliasing and yields only average OPs without depth resolution. Integrating
SFD imaging with time-resolved (TR) measurements enhances space-TR informa-
tion, enabling improved reconstruction of absorption (μa) and reduced scattering (μ 0

s)
coefficients at various depths.

Aim: To achieve the stratified reconstruction of OPs and the separation between μa
and μ 0

s, using deep learning workflow based on the temporal and spatial information
provided by time-domain SFD imaging technique, while enhancing the reconstruc-
tion accuracy.

Approach: Two data processing methods are employed for the OPs reconstruction
with TR-SFD imaging, one is full TR data, and the other is the featured data
extracted from the full TR data (E , continuous-wave component, hti, mean time
of flight). We compared their performance using a series of simulation and phantom
validations.

Results: Compared to the LUT approach, utilizing full TR, E and hti datasets yield
high-resolution OPs reconstruction results. Among the three datasets employed, full
TR demonstrates the optimal accuracy.

Conclusions: Utilizing the data obtained from SFD and TR measurement tech-
niques allows for achieving high-resolution separation reconstruction of μa and μ 0

s

at different depths within 5 mm.
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1 Introduction
Spatial frequency domain (SFD) imaging technique is a large field-of-view optical imaging
modality that employs a spatial light modulator to project structured patterns onto tissues for
reconstructing the optical properties (OPs), including the absorption coefficient (μa) and reduced
scattering coefficient (μ 0

s).
1 In the conventional SFD imaging, tissues are simplified to the homo-

geneous single-layer structures.2–8 However, the challenge of reconstruction of μa and μ 0
s remains

in the tissue optical imaging. Aliasing of depth information continues to be the primary cause of
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blurring in two-dimensional SFD imaging results. The issues of low depth resolution and accu-
racy in OPs reconstruction require immediate attention and resolution.

Some studies have developed forward transport models for multiple layers tissues based on
the diffusion equation or Monte–Carlo (MC) simulation and have used a lookup table (LUT)
method to reconstruct the OPs.9–13 The accuracy of the reconstructed multi-layer OPs, however,
is limited by the sampling density in the precomputed dataset. More densely sampled data sets
increase memory usage and slow computation. The diffuse optical tomography (DOT) technique
allows for obtaining arbitrary OPs in space through the light propagation model and perturbation
theory.14 But challenges still persist in the image reconstruction of DOT, mainly on the improve-
ments of the spatial resolution and separation between the μa and μ 0

s.
15,16 SFD imaging with high

spatial resolution in combination with the DOT reconstruction based on the diffusion model, has
been shown to provide promising depth-resolved information of the turbid media.17 But the pen-
etration depth of the light into tissues is limited at high spatial frequencies and the diffusion
model may not be suitable in the near-field region, SFD-DOT suffers from inversion discomfort
and a problem arises where the reconstructed region of interest is shifted towards the surface.17–19

The latest research reconstructed the three-dimensional (3-D) OPs by fusing micro-CT structural
prior information and DOT for complex silicon and in-vivo imaging.20,21 Providing of the micro-
CT structural prior information can effectively reduce the ill-posedness and non-linearity of the
inverse problem in the DOT reconstruction. However, obtaining the structural prior information
for OPs reconstruction is challenging in most cases.

Time-resolved (TR) imaging can enhance depth resolution and facilitate accurate reconstruc-
tion quantification. In TR measurements, the temporal profiles, which represent the temporal
distributions of reemitted photons and contain refined information at varying depths, are mea-
sured. These profiles can provide more comprehensive information and help distinguish optical
responses from targets at different depths.22 SFD imaging combined with TR measurement can
provide complete and reliable temporal and spatial information for the reconstruction of stratified
OPs. This information is expected to achieve high spatial resolution and improved depth reso-
lution in tissue OPs reconstruction. In recent years, the deep learning (DL) method has been
employed in SFD imaging, which is a model-independent reconstruction method that uses
end-to-end neural network models to reconstruct OPs from diffuse reflectance images.6,23 Its
unique high nonlinear fitting ability and strong adaptability enable strong performance in com-
plex tasks.21 However, the limited measurement information provided by SFD imaging poses a
challenge for improving reconstruction depth resolution. By leveraging sufficient information
from TR-SFD measurement, DL can achieve high-resolution stratified reconstruction of OPs,
effectively mitigating the ill-posedness inherent in DOT inverse problem and solving the problem
of reconstructed region of interest being moved to the surface in SFD imaging reconstruction of
OPs. Compared to other methods for reconstructing OPs mentioned above, DL can also achieve
rapid reconstruction. In addition, simultaneous reconstruction of μa and μ 0

s can solve the aliasing
problem and enable hierarchical reconstruction with different OPs.

In this work, we use a DL network architecture based on U-Net for reconstructing OPs.24

The network implements end-to-end stratified reconstruction of OPs and output 10 images rep-
resenting μa and μ 0

s for five layers. The tissue within a depth of 5 mm is divided into five layers,
with each layer representing a depth of 1 mm. We will process the TR data into two types of data.
One type is the full TR data, while the other type is the featured data extracted from TR data. This
featured data includes two different features: E representing the continuous-wave component, hti
representing the mean time of flight. The final obtained input dataset is diffuse reflectance
images. LUT is the most widely available methods for SFD imaging to reconstruct OPs images.
This study establishes the correlation between organizational OPs and diffuse reflectance data
based on the MC–Hankel transform, forming a database.1 The value of μa ranges from 0.001 to
0.5 mm−1 with an interval of 0.001 mm−1, and for μ 0

s, it ranges from 0.2 to 2.4 mm−1 with an
interval of 0.01 mm−1. We also present the results of LUT and compared their performance
through a series of simulations and phantom validations. Among all datasets, the full TR data
performed the best and accurately distinguished OPs at different depth. In the anti-cross talk
experiment, both hti and full TR data effectively overcame cross talk interference. The phantom
results demonstrate that all datasets can achieve varying levels of contrast OPs reconstruction,
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enabling stratified reconstruction of OPs. And all these results, have better spatial resolution and
accuracy than those obtained by the LUT method.

2 Materials and Methods

2.1 Database Generation and Processing
A major challenge in DL is to create robust data generation workflows that can be applied to
various architectures and imaging scenarios. MC is considered the gold standard for accurately
modeling the propagation of light in tissues.25 Therefore, we utilized the GPU-based MC
eXtreme program to generate TR-SFD data.26 In the program settings, 109 photons were emitted
from a spatially modulated light source with varying spatial frequencies (0.1 mm−1, 0.05 mm−1,
and 0.025 mm−1), a total detection time of 1 ns. The simulated cuboids had dimensions of
60 mm × 60 mm × 30 mm and contained cylinders with radii ranging from 2 to 7 mm or shapes
from the EMNIST dataset.27 The inclusions are randomly distributed at varying depths beneath
the illuminated surface, with illumination and detection areas measuring 60 × 60 mm2 and
50 × 50 mm2, respectively. Referring to previous studies on the determination of the OPs value
for biological tissues in visible light and near-infrared light,28–33 the background OPs of cuboid
range from 0.001 to 0.5 mm−1 with an interval of 0.005 mm−1 for μa, and from 0.5 to 2.2 mm−1

with an interval of 0.05 mm−1 for μ 0
s. The μa values of inclusions fall within the same range as the

background, while μ 0
s between 0.7 and 2 mm−1 with an interval of 0.05 mm−1. These OPs will be

selected randomly for simulation. The diffuse reflectance is obtained through SFD imaging,
which uses three-phase demodulation method to acquire the planar (DC) (0 mm−1) and spatially
modulated (AC) (0.05 mm−1) component at different temporal gates.1

The TR measurement yields a temporal point spread function (TPSF) curve. To assess the
consistency between the simulated and experimentally measured curves, homogeneous tissue
phantoms with the same OPs will be used in the simulation and experimental measurements.
The instrument response function (IRF) is experimentally collected and will be convolved with
the curve obtained from the simulation.34 The simulated and experimentally measured tissue
phantom parameters are as follows: the μa is 0.01 mm−1, the μ 0

s is 1 mm−1, the time resolution
of the simulation experiment will be set to 12.2 ps according to the experimental time resolution.
Both simulations and experiments were illuminated with planar light.

The results presented in Fig. 1 include three normalized intensity curves, the experiment
TPSF curve, IRF curve, and the curve (shown in Fig. 1, “Simulation TPSF”) obtained by con-
volving the MC-simulated data with the IRF. The experiment TPSF curve and IRF are derived
from the results of the system 780 nm measurements. In Fig. 1, all three curves are truncated to
300 temporal gates for comparison purposes. Furthermore, a close match and similar trends were
observed between the convolved curve and the experimental curve, indicating the consistency
between the post-processed TPSF curve from the simulated data and the measured curve.

In this study, we first obtain the featured data (hti and E) of the TPSF curve. E is given by
Eq. (1) and hti is given by Eq. (2)35

Fig. 1 Comparison between experimental TPSF curve and simulated TPSF curve.
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EQ-TARGET;temp:intralink-;e001;114;736E ¼
Z

∞

0

Γdt; (1)

EQ-TARGET;temp:intralink-;e002;114;695hti ¼
R
∞
0 t · Γdt

E
; (2)

where Γ represents a TPSF curve shape as “Experiment TPSF,” as shown in Fig. 1, and t rep-
resents time. Suppose the total number of temporal gates in one measurement is d. The width of
each temporal gate is represented by g, and yk represents the photon intensity at the gate of k.
Equations (1) and (2) are discretized to obtain Eqs. (3) and (4), respectively

EQ-TARGET;temp:intralink-;e003;114;629E ¼
Xd−1
1

ðyk þ ykþ1Þ ·
g
2
; (3)

EQ-TARGET;temp:intralink-;e004;114;575hti ¼ Γð1Þ

Γð0Þ ¼
P

d−1
1 ðyk þ ykþ1Þ · g2 ·

�
k · g − g

2

�
P

d−1
1 ðyk þ ykþ1Þ · g2

: (4)

Additionally, the utilization of full TR dataset enables enhanced spatial resolution and
improved quantitative accuracy in OPs reconstruction.16

DC and AC images are obtained by processing the TPSF curves to get full TR data and
featured data and subsequently demodulating them. Eventually, the diffuse reflectance images
will be obtained.1 For ease of subsequent description, full TR, E, and hti data will be used to
represent the different datasets. To ensure a balanced influence on the loss function, μ 0

s and μa
values are distributed between 0 and 1.36

In summary, three types of data will be input into the network. These three datasets are
trained separately to explore the influence of different types of data on the reconstruction result
of OPs.

2.2 U-Net
A common application of convolutional networks is image classification, while in biomedical
image reconstruction, the focus is on localization and quantification. In other words, each pixel in
an image needs to be assigned a class tag. U-Net, a widely used convolutional neural network
structure.24 It is particularly suitable for scenarios requiring consideration of local information
and high-resolution details. In this study involving the OPs of different regions within images, the
skip connections in U-Net assist the network in capturing local information more effectively. Its
network structure can extract the spatial distribution features of images well and is very suitable
for such image-to-image input and output training tasks. Therefore, the U-Net shown in Fig. 2(a)
is employed in this study to extract depth information from both full TR data and featured
datasets for achieving the task of stratified reconstruction of OPs.

The dataset consists of images with dimensions of 128 × 128 pixels. In one experiment,
before the three-phase demodulation, the data were distributed on different time gates, and there
were three phases respectively, and the data size was 128 × 128 × 3 × d where d is the number of
temporal gates. Then the TR data of each phase are processed, as shown in Fig. 2(d), all temporal
gates are divided into five temporal segments, and the values of each segment are directly
summed, then the data obtained is 128 × 128 × 3 × 5. Subsequently, a three-phase demodulation
operation was performed for each time segment, and the demodulated data included DC and AC
data. At this point, the data obtained is 128 × 128 × 2 × 5, which is 128 × 128 × 10. Therefore,
the shape of the full TR dataset was 4676 × 128 × 128 × 10. As for E and hti, and it is when the
data size is 128 × 128 × 3 × d, using the Eq. (3) and (4) to obtain the featured data, the size
becomes 128 × 128 × 3 × 1, and then the three-phase demodulation operation is carried out, the
data obtained is 128 × 128 × 2 × 1, which is 128 × 128 × 2. Therefore, the input of featured data
size is 4676 × 128 × 128 × 2. The above 2 and 10 correspond to the number of channels input by
the network. The output includes OPs of five tissue layers within a depth of 5 mm. Each layer has
a thickness of 1 mm and contains one μ 0

s and one μa image. The image resolution is 128 × 128,
making the size of the output data 4676 × 128 × 128 × 10. 10 is corresponding to the network’s
last layer 1 × 1 convolution of the size of the output channel.
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The time dimension information is disassembled operation by operation to obtain detailed
feature maps, and the maximum pooling operation eliminates redundant information from the
convolution, allowing for the extraction of spatial information through the core flow of the net-
work. We have avoided information loss caused by clipping upper feature maps during skip
connections by processing input and output directly at the same picture resolution. The tradi-
tional skip join converts the data from the time dimension to the spatial dimension by clipping the
under-sampled feature map to match the size of the deep feature map.24 However, in our U-Net
network, we convert diffuse reflection OPs images data from the time dimension to the spatial
dimension in skip connections without any changes in image size. That is, after each up-
sampling, the image size is changed to the same size as the image before each pooling operation
in the feature extraction operation, and Fig. 2(b) shows one of the skip connections.

The simulated and phantom datasets were divided into a ratio of 8:2. For training and testing
purposes, the data were split in a ratio of 6:4 to improve network performance and prevent over-
fitting. To optimize the final saved network model while reducing training time, the training set
was randomly shuffled and a maximum Epoch value was used. If the maximum Epoch value was
reached without any further decrease in loss, the training would be stopped and the model saved.
Keras with a Tensorflow backend was utilized for training the network, using an Adam optimizer
with a learning rate of 0.001 and the batch size is 12. The loss function employed was mean
squared error. As shown in Fig. 2(c), throughout the training process, the results obtained from
training with these three datasets are convergent, and the trends of the validation set loss and
training set loss curves are essentially consistent. At the same time, the similarity in loss values
suggests that the model exhibits good robustness to different datasets. GPU acceleration tech-
niques were utilized during the training process.

Fig. 2 Network architecture: (a) the U-Net network structure used in this study and (b) the sche-
matic of each skip connection. (c) Loss-Epoch curve, its horizontal axis represents every 5 Epochs
by taking a loss value. (d) Temporal profile was divided into equally about five time slices.
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2.3 Imaging System
The system schematic is shown in Fig. 3. Two digital micromirror devices (DMD) enabling
structural light illumination for SFD imaging and single pixel (SP) compression encoding
for diffuse reflection signal. DMD-1 and DMD-2 are respectively housed in DLP-1 and
DLP-2. The light passes through a beam homogenizer and shaper before being transmitted onto
the DMD by a DLP projector, and subsequently reflected by the projection lens.

The system utilizes a software-controlled multi-channel picosecond semiconductor laser
driver (PDL 828 “Sepia II,” PicoQuant GmbH, Germany) to drive two laser heads (LDH-
P-780, LDH-P-830, PicoQuant GmbH, Germany). The maximum operating frequency of the
system is 80 MHz. In serial mode, the two lasers sequentially excite pulsed light with a repetition
rate of 40 MHz. With a repetition period of 25 ns, laser pulses at wavelengths of 780 nm and
830 nm are generated in sequence. When excited simultaneously at a repetition frequency of
40 MHz, successful separation of multi-wavelength signals can be achieved. Two wavelengths
are combined into one beam and directed to the spatial modulator (E4500 MKII, EKB
Technologies, Israel) of DMD-1 for spatial encoding. The encoded light generates a sinusoidal
stripe pattern with 256-level, which is projected onto the sample surface for measurement.

During acquisition, diffuse light from the object passes through a lens and undergoes spatial
modulation by DMD-2. In this study, the DMD-2 is employed to generate a sequence of sampled
observation matrices required for SP imaging. Considering that it is not feasible for DMD-2 to
directly upload negative number codes, the two-dimensional observation matrix will be split into
positive and negative parts in actual measurement.17 The SFD reflectance images was measured
using single-pixel imaging based on two-dimensional discrete cosine transform (DCT), which
spatially compressed the pixel-array images using the sampling patterns composed of the DCT
kernel matrices and recovered the images by applying an inverse DCT to the DCT coefficients
acquired from the SP detector.37 The DCT sampling template is partially shown in Fig. 3. In order
to reduce the number of sampling patterns, the images are recovered by a selective acquisition of
DCT coefficients concentrated in DC component and ACmodulation frequency that fully utilizes
the sparsity of sine harmonic in cosine base. Each DCT coefficient is obtained using the cor-
responding DCT kernel matrix. The number of pixels of the recovered image is 128 × 128.
Tissue optical imaging has low-pass filtering characteristics, and the information of light scat-
tered by photons entering the tissue is filtered to the low-frequency band, which contains less

Fig. 3 Schematic of TR-SFD imaging system.
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high-frequency information. Therefore, using the sampling of DCT at low frequency can obtain
the measurement results beneficial to our study.

In this study, the integrated light signal is focused into a multimode fiber using achromatic
twin lenses and detected by a fiber-coupled avalanche photodiode (SPCM-AQRH-13-FC,
Excelitas Technologies, Canada) for single photon counting. The electrical pulse output of the
detector is subsequently directed to the time-correlated single photon counting (TCSPC) module
for precise TR data collection. Additionally, by combining the synchronization signal of the laser
driver with the trigger signal of the spatial light modulator, signals of different wavelengths and
acquisition masks can be separated accordingly. The combination of SFD and TCSPC imaging
represents a powerful TR measurement technique that offers wide field-of-view, high sensitivity,
and large dynamic range capabilities, thereby providing accurate photon transport information
for generating high-quality tomographic images.

3 Results
To scientifically evaluate network performance in OPs reconstruction, three evaluation metrics
will be selected: normalized mean absolute error (NMAE), average optical property (AOP) where
a lower value indicates a smaller reconstruction error,6 and quantitativeness ratio (QR) where a
value approaching 1 indicates smaller error. The simulation and phantom results from all test sets
will be presented, followed by a comparison and analysis of the effects that these three data have
on OPs reconstruction. In the following, NMAE1 and NMAE2 will be used to represent the
NMAE of reconstructed μa and μ 0

s. QR1 and QR2 are also the same. The QR is given by the
following equation:

EQ-TARGET;temp:intralink-;e005;117;463QR ¼ maxðμpreÞ∕maxðμtruÞ × 100%; (5)

where μpre represent the reconstruction values of the μa or μ 0
s, and μtru is the true OPs value.

Figure 4 illustrates a 3-D distribution map, based on which simulated and phantom data for
OPs reconstruction can be obtained. The diameter of both cylinders is 10 mm, the distance
between their centers is 22 mm, and they are both located at the distance of 1 mm from the
illumination and detection surface (the upper surface). The middle of the figure represents the
side view, while the far right depicts the top view.

3.1 Simulations
In simulation results, using the 3-D map in Fig. 4, the spatial frequency is set to 0.05 mm−1, with
OPs configured at a background μa value of 0.01 mm−1 and a μ 0

s value of 1 mm−1. Additionally,
there are inclusions (the right cylinder and left cylinder) with μa values of 0.015 mm−1 and
0.02 mm−1, along with μ 0

s values of 1.5 mm−1 and 2 mm−1.
The reconstruction results of the simulated data in Fig. 5 validate the effectiveness of the

network model in accurately reconstructing OPs within a 5 mm margin. However, when using
featured data E, the width of the inclusions in each layer of μa is either too narrow or too wide (in
layer 2), compared to their accurate size, and the reconstructed results were larger than the truth
values. The size of the inclusions can be accurately identified using featured data hti. However, in
layer 1, some values were inaccurately assigned to positions where the inclusions do not exist
using E and hti. The reason mainly lies in the insufficiency of the information content in the
featured data sets.17 Compared to the reconstruction result of the featured data hti and E, the

Fig. 4 Sketch of the tissue phantom.
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reconstruction result of the full TR data eliminates artifacts and improves the accuracy of recon-
structing different layers. Specifically, for μ 0

s, all three datasets can be reconstructed with high
accuracy, in layer 2, the results using featured data hti are more accurate in determining inclusion
size. The further analysis of the profile diagram along the transverse section [Fig. 5(b)] reveals
that in the reconstruction results of different layers, the full TR data yield the most favorable
outcome. The largest error in reconstruction accuracy is found in E.

Reconstruction results obtained through LUT are presented in Fig. 5(c). The truth values
represent the averaging of OPs values within 5 mm. The results demonstrate the efficacy of
LUT for topological reconstruction of OPs, while the stratified reconstruction of OPs cannot
be achieved. The above results were further verified based on the evaluation index in
Fig. 5(d). Specifically, the training results of using three datasets show that the NMAE1,
NMAE2, and AOP of E are the largest, and QR1 is the farthest from 1. The utilization of full
TR yields the best resolution results. These results are expected because the dataset of full TR
contains more information that can help distinguish OPs at different depths. However, since the
processing of E ignores the advantage brought by TR, it performs the worst in terms of the
reconstruction task among the three datasets. The processing method of hti only utilizes partial
information from TR, therefore, the reconstruction results are not as good as those using full TR.
Compared with LUT, the reconstruction error of the three datasets is smaller and the resolution is
higher.

Fig. 5 Results of the reconstruction of the two cylinders: (a) results of the U-Net. (b) Line-profiles of
horizontal cross-sections. (c) Results of LUT. (d) The evaluation index of the reconstructed image,
line graph corresponds to the right coordinate.
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The simulation experiments also validated the effectiveness of using three datasets in reduc-
ing cross talk influence on reconstructed μa and μ 0

s. The distribution of inclusions and the OPs of
background are the same as those in Fig. 4, the spatial frequency is set to 0.05 mm−1, with OPs
set at a background μa value of 0.01 mm−1 and a μ 0

s value of 1 mm−1, along with inclusions (the
right cylinder and left cylinder) having μa values of 0.01 mm−1 and 0.02 mm−1, and μ 0

s values of
2 mm−1 and 1 mm−1, respectively. The U-Net demonstrates remarkable efficacy in reducing
impact of cross talk shown in Fig. 6(a) compared with LUT. Notably, the reconstruction results
using the full TR data are almost unaffected by cross talk, while other featured data are influ-
enced to varying degrees by cross talk [Fig. 6(a)].

As illustrated in Fig. 6(b), reconstructions of μa and using E exhibit pronounced cross talk.
Specifically, the reconstruction of μ 0

s with E and full TR exhibits inaccuracies in determining the
size of the inclusions. While the utilization of full TR effectively mitigates cross talk interference
in layers 2 and 3, it remains challenging to eliminate cross talk in layers 4 and 5. Compared to
using the results of full TR, utilizing the results of hti can also alleviate the effects of cross talk to
some extent. However, when reconstructing deeper layers (layers 4 and 5) of μa, it is also difficult
to eliminate the effects of cross talk completely.

The results of the LUT are shown in Fig. 6(c). Clearly, the LUT has a poorer ability to
eliminate interference. Furthermore, in Fig. 6(d), the evaluation metrics reveal that employing
featured data extracted from TR data leads to increased reconstruction errors (higher NMAE1

Fig. 6 Verification of the reconstruction of anti-cross talk: (a) ground truth and results of the U-Net.
(b) Line-profiles of horizontal cross-sections. (c) Results of LUT. (d) The evaluation index of the
reconstructed result, line graph corresponds to the right coordinate.
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and NMAE2 values) compared to the use of full TR data. The LUT reconstruction results per-
form the worst.

3.2 Phantom Experiments
The presented results from the liquid phantom experiment, conducted at a measurement wave-
length of 780 nm, and employing a spatial frequency of 0.05 mm−1, are depicted in Fig. 7.
Tissue-like liquid phantoms were fabricated for validation, using India ink as absorber, titanium
dioxide (TiO2) as scatterer. Notably, the background of the phantom is characterized by μa value
of 0.01 mm−1 and μ 0

s value of 1 mm−1. The inclusions within the phantom exhibit differing μa
values of 0.015 mm−1 and 0.02 mm−1, coupled with μ 0

s values of 1.5 mm−1 and 2 mm−1, for the
right and left cylindrical inclusions respectively. The homogenous reference phantom parameters
in the experiment are: μa value of 0.01 mm−1 and μ 0

s value of 1 mm−1. It is worth emphasizing
that two horizontal cylinders, each with a diameter of 10 mm, were meticulously positioned at a
distance of 1 mm from the surface of illumination, as delineated in Fig. 4. Subsequently, these
cylinders underwent measurement via the TR-SFD imaging system shown in Sec. 2.3.

The reconstruction results of full TR data demonstrate its superior efficacy in distinguishing
between OPs across various layers, as elegantly showcased in Fig. 7(b). This superiority pri-
marily stems from the rich temporal information encapsulated within TR data, inherently cor-
responding to diverse depth distributions. Previous scholarly endeavors have validated the

Fig. 7 Verification of the phantom reconstruction: (a) ground truth and results of the U-Net.
(b) Line-profiles of horizontal cross-sections. (c) Results of LUT. (d) The evaluation index of the
reconstructed result, line graph corresponds to the right coordinate.
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favorable outcomes attained through the utilization of full TR data, eclipsing the efficacy of
featured data types.16 Moreover, in different contrast reconstruction results, DL manifests a
remarkable capacity for discriminating between the μ 0

s in contrast to the μa.
Consequently, compared with the reconstruction results of simulated data, the reconstruction

results of phantom data have a higher incidence of artifacts. As illustrated in Figs. 5 and 7,
through the analysis of the results, it was observed that the background of the reconstructed
phantoms contains considerable amounts of artifacts, particularly evident in the outcomes
derived from the LUT method. This phenomenon is also present in the results obtained using
the featured dataset. However, when utilizing the full TR dataset, the occurrence of artifacts is
almost negligible. It is also noted that there is a deviation between the true and reconstructed
values, particularly in the layer 1 of reconstruction when utilizing featured data. The reason
mainly lies in the insufficiency of the information content in the featured datasets.

We also measured another liquid phantom using the imaging system shown in Fig. 3. This
phantom also utilized the structure shown in Fig. 4, the background of OPs set at a μa value of
0.01 mm−1 and a μ 0

s value of 1 mm−1, along with inclusions (the right cylinder and left cylinder)
having μa values of 0.01 mm−1 and 0.02 mm−1, and μ 0

s values of 2 mm−1 and 1 mm−1 respec-
tively. The reconstruction results are shown in Fig. 8 for a measurement wavelength of 780 nm
and a spatial frequency of 0.05 mm−1. The reconstruction results show that, consistent with the
performance of the simulation experiments, the reconstruction results of the model trained with

Fig. 8 Verification of anti-cross talk in phantom reconstruction: (a) ground truth and results of the
U-Net. (b) Line-profiles of horizontal cross-sections. (c) Results of LUT. (d) The evaluation index of
the reconstructed result, line graph corresponds to the right coordinate.
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full TR at different layers outperform the results of featured data. The errors of the reconstructed
OPs become larger as the depth increases in Fig. 8(b), indicating that the model trained using full
TR exhibits different sensitivities to OPs at different depths.

Comparison of the results of the two featured data reveals that the reconstruction results
using E do not differ much numerically from layer to layer, whereas the results of hti vary con-
siderably with depth. The results of E show cross talk, whereas this phenomenon is almost absent
in hti, which also shows that the use of hti does ameliorate the effect of cross talk compared with
using E. However, the overall results of hti show greater inhomogeneity in the background loca-
tions compared to full TR, which may be caused by the different amount of information carried
by the dataset itself. Compared with the reconstruction results of the simulation phantom, the
reconstruction errors of the measurement phantom and the background are large. And in
Fig. 8(c), the LUT results are also affected by cross talk, and the edge position of the variant
is not clear enough. The evaluation metrics of the reconstruction results of different data types are
also deteriorated accordingly in Fig. 8(d).

4 Discussions
The inherent limitations of the traditional methodology have been highlighted for OPs recon-
struction, particularly in regard to its depth and precision. In stark contrast, DL stands as a model-
independent methodology that is impervious to physical approximations, and excels in the attain-
ment of high-resolution and high-precision OPs reconstructions characterized by robustness. The
results of this study demonstrate that DL effectively utilizes the temporal and spatial information
provided by the combination of SFD and TR, resulting in clearer and more realistic reconstruc-
tions compared to the method LUT. Comparative analysis of stratified OPs reconstruction was
conducted employing two distinct datasets: full TR data and featured data. The results derived
from full TR data revealed better depth resolution, attributed to its containing of a majority of
photon transmission information. In particular, the results for the full TR data show better results
for both the μa and μ 0

s reconstructions. While single featured data may exhibit relatively inferior
quantization and depth resolution, it confers the advantage of substantially reducing input dimen-
sionality for the DL. The traditional LUT method does not have the ability of stratified OPs
reconstruction. Moreover, its reconstruction accuracy is also the lowest in this study.

The findings of this study encompass the reconstruction of OPs characterized by diverse
contrasts and depths. Notably, the OPs of inclusions embedded within actual tissue are not con-
stant across different depths. Therefore, datasets simulating the gradual variations in OPs at vari-
ous depths were incorporated to emulate the OPs distribution within real tissue. These
reconstruction results are vividly presented in Fig. 9, wherein two inclusions are positioned
at a 1 mm depth from the illumination surface. In Fig. 9, the depth of 5 mm from the detection
surface is subdivided into 10 discrete layers for the assignment of OPs. Subsequently, the OPs
within each 1 mm layer are summed and averaged to obtain standard values. The background
medium in this context is characterized by μa value of 0.056 mm−1 and μ 0

s value of 0.9 mm−1.
The specific values for “k” and “3” are as follows: μa: 0.1008, 0.1088, 0.1168, 0.1248, 0.1328,
0.1408, 0.1488, and 0.056 mm−1; and μ 0

s :1.8, 1.84, 1.88, 1.92, 1.96, 2, 2.04, and 0.9 mm−1

respectively, spanning a total depth of 4 mm and encompassing eight unique OPs for each depth
level. The standard OPs values for “k” and “3” are: 0.1048, 0.1208, 0.1368, and 0.1024 mm−1

for μa and 1.82, 1.9, 1.98, 1.47 mm−1 for μ 0
s. The network model showcased its robustness in

reconstructing OPs with varying values at different depths (as depicted in Fig. 9). The results
obtained by the LUT method are displayed in Fig. 9(c).

The OPs reconstruction results for vertical cross-sections at y ¼ 15 mm, x ¼ 35 mm are
presented in Fig. 9(d). The red line represents the ground truth values, which were established
by dividing different layers into ten segments with thickness of 5 mm, as shown in Fig. 9.
Notably, the reconstruction results for μ 0

s exhibit closer concordance with the true values, whereas
μa demonstrates increasing errors with depth. This discrepancy can be attributed to the contrast
factor, as μ 0

s exhibits a larger contrast value compared to μa. However, the model adeptly mit-
igates aliasing effects in depth-related OPs, and the variances in reconstruction values across
different layers underscore the capability of the network in OPs reconstruction at varying depths,
notwithstanding the relatively diminished accuracy in μa at deeper layers. In summation, among
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all the results, the reconstructions stemming from full TR data consistently exhibit the most
exceptional performance.

The research has several limitations. When compared to simulation phantom results, the
phantom results exhibit a higher number of reconstruction artifacts, except for cases involving
full TR data. Furthermore, despite the simulation program encompassing experiments involving
a diverse range of shapes, including cylinders, numbers, and letters, we were unable to obtain a
large number of phantom data due to the time-consuming nature of equipment data acquisition. It
has to be admitted that from the reconstruction results, our current model is flawed in that we are
unable to completely accurately reconstruct the OPs of homogeneous layers that do not contain
inclusions, which is almost reflected in all the reconstruction results. To address this phenome-
non, our subsequent work needs to further improve the accuracy of the model in reconstructing
the OPs of different layers, including improving the structure of the network and increasing the
proportion of experimental data. In future research, our focus will be on enhancing the accuracy
of experimental data and devising a sophisticated network architecture to achieve high-quality
reconstructions of OPs. Ultimately, the aim is to improve the depth resolution of the recon-
structed OPs as well as to optimize the reconstruction accuracy.

5 Conclusions
This study employed TR measurements in SFD imaging and effectively applied DL to achieve
high-resolution stratified reconstruction of OPs within a 5 mm depth compared with LUT,
thereby eliminating aliasing issues associated with μa and μ 0

s during depth reconstruction.
Moreover, evaluation metrics further confirmed that DL-based OPs reconstruction showed
reduced errors and improved accuracy when using full TR data compared to featured data.
In conclusion, the application of DL in TR-SFD imaging enhances resolution and overall accu-
racy in stratified OPs reconstruction.
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Fig. 9 OPs reconstruction with increasing values: (a) results of the U-Net. (b) Simulation model
sketch. (c) Results of LUT. (d) z line-profiles of vertical cross-sections at y ¼ 15 mm, x ¼ 35 mm.
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