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Abstract

Significance: Fast and reliable detection of infectious SARS-CoV-2 virus loads is an important
issue. Fluorescence spectroscopy is a sensitive tool to do so in clean environments. This pre-
sumes a comprehensive knowledge of fluorescence data.

Aim:We aim at providing fully featured information on wavelength and time-dependent data of
the fluorescence of the SARS-CoV-2 spike protein S1 subunit, its receptor-binding domain
(RBD), and the human angiotensin-converting enzyme 2, especially with respect to possible
optical detection schemes.

Approach: Spectrally resolved excitation-emission maps of the involved proteins and measure-
ments of fluorescence lifetimes were recorded for excitations from 220 to 295 nm. The fluo-
rescence decay times were extracted by using a biexponential kinetic approach. The binding
process in the SARS-CoV-2 RBD was likewise examined for spectroscopic changes.

Results: Distinct spectral features for each protein are pointed out in relevant spectra extracted
from the excitation-emission maps. We also identify minor spectroscopic changes under the
binding process. The decay times in the biexponential model are found to be ð2.0� 0.1Þ ns and
ð8.6� 1.4Þ ns.
Conclusions: Specific material data serve as an important background information for the design
of optical detection and testing methods for SARS-CoV-2 loaded media.
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1 Introduction

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus,
which started in early 20201 and which was declared a pandemic by the World Health
Organization in March 2020,2 has promoted intensive research on human coronaviruses,3 which
are a global public health threat.4 A major tool in monitoring and controlling the spread of the
viruses is fast, accurate, and sensitive detection of the virus or the infection.5 In the case of
SARS-CoV-2, a significant number of research articles on sampling techniques, nanobiosensor
technologies, and antigen testing have been published and are reviewed, e.g., in Refs. 6–9. An
overview on photonic approaches for detecting virus loads and infections by optical means is
given in Ref. 10. The authors summarize that the diversity of viruses and the unique microbiomes
in humans are still a challenge for spectroscopic techniques such as Fourier-transform infrared
spectroscopy, Raman, and fluorescence spectroscopy, in terms of identifying one specific single
virus in their spectra. Among those methods, laser-induced fluorescence (LIF) is a widely used
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tool to investigate proteins.11–14 Elastic light scattering and fluorescence have been used to
observe virus particles and virus-like particles.15–17 Compared to Raman spectroscopy, the
LIF technique yields higher signal intensities and has been applied to detect and classify viruses
with excitation in the near-ultraviolet (near-UV).18,19 As pointed out in Ref. 20, additional
orthogonal information on fluorescence characteristics can be retrieved not only from two-
dimensional, spectral signatures (excitation-emission maps) but also from fluorescence decay
times. Such distinct features are of high importance for a reliable sample classification.21

In this work, high-resolution fluorescence data of the proteins involved in the SARS-CoV-2
binding process, namely the S1 part of the spike protein of SARS-CoV-2, the receptor-binding
domain thereof, and human angiotensin-converting enzyme 2 (hACE2) are reported as well as
results on their fluorescence decay times. Spectral data and fluorescence decay times of the
investigated proteins are compared and discussed as candidates for classification features.

2 Experimental Setup

The proteins used for this study are SARS-CoV-2 S1 RBD (receptor binding domain) (S1 RBD
domain with His-Tag, M ¼ 27.5 kDa), SARS-CoV-2 S1 (S1 domain with His-tag, 77.1 kDa),
and hACE2 (ECD domain, tag-free processes M ¼ 80 kDa). The proteins were produced by
trenzyme GmbH using a transient production system in HEK293 suspension cells followed
by purification either via the encoded His-Tag by IMAC (RBD and S1 protein) or by ion-
exchange chromatography (hACE2). After purification, the buffer of the purified proteins was
exchanged to Dulbecco’s phosphate-buffered saline (DPBS), (pH ¼ 7.1 − 7.5, Sigma-Aldrich)
and the proteins were analyzed. The final concentrations of the solutions were 22.6 μg∕ml in the
case of the hACE2, 7.8 μg∕ml in the RBD case, and 22.2 μg∕ml for the full-length S1 protein.
This ensures comparable molar concentrations of the proteins for the analysis.

The samples were investigated in UV-transparent cuvettes (fused silica glass, Hellma 117F),
with a light travel path of 10 mm in the spectrometer.

An FS5 fluorescence spectrometer from Edinburgh Instruments was used to obtain full fluo-
rescence signatures of the proteins. The spectrometer uses a 90 deg setup and a variable wave-
length excitation. Additionally, it allows for time-correlated single-photon measurements of the
samples. The fluorescence maps contain data for excitation wavelengths ranging from 220 to
300 nm and emissions from 230 to 500 nm. Time-dependent fluorescence signals have been
recorded at excitation at 260 nm (wavelength of the short pulse light emitting diode module),
with 0.9 ns excitation pulse duration and the respective optimal emission wavelengths.

3 Results and Discussion

3.1 LIF Spectral Signatures of the hACE2 Enzyme and the S1 Protein

As an overview, the emission maps of the SARS-CoV-2 S1 spike protein, RBD the thereof, and
the hACE2 are shown in Fig. 1. The resolution is 5 nm for the excitation wavelength axis and
3 nm for the emission wavelength axis. The diagonal trace of peaks, at þ3430 cm−1 from the
excitation wavelengths λex are assigned to be the Raman signals of H2O. The narrow peaks in
the lower right corner of the graphs are assigned to be the second-order diffraction maximum.
Each map consists of two major maxima: the first one located at an excitation wavelength λex ¼
220 nm with maximum emission at λem ¼ 325 nm for S1 and hACE2 and at λem ¼ 320 nm for
the receptor-binding domain. The second major maximum appears at an excitation wavelength
of λex ¼ 280 nm showing a maximum emission at λem ¼ 325 nm for all three proteins.

Figure 2 displays the normalized fluorescence response of the three samples in detail at exci-
tation wavelengths λ ¼ 220 nm and λex ¼ 280 nm. For clearness, the emission spectra obtained
at λex ¼ 280 nm have been adjusted by the background signal from a pure PBS sample. The
signals at λex ¼ 220 nm clearly show the Raman signal of the solvent as well as the second-order
diffraction maximum. The shown signals are single measurements with a noise level of less than
1% of the maximum peak intensity for the λex ¼ 220 nm case and less than 5% for the λex ¼
280 nm case due to lower signal intensities. The intensities of the respective signals are indicated
by the Raman signal intensities and are more explicit in Fig. 3. The fluorescence peaks are
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Fig. 2 Detailed, normalized fluorescence signals of the three proteins at (a) λex ¼ 220 nm and
(b) λex ¼ 280 nm.
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Fig. 3 Fluorescence spectra of bound protein complexes and their single contributions: (a) recep-
tor-binding domain of the S1 protein, (b) the full S1 protein, and (c) the differences between the
added single contributions and the bound complex for the RBD and the S1 case.
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Fig. 1 Excitation-emission fluorescence map for (a) hACE2, (b) the receptor-binding domain, and
(c) SARS-CoV-2 S1. Data are available; see Code, Data, and Materials Availability.
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located between 290 and 410 nm, which indicates that the excitation light mainly probes
tryptophan and tyrosine sites inside the proteins.11 At both respective excitation wavelengths,
the three proteins show significantly different fluorescence responses. This is manifested
in differently shaped peaks, which in turn give full width half maximum (FWHM) values of
the peaks from 55 nm for hACE2 and the receptor-binding domain to 60 nm for the S1 protein,
both at an excitation wavelength of λex ¼ 280 nm. The same pattern can be seen at
λex ¼ 220 nm, with slightly broader values for FWHM: 58 nm for hACE2 and RBD and
63 nm for the S1 protein. These slightly broader spectra may emerge from an excited hot
(i.e., vibrationally excited) state with a broad emission spectrum due to the lower excitation
wavelength.

Besides the pure protein signals, the bound complex of the virus with its receptor is of interest
for a possible virus detection. To obtain a protein–enzyme complex solution we combined both
the solution of the S1 full-length protein and the RBD protein solution with the hACE2 solution:
1 ml of each solution with the respective concentrations noted above to ensure equimolarity of
both substances in the combined solution. Immediately following the combination, the mixture
was stirred to ensure a fully mixed solution. From the receptor binding affinity of about 1 to
40 nM22 and the concentration of the S1 protein and the RBD protein analytes of about
3.0 · 10−7 Mol

l
one obtains a half-life of the binding process in the range of τ ≈ 3 to 35 s.

Thus, the full binding of all hACE2 receptors to the virus proteins in our solution is ensured
within 5 min, when the spectra were taken. Figures 3(a) and 3(b) show the fluorescence results of
the bound complexes at an excitation wavelength of 280 nm. The signals have been adjusted by
the background signal from a pure PBS sample and for simplicity, the normalized signals are
shown. For comparison, the single contributions are shown too. We compared the signal of the
bound complexes with the sum of the signals of the single contributions (black dashed lines in
the spectra). The difference spectra between the summed signals and the bound complexes are
shown in Fig. 3(c). Here, the significant change of about −1% of the signal at 312 nm is due to
differences in the H2O Raman signal. The average noise is about 0.17% and from the spectral
resolution, we expect the relevant feature to be at 350 to 400 nm: a slight change in the slopes of
the peak is found, indicating a possible conformation change under the binding process, espe-
cially in the S1 case.

3.2 Fluorescence Decay Times

Additionally, the fluorescence decay of the base solutions of the hACE2, the RBD protein, and
the S1 protein as well as of their bound complex solutions were measured at an excitation of
260 nm as a time-correlated single-photon counting signal, shown in Fig. 4. The fluorescence
signals can be described by a double exponential decay. In contrast to other related multiexpo-
nential descriptions such as the identification of the two lifetimes in tryptophan23 or the detection
of different fluorescent components,24 found lifetimes are not necessarily dedicated to specific
physical processes of the protein or its constituents, but of descriptive nature. However, structural
rearrangements of the proteins during the binding process may lead to changes in the observed
decay constants. Here, the fits were performed as global fits, where all signals are taken into
account at once and the fit for the bound complexes is fitted as a sum of the single contributions.
The fit function is a Gaussian-shaped excitation function convolved with a bi-exponential decay
to describe the fluorescence decay. The fit routine was performed with Origin Pro 2021 using a
Levenberg–Marquardt iteration and restricting the parameters only to be non-negative. Results of
the fits are summarized in Table 1, the error noted is the error due to the fit routine. For both
global fits, the coefficient of determination is R2 ¼ 0.99. The fit analysis for the decays yields
that the two-time constants in the exponential decay, τ1 and τ2, are only slightly different for
all proteins and bound protein complexes. The recorded signals consist of a fast and slow decay
with τ1 ≈ ð2.0� 0.1Þ and τ2 ≈ ð8.6� 1.4Þ ns on average for all proteins. Since the proteins
contain multiple sites of tryptophan and tyrosine and the fluorescence is a mixture of the
single fluorescing sites, it is difficult to connect the two lifetimes with specific single fluoro-
phores. The average lifetimes for all proteins vary also only slightly and are on average
τavg ≈ ð5.9� 0.9Þ ns.
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4 Summary

We have presented fluorescence data for the S1 spike protein of the SARS-CoV-2, its receptor-
binding domain, and its most important receptor in human organisms, hACE2. The spectra
show distinguishable features such as slight, but clear shifts in the shapes of the LIF signatures
for all proteins, e.g., manifested in different FWHMs of the respective fluorescence peaks.
Additionally, the signals vary with the excitation wavelength and show for example a clear
blueshift of about 5 nm for the receptor-binding domain at λex ¼ 220 nm in contrast to
λex ¼ 280 nm. Assuming a biexponential fluorescence lifetime model, the fluorescence decay
times have been determined to be τ1 ≈ ð2.0� 0.1Þ and τ2 ≈ ð8.6� 1.4Þ ns on average for all
proteins. The average lifetimes are determined to be τavg ≈ ð5.9� 0.9Þ ns. For further insight,
the limitations are the signal-to-noise ratios and the maximum possible integration times in order
to avoid photolytic decomposition of the proteins in the UV. The data are publicly available for
external R&D as described in Code, Data, and Materials Availability.

Table 1 Results of the double exponential fit to the different protein time-corre-
lated single-photon signals at an excitation wavelength of 260 nm. The errors are
the standard errors obtained by the fit routine.

τ1 (ns) τ2 (ns) τavg (ns)

hACE2 1.9� 0.1 7.5� 1.4 5.5� 1.0

RBD 1.9� 0.1 11.4� 3.8 6.2� 2.2

S1 2.1� 0.1 6.9� 1.5 6.2� 1.3
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Fig. 4 Time correlated single photon counting signals for the different solutions and their respec-
tive double exponential decay fit and the residuals: (a) for the hACE protein, (b) for the combination
of hACE with RBD and S1, and (c) for the spike protein parts S1 and RBD. (d) A summary of all
measured traces for comparison.
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