REVIEW

Signal-carrying speckle in optical coherence
tomography: a methodological review
on biomedical applications

Vania B. Silva,*® Danilo Andrade De Jesus®,”* Stefan Klein®,’
Theo van Walsum,” Jodo Cardoso,* Luisa Sanchez Brea®,” and
Pedro G. Vazo?

aUniversity of Coimbra, Laboratory for Instrumentation, Biomedical Engineering

and Radiation Physics (LIBPhys-UC), Department of Physics, Coimbra, Portugal
®University Medical Center Rotterdam, Department of Radiology and Nuclear Medicine,

Erasmus MC, Biomedical Imaging Group Rotterdam, Rotterdam, The Netherlands

Abstract

Significance: Speckle has historically been considered a source of noise in coherent light im-
aging. However, a number of works in optical coherence tomography (OCT) imaging have
shown that speckle patterns may contain relevant information regarding subresolution and struc-
tural properties of the tissues from which it is originated.

Aim: The objective of this work is to provide a comprehensive overview of the methods devel-
oped for retrieving speckle information in biomedical OCT applications.

Approach: PubMed and Scopus databases were used to perform a systematic review on studies
published until December 9, 2021. From 146 screened studies, 40 were eligible for this review.

Results: The studies were clustered according to the nature of their analysis, namely static or
dynamic, and all features were described and analyzed. The results show that features retrieved
from speckle can be used successfully in different applications, such as classification and seg-
mentation. However, the results also show that speckle analysis is highly application-dependant,
and the best approach varies between applications.

Conclusions: Several of the reviewed analyses were only performed in a theoretical context or
using phantoms, showing that signal-carrying speckle analysis in OCT imaging is still in its early
stage, and further work is needed to validate its applicability and reproducibility in a clinical context.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JB0O.27.3.030901]

Keywords: speckle; image processing; image analysis; imaging coherence; tomography.

Paper 210256 VRR received Aug. 18, 2021; accepted for publication Feb. 22, 2022; published
online Mar. 14, 2022.

1 Introduction

Optical coherence tomography (OCT) is an optical imaging modality based on low-coherence
interferometry. It is a noninvasive technique that provides in vivo cross-sectional images of
microscopic structures with high spatial and temporal resolutions, making it an appealing tech-
nique for multiple areas in preclinical and clinical research.'

In OCT imaging, the tissue is scanned by an optical beam, and most of the light is either
refracted or scattered. The incident light travels through different optical paths, with different
lengths, until it reaches the image plane. The light intensity at each point of the plane results from
destructive/constructive interference of all light waves at that single point. This phenomenon,
shown in Fig. 1, creates granular patterns, known as speckle patterns. Speckle appears
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Fig. 1 Process of speckle formation in OCT. Speckle patterns result from coherent superposition
of multiple backscattered and multiple forwardscattering waves from particles in the sample
volume.

everywhere when an optically rough surface is illuminated with coherent light, making it
common to all coherent imaging modalities.?

Schmitt et al.> were among the first to discuss the OCT speckle origin, distinguishing
between two types of mechanisms that cause the formation of speckle patterns on a cross-
sectional image: multiple backscattering of the light beam, and delays caused by multiple for-
ward scattering. Speckle patterns are then influenced by different parameters, such as the proper-
ties of the light source, the propagating beam, the aperture of the detector, and the inner properties
and structural organization of the tissues.*> Since the sample properties have an influence on
speckle formation, it may contain relevant information regarding subresolution and structural
properties of the tissues from which it originated.® In fact, in the work presented by Schmitt
et al.,’ speckle patterns in OCT are already mentioned as having a dual role, both as a source
of noise, signal-degrading speckle, and as a carrier of information, signal-carrying speckle. This
indicates that, besides the granular noise observed in OCT raw images, the imaged speckle also
carries information and this information may be used to characterize the imaged tissue.”®

A large number of works have been focused on speckle as a source of noise in OCT imaging, as
it reduces the image quality and contrast, making boundaries between tissues less distinguishable.
Because of this, methods to suppress and reduce speckle have been developed, including filtering,’
averaging,'® or wavelet processing techniques.'' Since most of the works in the literature focus on
signal-degrading speckle, the information regarding signal-carrying speckle analysis is diffuse and
sometimes abstruse. Thus, this review intends to provide a comprehensive overview of the different
methods used to retrieve information from OCT speckle in biomedical applications.

The remainder of this paper is structured as follows: Sec. 1 presents the introduction; Sec. 2
presents the literature search criteria; Sec. 3 presents the signal processing methods used for
analysing the OCT signal-carrying speckle. Discussion of some of the most relevant approaches
is presented in Sec. 4. Finally, the conclusions are presented in Sec. 5. A table summarizing the
reviewed works is given in Appendix A, and a short theoretical mathematical description of light
speckle is given in Appendix B.

2 Methods

The literature search was conducted in two databases on December 9, 2021. PubMed was chosen
for being one of the largest databases in the medical field, and Scopus for combining articles
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Fig. 2 Flowchart of the records selection.

from both medical and technical fields. The search query used was: “Optical Coherence
Tomography” AND speckle AND (statistics OR statistical) NOT flowgraphy. After duplicate
removal, the total number of articles obtained was 146. These articles were screened and nar-
rowed down to 40. The applied exclusion criteria were: (i) not written in English, (ii) focusing on
denoising/speckle reduction, (iii) not focusing on speckle, (iv) not focusing on OCT, (v) OCT
used in plants, and (vi) not detailing the method used. The number of articles excluded by each
criterion is detailed in Fig. 2. The remaining 40 articles were then reviewed.

The data extracted from each article were the implemented method, the OCT technique used,
the light-source wavelength (for non-theoretical studies), the biomedical application, and per-
formance metrics related to the application, when provided. This information is reported in
Table 1, in Appendix A.

3 Results

Figure 3(a) shows the distribution of the articles included in the review grouped by year. The
results show a growing interest in the analysis of signal-carrying speckle in OCT imaging over
the last two decades.

Figure 3(b) clusters the reviewed articles by technique, depicting the organization of Sec. 3
where the most represented technique corresponds to “statistical distributions.” Since speckle
pattern analysis can either provide static or dynamic information about the imaged tissue,
depending on whether the scatterers are stationary or in motion between consecutive image
acquisitions, the articles were subsequently divided according to this classification.

3.1 Statistical Properties

Local moment-based statistical properties of OCT signal intensity have been used for inferring
speckle characteristics. These properties have proven to be useful in classification tasks, allowing
to discriminate between different types of tissue.

3.1.1 Static analysis

Roy et al."? used the mean (u), standard deviation (o), kurtosis (x), skewness (v), and an estimate
of optical attenuation and signal confidence measures to detect plaques’s susceptibility to rupture
using intravascular OCT, with the objective of assessing atherosclerosis. The features proved
to have high performance in the identification of such tissues using a random forest predictive
model (area under the receiver operating characteristics curve of 0.9676).
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Fig. 3 Overview of the results. (a) Distribution of the articles, grouped by publication year. (b) The
number of articles included for each method performing a static (s) and dynamic (d) analysis is
included as (s/d).

Wang et al.'* implemented a model for the detection of soft tissue sarcomas in OCT images of
ex vivo human tissues, also based on speckle statistical properties. Specifically, the standard
deviation of the signal fluctuations (speckles) of a single axial line (A-scan) was used. The stat-
istical analysis (Student’s #-test) of the standard deviation showed it is effective for comparing
normal fat tissue and soft tissue sarcoma (p value < 0.01).

3.1.2 Dynamic speckle analysis

Ossowski et al.'* used statistical properties of the OCT speckle to infer the dynamic properties of
blood samples. Specifically, they used the mean horizontal and vertical speckle sizes, calculated
from intensity data, and the sum of standard deviations of selected windows, calculated from
phase data. These three statistical parameters were computed in OCT images of blood samples
[Figs. 4(a) and 4(b)], enabling a visual distinction between the signal modulation from eryth-
rocytes and leukocytes as shown in Fig. 4. No statistical tests were performed to assess the
discriminating power of these metrics.

Fig. 4 Intensity and phase-change images originated from modulation signal of: (a) erythrocytes
(red blood cells, RBC) and (b) leukocytes (white blood cells, WBC). (c) An enlarged subsection of
RBC and WBC phase-change images, containing entire signals transversely. Reproduced from
Ossowski et al."* with the authors’ permission.
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3.2 Statistical Distributions

In Appendix B, the theoretical distributions for conventional laser speckle imaging complex
amplitude (Gaussian distribution) and intensity (exponential distribution) are presented. In laser
speckle, the intensity pattern is often directly observed, while in OCT the modulus and phase are
detected.” By applying the required transformation from the speckle intensity to the speckle
modulus probability density function (PDF), we arrive at the Rayleigh distribution.

These distributions have a clear physical meaning, but they are only applicable to an ideal,
fully developed, speckle pattern. This type of speckle pattern is formed when the amplitude and
the phase of the speckle field are statistically independent variables and when the phases are
uniformly distributed in the range of (—z, x). This may not always be the case in real world
applications due to several reasons, among others: the presence of dynamic scatterers, the small
optical roughness when compared with the light wavelength, or the low scatterers’ concentration
of certain regions of the reflections surfaces.

In these cases, speckle formation could be difficult to model. Therefore, different PDFs have
been proposed to describe the speckle statistics in real world applications of OCT imaging. The
parameters of these distributions are expected to change according to the light source properties
and dimension/organization of the scatterers in the sample, thus providing information about the
tissue properties. Given the different notations and formulations in the literature, a coherent
mathematical notation of the proposed models is provided.

This section is organized as follows: in Sec. 3.2.1, Rayleigh distribution is presented. This is
the fundamental distribution used to represent fully developed speckle patterns. In Sec. 3.2.2,
the Gamma and generalized Gamma (GG) distributions are detailed. From these two, the remain-
ing distributions, presented in Sec. 3.2.3, can be derived, including K-distribution, Weibull,
Nakagami, Rician, three-parameter Rayleigh, Lognormal, and Burr type XII. Next, a nonpara-
metric approach is presented in Sec. 3.2.4. Finally, Sec. 3.2.5 details the distributions that have
been applied in a dynamic speckle analysis.

3.2.1 Fundamental distribution

The Rayleigh distribution is a one-parameter distribution, used to model fully developed OCT
speckle patterns. The application of this model is valid when the signal arises from multiple
scatterers within the resolution of the system,'> and the light complex field amplitude is repre-
sented by circular Gaussian statistics, i.e., a fully developed speckle pattern.'® Its PDF is given as

A2

A
prs(Asa) :?e( ). )

where a is the scale parameter.

Almasian et al.!” experimentally verified the goodness of fit of the Rayleigh PDF for model-
ing speckle amplitude using controlled samples of silica microspheres suspended in water. They
proved that OCT amplitude distribution for homogeneous samples can be described by a
Rayleigh distribution for images with low optical depth (coefficient of determination, R* ~ 0.98).
Also, assuming a Rayleigh distribution, expressions were analytically derived for speckle sig-
nal mean amplitude and variance in terms of sample scattering coefficient and backscattering
coefficient.

In addition, Ossowski et al.”® performed a study using a realistic simulation method based on
Maxwell’s equations and an experimental polydimethylsiloxane and TiO, phantom.'® This work
provided evidence that the speckle amplitude related to an homogeneous scattering region of the
phantom follows a Rayleigh distribution and confirm the agreement between the simulation and
experimental results.

1.18

3.2.2 Gamma distributions

The Gamma distribution is a two-parameter distribution. Its PDF belongs to a family of PDFs
with two degrees of freedom, and is defined as
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Ad=1p=Ala

pG(Asa.d) :W

for a,d > 0, ()

where d is the shape parameter, a is the scale parameter, and I" represents the Gamma
function.””

Kirillin et al.?' developed a Monte Carlo model for speckle statistics simulation of OCT data
and validated the model using a phantom. Also, they demonstrated by visual inspection that the
Gamma distribution was a good fit for both phantom and the previously simulated data. The
scale parameter, a, showed an increase with the increase of scatterers concentration, whereas
the shape parameter, d, presented a concentration-independent behavior, but it has been related
to the effective scatter number density in other work using high-frequency ultrasound.?

More recently, Niemczyk et al.”* used the Gamma distribution to model speckle from corneal
OCT data in porcine eyes. Both Gamma parameters showed a statistically significant relation
with intraocular pressure (IOP) (p value < 0.001, ANOVA test).

The GG distribution is a three-parameter generalization of the Gamma distribution, with a
PDF given as

pAd—]

el . VIO L > 0, 3
T (dfp) ¢ oy ®

pec(Asa.d, p) =

where d and p are shape parameters, and a is the scale parameter. To obtain the Gamma PDF
[Eq. (2)], p must be set to 1. Special cases of GG include the previously presented Rayleigh
[Eq. (1)], by setting the parameters to pgg(A; a2, 2.2),a > 0.

The GG distribution was used by Jesus et al.*>*? and Iskander et al.?® to model corneal OCT
data. Jesus et al.** applied the GG distribution to healthy subjects divided in three age groups
(24.4£0.5,31.3 4.6; 61.2 £ 8.4 years), as shown in Fig. 5. The goal was to study variations
of the distribution parameters among groups. A significant statistical difference, (p value < 0.05,
Kruskal-Wallis test) was observed for all three parameters. For an increase in age, the scale (a)
and shape (p) parameters decreased, while the parameter relation d/p increased, resulting in a
narrow distribution. These microstructural changes are related with the stiffer corneal tissue pre-
sented by older subjects.

In a later study,”* Jesus et al. analyzed the parameters’ relation with microstructural corneal
properties. Significant correlation (p value < 0.001) was found between both the scale parameter
(a) and the ratio of the shape parameters (d/p) with IOP, where the scale parameter decreases
when the IOP increases. A possible physical explanation for this phenomenon is the influence of
IOP on the decrease of interlamellar gaps (absence of collagen), as studied by Wu et al.,”’ result-
ing in a more compacted tissue. This shifts the speckle distribution toward lower values, sim-
ilarly to the age effect.

Age group 1| 1
Age group 2
Age group 3

0 0.1 0.2 0.3 04 0.5
Relative intensity (a.u.)

Fig. 5 PDF of the GG distribution for three different age groups, where age group 1 is the youngest
and age group 3, the oldest. Reproduced from Jesus et al.* with the authors’ permission.
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Moreover, Danielewska et al.?® ascertain the influence of IOP in untreated and crosslinked
rabbit eyes. The GG distribution achieved the best goodness of fit against Rayleigh, Weibull,
Nakagami, and Gamma distributions, considering the mean squared error between the fitted PDF
and the kernel density estimator (KDE). Both the scale and ratio parameters presented significant
statistical differences with respect to increasing IOP in anterior and central corneal stroma. In
addition, the GG distribution shape parameter (p) was also statistically significant when com-
paring untreated and crosslinked for anterior, central, and posterior corneal stroma.

Iskander et al.,” used the GG to model information from the microstructure of the cornea to
differentiate glaucoma suspects, glaucoma patients, and healthy controls. ANOVA tests showed
that the scale parameter, a, was correlated with the shape parameter, p, and the relation between
these two parameters was statistically significantly different between the three study groups
(p value < 0.0001, Fisher’s test). Finally, Seevaratnam et al.! used the GG distribution to inves-
tigate the effect of temperature variation in tissue phantoms. The scale parameter, a, showed a
linear increase with the increase of the tissue temperature. The correlation between a and the
temperature was statistically significant (p value = 7.9 x 107%, Student’s #-test). An increase in
temperature results in higher scatterers motion amplitudes and, consequently, in a wide range of
amplitude values.

3.2.3 Gamma derived distributions

The K-distribution is a three-parameter distribution, used to model cases where a small number
of scatterers are present in the sample,” resulting in partially or nonfully developed speckle pat-
terns. Its PDF can be written as

£ B+D/24(-1)/2
pk(Aiv. L) ZW@—L(Z\/&_A), “)

where p =L+ ¢ —1,& = Lo/u, K, is amodified Bessel function of the second kind of order a.
This distribution is the combination of two gamma distributions, one with mean 1 and shape
parameter ¢ and the other with mean v and shape parameter L.

The K-distribution was tested by Jesus et al.* for corneal OCT speckle intensity characteri-
zation against other distributions. However, using a Kolmogorov—Smirnov (KS) goodness of fit
with 95% confidence level, K-distribution modelled data presented statistical differences from
original raw data, showing that it is not an adequate fit for the analyzed problem.

Other study comparing K-distribution with Rayleigh and Gamma distributions was presented
by Ge et al.”’ in pig and mouse biological tissues. The K-distribution was the best fit for the
excised pig brain (cortex) using a KS test (p value = 0.943).

The two-parameter Weibull distribution* can be obtained from GG distribution for d = p:

dAd-1
pW(A’a’d) = ad g_<A/(l)d. (5)

Jesus et al. tested this distribution to model corneal speckle intensities.* No statistically signifi-
cant difference was observed between the fitted and the raw data (p value < 0.05, KS goodness
of fit test), concluding that the Weibull distribution can be used to model these data.

The Nakagami distribution is a two-parameter distribution that can be obtained from the
Gamma distribution by setting a = Q/d and taking the square root of the original random var-

iable, A’ = /A"

d
2d ARd-1,—EA"

A,;d,g == )
pNK( ) F(d)Q.d

(6)

where d is a shape parameter and Q is a spread parameter.

This distribution has been proposed to represent the dispersion of several backscattered clus-
ters of incoherently added waves'® and has been tested for modeling skin speckle data against
other distributions. It was considered the best fit, using the KS test, and its shape parameter
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presented higher values for epidermis, compared with stratum corneum, allowing for a threshold
definition to separate both groups.

Nakagami distribution was also tested in corneal data.*> For this case, although it was not
considered the best fit, fitted data did not present statistical significant differences from the raw
data, also using the KS test.

The Rician, or Rice distribution [Eq. (7)] is a two-parameter generalization of the Rayleigh
distribution [Eq. (1)], obtained by the introduction of a noncentrality parameter:

2,2
pri(Asa,v) :éze_AZTIO (AI;) @)
a a
where v is the noncentrality parameter and [, is the zero-order modified Bessel function of the
first kind.>' Thus, the Rayleigh can be obtained from the Rician distribution for v = 0.

The validity of this distribution for modeling speckle amplitude distribution was tested for
tissue phantom data by Seevaratnam et al.! and for corneal data, by Jesus et al.* However, for the
corneal data, the data modeled with this distribution presented statistically significant difference
from raw data (KS test for a 95% confidence level). Nevertheless, the Rician distribution can be
used to model speckle data when a dominant reflector, such as a tissue boundary, is present. In
this particular case, the speckle is not fully developed, because the phases of the speckle field are
not uniformly distributed in the interval (—z, ), having a bias accounted by the noncentrality
parameter of the distribution ().’

The three-parameter Rayleigh distribution is obtained by modifying the Rayleigh [Eq. (1)]
including two new parameters, b and c:

b(A—c) _-t=e?
p3RL(A;a7 b, C) :%6 242 s (8)

where a is the scale parameter, b is the amplitude normalization parameter, and c is the shifting
parameter. Matveev et al.*> and Demidov et al.** used spatial speckle statistics on OCT lym-
phangiography and neurography to map lymphatic vessels, based on the analysis of the param-
eters of psrp. Their experiments, on normal skin and tumor tissues, showed that, by fitting
Eq. (8) to different regions of interest (ROIs) in an image, the obtained R? values statistically
differed from each other, and could then be used as a feature for nerves and lymphatic vessels
mapping. Using a threshold on the R? value (0.9 < R* < 0.99 for the lymph vessels), the authors
were able to obtain a discrimination of the tumor from the normal tissue. Following their pre-
vious studies, Matveev et al.** presented an optimization model to automatically determine the
threshold for the R? value and for the size of the ROI, both parameters previously empirically
chosen.

The Lognormal distribution is a two-parameter distribution of a variable whose logarithm
follows a normal distribution, with mean v and standard deviation o. Its PDF is given by
Eq. (9) and can be derived from the GG distribution [Eq. (3)] by setting d/p — oo:

1 (log A—v)2

Ajp,6) =———=e 2% . 9
pL( IMO') GA\/EE ()

The Lognormal distribution has been applied by Jesus et al.* and Mcheik et al.,'> on corneal
and skin speckle data, respectively. Both studies have been further described in Sec. 3.2.2, as the
authors compare the Lognormal distribution with the GG distribution in both cases. They also
obtain the same conclusion: the GG distribution is a better fit than the Lognormal for corneal and
skin speckle data, and data modeled with Lognormal distribution show statistically significant
difference from the original data, using the KS test with a level of significance of 0.05.

A form of the Burr type XII distribution was recently used to model OCT speckle data.”** It
corresponds to a two-parameter distribution for non-negative random variables, where one of its
shape parameters (c) is set to 2 and can be described as

2A(b -1
Pour(As b, 4) = W (10)
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where b is the power law parameter and A is the scale parameter. This distribution was used by
Ge et al.” to model speckle OCT data in a gelatin phantom with milk, and a set of ex vivo tissue:
mouse brain, mouse liver, pig cornea, and chicken muscle. The Burr derived distribution
achieved the best fit (KS tests), when compared with the Rayleigh, K, and gamma distributions
for all the tissues. Finally, the authors also tested OCT data from an in vivo human hand’s palm
and the Burr derived PDF achieved the best KS (p value = 0.947).

3.2.4 Nonparametric approach

Niemczyk and Iskander*® proposed a new nonparametric approach for the statistical analysis
of OCT speckle amplitudes based on a comparison with a benchmark Rayleigh distribution
(a = V2 /2). First, the empirical cumulative distribution function, KDE, empirical characteristic
function, and contrast ratio (CR), were determined in the region of interest of the OCT B-scans.
Then, a set of four statistical distances between the empirical distribution and the benchmark
distribution were determined to characterize the sample in study. This method was applied to
resin phantoms with nine different concentrations of 10-um blue dye powder particles, to ex vivo
porcine eyes, and to in vivo human corneas with varying IOP values. The results showed that a
better goodness-of-fit achieved with a particular parametric distribution does not necessarily
correspond to a better discriminating power of the IOP.

All distributions presented in this section have been proposed to model speckle images for
different applications. The preferred distribution will vary depending on the case. For this reason,
several authors opt to test different distributions to choose the better fit, based on a defined
statistical criteria. Figure 6 shows an example of GG, Gamma, Rayleigh, and Nakagami func-
tions applied to speckle data from the cornea.

3.2.5 Statistical distribution in dynamics speckle analysis

The temporal speckle distribution of a single pixel is expected to follow different distributions
according to the properties of the sample in that pixel. Therefore, a statistical distribution can be
applied to the time-domain histogram of individual pixels to account for speckle dynamics.
Cheng et al.’’ analyzed OCT voxels denoting fluid flow for large and small arterioles
and venules in phantom and skin data. This analysis was performed as part of a visualization
enhancement technique. The authors state that a pixel located within static tissue is expected
to follow a Gaussian distribution over time, while pixels located in regions depicting flow will
follow a different distribution. In their results, they concluded that Rayleigh distribution [Eq. (1)]
is suitable to describe the speckle temporal distribution of large arterioles and venules, while

&~
W
1

nl gfi‘}g%\ = Data
> ——Gen. Gamma fit
350 ' —+—Gamma fit
> ——Rayleigh fit
'z 3r Nakagami fit
[
<
- 25
B 2
<
= J
£ L5r
1
0.5
0 r r e
0 0.1 0.2 0.3 0.4 0.5

Relative intensity [a.u.]

Fig.6 GG, Gamma, Rayleigh, and Nakagami distributions fit to speckle corneal data. Reproduced
from Jesus et al.2% with the authors’ permission.
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the Rician distribution [Eq. (7)] can model the amplitude of OCT for tissues that are partially
denoting static and flowing scatterers, such as capillaries.

3.3 Contrast Ratio

The CR (C) of an OCT image can be defined as the ratio of the signal’s standard deviation, (o),
and its mean, (u):*®

c=2. (11)
u

The CR is expected to vary with the density of scatterers and has been used for different appli-
cations, such as segmentation and motion estimation.

3.3.1 Static analysis

Hillman et al.*® and Duncan et al.** both proved that it is possible to obtain a correlation between
the local contrast statistics and the scatterers density in an OCT sample. Hillman et al.*® theo-
retically demonstrated that the CR decreases with the increase of the effective number of scatterers
that contribute to the signal. The authors also confirmed empirically their predictions using an
experimental setup of controlled tissue phantoms of suspensions of microspheres in water with
different concentrations. Duncan et al.** computed the local contrast image of simulated synthetic
speckle patterns. Then, they estimated the relation between the lognormal distribution [Eq. (9)]
parameters of this image and the size of the image kernel. Experiments using chick embryo OCT
images were also performed. Vessels and background were successfully segmented by choosing
an adequate threshold of the lognormal PDF parameters computed in the contrast image.

3.3.2 Dynamic speckle analysis

Kirkpatrick et al.** developed an approach to quantify the shift and temporal contrast in a trans-
lating speckle pattern. The end goal of the authors was to quantify local motion. Their proposed
method, quantitative temporal speckle contrast imaging, is dependent on the speckle size in the
image and the number of images in a sequence. The application of the method is also depends on
the acquisition speed of the device, which should be fast enough that no motion occurs during
each image acquisition within the sequence.

An OCT optimized approach was also developed by Mariampillai et al.”" using only speckle
local variance to image microvasculature in high and low bulk tissue motion scenarios. The
speckle variance was computed using different number of frames (gate length), and a set of
optimized parameters was determined for each tissue motion scenario. In the case of low bulk
tissue motion (mice dorsal window chamber), the optimized gate length was defined in the range
of 8 to 32 frames. For the high-bulk tissue motion (human nail root), the optimized gate length
was two frames.

41

3.4 Logarithmic Pixel Intensity Contrasts

OCT images are often displayed in a logarithmic scale to enhance dynamic range. This trans-
formation causes some properties, primary the contrast, to change when compared with OCT
data in linear scale.

3.4.1 Static analysis

Theoretically, when considering a set of OCT linear data where amplitudes follow the Rayleigh
distribution [Eq. (1)] and have the same contrast value, its logarithmic transformation will result
in a CR which depends on the signal intensity.'®

Contrast changes in logarithmic scaled OCT data were experimentally illustrated by Lee and
Zhang'® using phantoms made of intralipid solution and in vitro mouse livers images. They have
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determined that the logarithmic speckle contrast increases with the decreasing signal intensity. In
addition, this fact was used to characterize the scattering properties of the studied phantoms
using a method called depth-dependent speckle contrast. Since the mean OCT signal intensity
decreases with the image depth but the tissue properties are relatively constant, the logarithmic
contrast showed an increasing tendency for deeper areas. The magnitude of this slope was then
related with the scattering properties of the phantoms.

3.4.2 Dynamic speckle analysis

The logarithmic intensity variance (LOGIV) is defined as the variance of the intensity image
after the logarithmic transformation. The differential logarithmic intensity variance (DLOGIV)
is calculated by multiplying the LOGIV by a factor of two. LOGIV and DLOGIV values ap-
proach z°/6 and #°/3, respectively, when the signal-to-noise ratio approaches zero. These
values can be used to compute LOGIV and DLOGIV tomograms by collecting multiple scans
from the same region and measuring the quantitative variance of logarithmic intensities over
scans. Motaghiannezam and Fraser*” proposed this technique for the analysis of in vivo human
retinal vasculature visualization. Results of their experiments showed that static areas of the
retina were invisible in the LOGIV and DLOGIV tomograms, while areas with detectable
motion, such as blood vessels, were not. They also confirmed the low sensitivity of LOGIV
and DLOGIV to the sample reflective strength, demonstrating the superiority of these methods
in comparison to linear CRs for detecting motion and visualizing microvasculature.

3.5 Spatial Gray-Level Dependence Matrices

Spatial gray-level dependence matrices (SGLDM), also referred to as co-ocurrence matri-
ces, >34 are determined by the estimation of the second-order joint probability distribution of
two image gray levels which are at a specific distance and direction (Pr(i, j|d, #)). Assuming the
images are normalized with L grayscale levels and N number of pixels, each Pr(i, j|d, 0) is the
probability of a pixel with level i being at a distance d from a pixel with gray level of j in the 6
direction. Following this principle, an L X L co-occurrence matrix can be created for each direc-
tion and for each chosen distance sy 4(i, j) = Pr(i, j|d,0) X N, as is shown in Fig. 7.

Several features can be extracted from these matrices, including energy, entropy, correlation,
local homogeneity, and inertia, detailed in Refs. 2, 43, 44. Similarly to the statistical properties
described in Sec. 3.1, these features are expected to be linked to changes in tissue. Thus, they can
be used for classification tasks.

Kasaragod et al.® used SGLDM to retrieve information from the speckle OCT images. A
Bayesian model was applied to the classification of tissue phantoms with different amount
of scatterers and to identify the invasion of melanoma cell into tissue engineered skin. Their
results were satisfactory in classifying the number of scatterers in the tissue phantoms, shown
visually by an ROC curve plot. However, this approach provided limited results in the identi-
fication of the melanoma cells in the tissue. Nevertheless, sensitivity and specificity numerical
results were not provided in the paper.

12K [5]54

3[3[N2[4[1] 1[1][2[1]0]2

414]4]5[2[1] 2@2]/0/0[0
L [3[4[2] 3[1]0]0[2]0

5512\  4[2[1]1]1]0

3[112[3/NA 5[2[1[1]1]0
Image S1,-45

Pr(2,1]1,-45) = 0.16
S1,315(2,1) = Pr(2,1]1,-45) x 25 = 4
Fig. 7 Diagram representing the SGLDM for a direction of 8 = —45 deg and distance of d = 1.

The image has N = 25 pixels with levels between 1 and 5. The blue ellipses indicate the number
of pairs (2,1) on the specified direction and distance.
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3.6 Frequency Domain Methods

After computing the two-dimensional (2D) discrete Fourier transform (DFT) in an OCT image,
the resulting image can be divided into regions, according to their frequency content. This will
result in different texture parameters per region. The contribution of each region to the total
frequency magnitude is calculated by summing all the values of the spatial frequencies in that
region and dividing by the total frequency magnitude of the image. This value represents the
percentage of signal within a certain range of spatial frequencies, and it can be used as a feature
in similar applications as described in Secs. 3.1 and 3.4.

Gossage et al.>* used the 2D-DFT for retrieving information from OCT images, together
with the previously described SGLDM (Sec. 3.5). The goal of the work was analyzing and
classifying texture of different tissues (mouse and bovine tissue). Their results showed a high
accuracy classification of mouse skin and fat, of 98.5 and 97.3%, respectively. A satisfactory
performance was also obtained for distinguishing normal and abnormal mouse lung, of 64.0 and
88.6%, respectively. Finally, the features were used to classify five different bovine tissues, with
a similar classification model, resulting in an average of 80% correct classification rate. A similar
approach was used in Ref. 44, where the 2D-DFT and SGLDM features were used to differ-
entiate living from nonliving tissue phantoms with various sizes and distributions of scatterers.

3.7 Tissue Dispersion

Tissue dispersion can be measured in a static image analysis from the degradation of the image
point spread function (PSF). The standard method to measure tissue dispersion is through the
computation of the resolution degradation of single reflections. However, such a measurement
requires distinct point reflectors, below and outside the sample, which rarely happens in vivo.

As alternative, Photiou et al.***® proposed to estimate the tissue dispersion from the imaged
speckle. Being a coherent phenomenon, speckle is affected by tissue dispersion. Changes in
speckle size can be used to estimate the broadening of the image PSF and later to calculate
the group velocity dispersion (GVD). This method is based on the comparison of small regions
of an OCT image at different depths without visible structures, i.e., containing only speckle
information. When the OCT interferometer arms imbalance is removed at the tissue surface,
it is expected that these surface regions show no dispersion, as opposed to deeper regions.

Photiou et al.***¢ showed that their proposed method performs similarly to the standard pro-
cedure (from degradation of the image PSF), with a GVD difference less than 7%. Also, the
median of the GVD proved to be a good feature for tissue classification, when comparing normal
(higher median) to malignant (lower median) samples of human colon (accuracy of 96% using
linear discriminant analysis).

3.8 Speckle Correlation

Considering a sequence of scans over time, the autocorrelation and/or decorrelation of intensities
can carry information about motion of particles in a sample. Both features can be used as an
approach for time-varying speckle analysis.®

In terms of speckle analysis, the normalized autocorrelation, for a given point p and time lag
7, is given as

= N U= (1) Upss = ()
U= L)

(12)

where [, , is the intensity in the point p at time #, 7 is the period of time between scans, and N is
the total number of scans considered. The temporal average intensity, (/,,), is subtracted from
each intensity value to consider only the intensity fluctuations. The autocorrelation of a speckle
pattern with itself (z = 0) is expected to be maximized. With the increase of the lag between
scans, this value is expected to decrease until it reaches 0, when the scans are no longer corre-
lated. A vector of autocorrelation values can be obtained by changing z. These autocorrelation
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values are related with the fluctuations in the intensity of the speckle patterns. At the same time,
the fluctuations are related with the flow of particles in the tissue.®

The decorrelation time 7, is used to analyze the shape of each autocorrelation function.® This
metric corresponds to the time it takes for the autocorrelation value to fall to 1/e.

3.8.1 Temporal analysis

De Pretto et al.® performed experiments with milk pumped through a microchannel at different
velocities and proved the inversely proportional relation between decorrelation time and flow
velocity. As expected, this relation is highly dependent on the sampling frequency. A sampling
rate of 8k Hz makes the system appropriate for differentiating between low flow rates, up to
12 ul/ min. However, if the flow rates are higher, the temporal resolution of the system makes
it unsuitable.

In a later study, De Pretto et al.”" implemented the same approach to monitor blood sugar in
OCT data. They used samples of heparinized mouse blood, phosphate buffer saline, and different
concentration of glucose. They were able to differentiate between low level of glucose concen-
tration, up to 355 mg/dL, indicating the suitability of OCT for noninvasive measurements of
glucose levels.

Farhat et al.*® assessed the changes that occur in intracellular motion as cells undergo apop-
tosis. To that end, they induced apoptosis in samples of acute myeloid leukemia cells, and they
measured the decorrelation time of the speckle over a period of 48 h. Their results showed an
increase of motion in the cells (identified as a decrease of the decorrelation time of speckle) after
24 h, which is in accordance with histology. Ferris et al.*’ used phantom data to study the effects
of multiple scattering on the speckle decorrelation. Their conclusions confirm that speckle decor-
relation is dependent on parameters such as the concentration and size of particles and velocity
field inhomogeneities. They also concluded that an overestimation of blood flow velocities
might occur because an increase in the rate of decorrelation is caused by the detection of for-
wardscattered light.

]'47

3.8.2 Spatial and angular analysis

Popov et al.’’ conducted an experiment using tissue phantoms. They obtained an expression for
the spatiotemporal correlation function of scattered radiation, assuming a single scatterer regime,
and were able to measure the viscosity of a solution with different concentrations of glucose
with 1% error in stagnant conditions and 4% to 10% error in flow experiments.

Uribe-Patarroyo et al.”' proposed a new discrete normalized second-order autocorrelation.
The authors claim this approach is more robust to the presence of noise and can be used as
a method for speed measurements in tissue phantoms. This same method was used in a later
work>? for the correction of the rotation distortion in catheter-based endoscopic OCT.

Liu et al.> used the cross-correlation coefficient between adjacent A-scans to analyze motion
speed of simulated speckle images. Their results underline the importance of computing speckle
features, such as the contrast and decorrelation time, in larger sets of A-scans to achieve a more
accurate estimation of the tissue properties. Due to the random nature of speckle, when a small
set of A-scans is used, only local metrics are determined, resulting in larger errors when com-
pared with the theoretically expected value.

Finally, speckle cross-correlation between OCT B-scans over a range of increasingly over-
lapping detection angles was used by Hillman et al.’* to quantify the singly scattered contribution
to the speckle signal. They have used phantoms with lower and higher scatterers concentrations
to quantity the prevalence of signal-carrying speckle at a specific depth and, therefore, the level
of image fidelity to the underlying scatterers’ distribution.

4 Discussion

In most of the reviewed works, the authors aimed to further understand the physical meaning
of the light speckle and how to model it mathematically.®!6:17:21:39:4049.53.55  Ajthough its
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interpretability remains a challenging task, a number of works have shown the feasibility of
speckle-derived quantifications for biomedical imaging related tasks, including classification
(e.g., healthy/pathological),!>#812-14:23-26.32-34.3743-46  seomentation (e.g., vessels),’”” motion
quantification (when dynamic data is provided),®****°'=33 and image fidelity.>* Nevertheless,
some aspects and limitations of those techniques should be discussed to improve future
works.

Among all the reviewed methodologies, speckle modeling using statistical distributions has
been the most studied, especially on static data. Several authors have proven the applicability of
these approaches to different tasks, mainly to classify between different tissues. However, the
conclusions on the optimal PDF often vary depending on the analyzed tissue, the application,
and the OCT device. For example, Mcheik et al.'> and De Jesus et al.* both presented a com-
parative study including several PDFs, but in different applications, one to differentiate speckle
from different skin layers, and the second from different groups in corneal data. Despite both
works including Nakagami, GG, and Lognormal distributions, their conclusions were different.
For skin layers, the Nakagami distribution was found to be the best. However, for corneal data,
the best fit was achieved by the GG distribution. Furthermore, other authors have successfully
applied other distributions to the same application, such as Niemczyk et al.,* who used the
Gamma distribution to study the effect of IOP on corneal OCT speckle from porcine eyes.
In addition, a recently used distribution (Burr) seems promising in modeling OCT speckle ampli-
tude in several tissues (e.g., mouse, pig, chicken, and humanzg) and can also be used to the study
of IOP.*® The lack of strong evidence provided by the studies precludes drawing conclusions on
the PDF which provides the best fit for each application, since in some of them, exhaustive
comparisons and physical meaning do not exist. In this line, a new nonparametric approach’®
was proposed as a way to reduce the complexity of speckle statistical modeling, since there is no
need to select a particular PDF.

A drawback that the modeling of speckle through statistical distributions had to tackle is that
the real-world problems do not fulfill the theoretical assumptions of speckle formation.
Theoretically speaking, when the number of elementary phasors is high, meaning a high number
of scatterers per coherence volume, the central limit theorem is fulfilled,'® the speckle pattern is
fully developed, and its intensity distribution follows the Rayleigh distribution. However, this
argument is only partially applicable to biological tissues, because different tissues may have
different natures, i.e., some can be more heterogeneous with a lower number of scatterers.” As a
consequence, several authors propose more complex distributions (three parameters and higher),
which presents new potential challenges. When a statistical model is used to represent the proc-
ess that generated the data, the representation will not be fully accurate, as some information will
be lost. In estimating the amount of information lost by a model, one needs to take into account
the trade-off between the goodness of fit and the simplicity of the model, i.e., the risk of over-
fitting and underfitting. In the corneal studies,**>%° the Akaike’s information criterion is applied
to minimize this risk.

Following the analysis of statistical distributions, the second most used technique is the
analysis of the speckle correlation, which is only applicable to dynamic data or spatially/angu-
larly diverse data. The main application of this technique is in motion determination (e.g., blood
flow). Although most of the reviewed works in OCT speckle are focused on theoretical modeling
or validation with phantoms, this is in fact a type of signal analysis that has been widely explored
in other imaging modalities. Some examples are laser speckle imaging, which can be used for
cutaneous blood flow determination,™ blood pulse pressure waveform estimation,””> cellular
assessment in muscle tissue,> and laser speckle flowgraphy which can be used for ocular blood
flow determination.®” Furthermore, the rationale behind these techniques has also been widely
applied to compute OCT angiography from a set of temporal OCT data acquired at the exact
same position.’!

In contrast with the correlation analysis, there have been little to none applications of the
other methods for dynamic data. However, some authors have demonstrated the feasibility
of statistical properties, ' statistical distributions,?” or logarithmic intensity contrast** to visualize
and segment blood vessels within a tissue.

Finally, the methods that compute characteristics of static data [tissue dispersion, SGLDM,
frequency domain methods, or the previously mentioned statistical properties/distributions and
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contrast (both with and without the application of the logarithmic transform)] are more applied
to obtain features to use in a predictive model or classifier. While these approaches may under-
perform classification models that take into account the complete image information or several
features, many of these proposed features are very easy to interpret, and to link to the physical
changes in the tissue, making them interesting for clinical practice.

Although a growing interest in the analysis of signal-carrying speckle has been observed
over the last years, it is still a research line in an early stage. A considerable number of different
methods have already been proposed, but there are only a few applications published in the
literature. At the current stage, the analysis of OCT speckle is lacking on validation and infor-
mation on its reproducibility in vivo. None of the reviewed studies validated the proposed
methods on large (the largest dataset in the studies included had 65 subjects**’) or multiple
datasets. The speckle information is intrinsically related to the spatial arrangement and bio-
mechanical properties of the scatterers in the sample. Scatterers can either be collagen fibers
and fibroblasts when imaging the cornea, blood cells flowing through vessels, or just silica
particles in a phantom image. What is considered a scatterer in a sample will depend on the
relation between the characteristics of the imaging system, namely beam spot size, coherence
gate®® and light source wavelength, and the particles size and concentration.®* This is particu-
larly important for OCT imaging, given the variability existing between devices (790 to
1330 nm), as it can be observed in Table 1, Appendix A. Consequently, for the same sample
and method, different quantitative values for speckle may be obtained depending on the OCT
system used.

Another important aspect that hampers the development of speckle-based techniques is the
limited access to raw data. Images collected from commercial OCT devices are often filtered
to reduce the speckle or transformed to increase visualization contrast. It is of utmost impor-
tance that raw OCT images are used in speckle studies, otherwise the obtained results are
tainted by the used device and preprocessing algorithm.®® If raw data are not available, the
information of the applied image processing algorithms should be provided to understand how
the speckle has been processed and hence, comprehend its physical meaning in a biomedical
application.

Despite its early stage, research on methods to study the signal-carrying speckle has been a
step forward on the comprehension of the physical meaning of the information retrieved from
OCT imaging. Speckle analysis provides information on the size and distribution of the scatters
that has not been considered in a clinical practice yet. Such advancements are also particularly
interesting for other research lines, such as OCT elastography, adaptive optics imaging, or
machine learning applications. For example, recent developments on machine learning, namely
on convolutional neural networks, have reported outperforming results in OCT image analysis in
comparison to conventional image processing.* - However, deep learning approaches still lack
on interpretability and roughly remain a black box, despite the recent efforts to address this
limitation.®” Therefore, future research may focus on integrating physics and learning based
approaches, to combine their strengths.

5 Conclusion

This paper presents an overview of the current state of the art in OCT signal-carrying speckle
analysis in biomedical applications. The results of this literature review show that several meth-
ods have already been proposed for different applications, highlighting the potential of speckle
analysis to infer the optical and spatial properties of the scatterers in a sample or tissue. However,
signal-carrying speckle analysis in OCT is still in its early stage, and further work is needed to
validate its applicability and reproducibility in a clinical context.

6 Appendix A. Article Details

Characteristics of the reviewed studies sorted by type of method are shown in Table 1.
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Table 1 Characteristics of the reviewed studies. Articles sorted by type of method.

Authors and Light
Static/ publication Application/ OCT technique  wavelength
Method dynamic year Aim data used (brand) (nm)
Statistical Static  Wang et al.’®  Classification Ex vivo human SS-OCT (custom 1310
properties (2013) tissue made)
Statistical Static  Roy et al.’? Classification ~Coronary SD-OCT (CV-M2, 1320
properties (2015) artery LightLab Imaging
Inc.)
Statistical Dynamic Ossowski Classification  Blood SD-OCT (custom 790
properties et al."* (2015) made)
Statistical Static  Schmitt et al.®>  Theoretical — — —
distributions (1999) modeling
Statistical Static  Karamata Theoretical — — —
distributions et al.®® (2005) modeling
Statistical Static  Mcheik et al.'® Segmentation Skin SD-OCT 1300
distributions (2008) (SkinDex 300,
ISIS)
Statistical Static  Kirillin et al.2'  Theoretical Tissue SS-OCT (custom 1310
distributions (2014) modeling phantoms made)
(polystyrene
microspheres)
Statistical Static  Seevaratnam  Classification Tissue SS-OCT 1310
distributions etal. (2014) phantoms (Biophotonics
(polystyrene and
microspheres)  Bioengineering
Laboratory’s)
Statistical Static  Jesus et al.?®  Classification Cornea SD-OCT 850
distributions (2015) (Copernicus HR)
Statistical Static  Almasian Theoretical Tissue SS-OCT (Santec 1309
distributions etal.'”” (2017) modeling phantoms IVS 2000)
(silica
microspheres)
Statistical Static  Jesus et al.* Classification Cornea SD-OCT 850
distributions (2017) (IOLMaster 700)
Statistical Static  Jesus et al.?*  Classification Cornea SD-OCT 851
distributions (2017) (Copernicus HR)
Statistical Static  Demidov Classification  Mice (skin) SS-OCT (custom 1320
distributions et al.®® (2019) made)
Statistical Static  Matveev etal.®® Classification Mice (skin) SS-OCT (custom 1320
distributions (2019) made)
Statistical Static  Matveevetal.®* Classificaton — — —
distributions (2019)
Statistical Static  Iskander Classification Cornea SD-OCT (HRT 3, 850
distributions et al.?® (2020) Heidelberg
Engineering
GmbH)
Statistical Static  Niemczyk Classification ~ Cornea SD-OCT 830
distributions et al.?® (2021) (porcine eyes) (Copernicus
REVO)
Statistical Static  Danielewska Classification Cornea (rabbit SD-OCT 850

distributions

et al.?8 (2021)

eyes)

(Copernicus HR)
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Table 1 (Continued).

Authors and Light
Static/ publication Application/ OCT technique  wavelength
Method dynamic year Aim data used (brand) (nm)
Statistical Static  Ge et al.?® Classification Phantom, SS-OCT (custom 1310
distributions (2021) mouse (brain/  made)
liver), pig
(brain/cornea),
chicken
muscle, skin
Statistical Static  Niemczyk and  Classification = Phantom, SD-OCT 830
distributions Iskander® cornea (Copernicus
(porcine and REVO)
eyes)
Statistical Dynamic Cheng et al.’  Classification Phantom: SS-OCT 1300
distributions (2014) agrose and (Thorlabs Inc.)
titanium
dioxide/skin
Tissue Static  Photiou et al.** Classification Porcine SS-OCT (custom —
dispersion (2017) muscle/ made)
adipose
tissues/colon
Tissue Static  Photiou et al.*® Classification ~Porcine SS-OCT (custom 1300
dispersion (2017) muscle/ made)
adipose
tissues/colon
SGLDM Static  Kasaragod Classification  Tissue SS-OCT (custom 1315
et al.® (2010) phantoms made)
(agar intralipid
solution)/
tissue
engineered
(skin)
SGLDM/ Static  Gossage etal.? Classification Mouse lung SS-OCT (custom 1300
frequency (2003) made)
domain
methods
SGLDM/ Static  Gossage Classification ~Mouse lung/ SS-OCT (custom 1300
frequency et al.*® (2003) bovine tissues made)
domain
methods
SGLDM/ Static  Gossage Classification  Tissue SS-OCT (custom 1300
frequency et al.* (2006) phantoms made)
domain (silica
methods microspheres)/
bovine aorta
endothelial
cells
CR Static  Hillman et al.®¥ Theoretical Tissue SD-OCT (custom 1330
(2006) modeling phantoms made)
(polystyrene
microspheres)
CR Static  Duncan et al.*® Theoretical Embryonic — —
(2008) modeling/ chick heart
segmentation
CR Dynamic Kirkpatrick Theoretical Engineered SD-OCT (custom 843
et al.** (2007) modeling/ tissue made)
motion
determination
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Table 1 (Continued).

Authors and Light
Static/ publication Application/ OCT technique  wavelength
Method dynamic year Aim data used (brand) (nm)
Logarithmic Static  Lee et al.’® Theoretical Rat liver/tissue SD-OCT (custom 834
intensity (2011) modeling phantoms made)
contrasts
Logarithmic ~ Dynamic Motaghiannezam
intensity and Fraser*?
contrasts (2012)
Visualization Retina SS-OCT 1060
(custom made)
Speckle Dynamic Farhat et al.*®  Motion Acute myeloid SS-OCT 1300
correlation (2011) determination leukemia cells (Thorlabs Inc.)
Speckle Dynamic Liu et al.%® Motion — — —
correlation (2013) determination
Speckle Dynamic Uribe- Motion Tissue SS-OCT (custom 1285
correlation Patarroyo determination phantoms made)
et al.®' (2014) (intralipid)
Speckle Dynamic De Prettoetal.® Motion Milk flow SS-OCT 1325
correlation (2015) determination (Thorlabs Inc.)
Speckle Dynamic Uribe- Motion Endoscopic SD-OCT 1310
correlation Patarroyo determination  (esophagus) (NvisionVLE)
et al.%? (2015)
Speckle Dynamic De Pretto Viscosity Mice blood SR-OCT 930 /1325
correlation et al.*” (2016)  determination (Thorlabs Inc.)/
SS-OCT (custom
made)
Speckle Dynamic Popov et al.®°  Viscosity Tissue SD-OCT (custom 1313
correlation (2017) determination phantoms made)
Speckle Dynamic Ferris et al.*®  Motion Tissue SD-OCT (custom 1290 /1310
correlation (2020) determination phantoms made)

SGLDM, spatial gray level dependence matrices; SD, spectral domain; SS, swept source; SR, spectral radar;
NvisionVLE, NvisionVLE imaging system (NinePoint Medical, Inc., Bedford, Massachusetts); Thorlabs Inc.,
Thorlabs Inc. (Newton, New Jersey); IOLMaster 700, IOLMaster 700 (Carl Zeiss Meditec AG, Germany);
CV-M2, LightLab Imaging Inc., CV-M2, LightLab Imaging Inc. (Westford, Massachusetts); Copernicus HR,
Copernicus HR (Optopol, Zawiercie, Poland); HRT 3, Heidelberg, HRT 3, Heidelberg Engineering GmbH
(Heidelberg, Germany); Copernicus REVO, Copernicus REVO, (Optopol, Zawiercie, Poland).

7 Appendix B. Speckle Theory

As detailed in the paper, one of the main speckle analysis techniques is based on the determi-
nation of the speckle pattern intensity PDF, since photodetectors measure light intensity and not
complex amplitude. A short theoretical introduction on the speckle effect is mandatory to under-
stand why the negative exponential function was historically the first one used to describe the
speckle statistics and to understand their limitations.

Light speckle is often modeled using the statistical perspective defined by J. W. Goodman.®®
To deduce the PDFs of the speckle signal amplitude (Gaussian) and its respective intensity (neg-
ative exponential), we shall follow Goodman’s approach.

Assuming a monochromatic and perfectly polarized light source, for a given temporal instant,
we can define the complex amplitude of the electrical field a as®

a(x,y,z) = a(x,y,z)e?3), (13)
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where a(x,y, z) is the amplitude and 6 is the phase. Regardless of the detector spatial position,
the amplitude of the electrical field that reaches the detector A corresponds to a sum of N
dephased electrical fields coming from different regions of the tissue:

1 &,
A(x,y,z) = WZ ape’. (14)
=1

where a; and 0;,k = 1,2,... N are the amplitudes and phases forming that field. To determine
the PDF of the complex amplitude, two assumptions related to the physical mechanisms of
speckle are made. First, the amplitude and phase of each phasor are statistically independent
of each other. Second, the phases 6, are uniformly distributed between —z and z. In terms
of physical significance, these assumptions imply that each scattering volume is independent
and that the reflection boundary irregularities are larger than the light wavelength.

By splitting the complex amplitude in its real and imaginary parts, it can be shown that both
have zero mean and identical variances.®® When the number of summed phasors is very large
(N — ), the PDF of the real and imaginary part are asymptotically Gaussian as well as their
joint PDF:

P(ARes Amm) = P(Are) - P(Am) = 627‘3 w o, (15)

where Ag, corresponds to the real part and Ay, to the imaginary part of A(x, y, z), and the vari-
ance ¢ is defined as

N 2
& = i 1Z<“’<>. (16)

The PDF of the light intensity can also be deduced from Eq. (15). By definition, the light inten-
sity I and the phase @ are expressed as

I=A(x.y,2)* = AR, + AL, (17)
A

0 = tan~! =1 18

an Ag. (18)

The relation between the intensity PDF and the amplitude PDF can be found by applying random
variables transformations:

1
p([, 6) = p(ARe’AIm>HJ|| =5.,-¢€ 2, (19)
oc-4r

where ||J|| is the Jacobian matrix. Recalling the assumptions of independence between intensity
and phase, the marginal PDF of the intensity is found using

7 |
p(l)z/ p(I,H)deﬁe 27, (20)

T

By computing the first- and second-order moments of the amplitude, the field amplitude variance
can be expressed as®’

o> = (I)/2, 1)

resulting in a negative exponential PDF, which is characteristic of a fully developed speckle
pattern in perfect conditions:’

p(I) = o e, (22)
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