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Abstract

Significance: Spatial frequency-domain imaging (SFDI) is a powerful technique for mapping
tissue oxygen saturation over a wide field of view. However, current SFDI methods either require
a sequence of several images with different illumination patterns or, in the case of single-
snapshot optical properties (SSOP), introduce artifacts and sacrifice accuracy.

Aim: We introduce OxyGAN, a data-driven, content-aware method to estimate tissue oxygena-
tion directly from single structured-light images.

Approach: OxyGAN is an end-to-end approach that uses supervised generative adversarial net-
works. Conventional SFDI is used to obtain ground truth tissue oxygenation maps for ex vivo
human esophagi, in vivo hands and feet, and an in vivo pig colon sample under 659- and 851-nm
sinusoidal illumination. We benchmark OxyGAN by comparing it with SSOP and a two-step
hybrid technique that uses a previously developed deep learning model to predict optical proper-
ties followed by a physical model to calculate tissue oxygenation.

Results:When tested on human feet, cross-validated OxyGAN maps tissue oxygenation with an
accuracy of 96.5%. When applied to sample types not included in the training set, such as human
hands and pig colon, OxyGAN achieves a 93% accuracy, demonstrating robustness to various
tissue types. On average, OxyGAN outperforms SSOP and a hybrid model in estimating tissue
oxygenation by 24.9% and 24.7%, respectively. Finally, we optimize OxyGAN inference so that
oxygenation maps are computed ∼10 times faster than previous work, enabling video-rate,
25-Hz imaging.

Conclusions: Due to its rapid acquisition and processing speed, OxyGAN has the potential to
enable real-time, high-fidelity tissue oxygenation mapping that may be useful for many clinical
applications.
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1 Introduction

Tissue oxygenation (StO2) is a measure of the amount of oxygen in biological tissue and is often
estimated by computing the fraction of oxygenated hemoglobin over total hemoglobin. StO2 is a
useful clinical biomarker for tissue viability, the continuous monitoring of which is valuable for
surgical guidance and patient management.1,2 Abnormal levels of StO2 are indicative of many
pathological conditions, such as sepsis, diabetes, and chronic obstructive pulmonary disease.3–5

One of the most widely used techniques for measuring physiological oxygen levels is pulse
oximetry. Despite its ubiquity, robustness, and low cost, pulse oximetry requires a pulsatile arterial
signal and only provides a systemic measure of oxygenation.6,7 The majority of existing devices
for local assessment of StO2 are based on near-infrared (NIR) spectroscopy. NIR spectroscopy
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quantifies the concentrations of oxygenated and de-oxygenated hemoglobin by characterizing
tissue absorption of light at wavelengths typically between 650 and 1000 nm.8 Similar to pulse
oximetry, spectroscopic probes require direct contact with tissue. These measurements can be
noisy as they are sensitive to pressure and sample movement.9–11 Compared with tissue probes,
spectroscopic imaging techniques are advantageous as they provide non-contact readings of oxy-
gen saturation at a high spatial resolution and large field of view.12 Nevertheless, continuous-wave
NIR spectroscopy assumes constant scattering, which could be a source of error as scattering
coefficients are often spatially non-uniform. Therefore, to accurately determine oxygen saturation,
it is imperative to separate the effects of optical properties, including absorption (μa) and reduced
scattering coefficients (μ 0

s). Spectrally constrained reconstructions have been shown to be useful
in measuring chromophore concentrations and μ 0

s, but this technique tends to require complex
instrumentation and suffers from limited fields of view.13

In recent years, spatial frequency-domain imaging (SFDI) has emerged as a promising tech-
nique for measuring tissue optical properties. SFDI quantifies optical properties by projecting
structured-light and characterizing the modulation transfer function of tissues in the spatial
frequency domain.14 Oxygenation can subsequently be determined by fitting chromophore con-
centrations to the measured absorption coefficients using the Beer–Lambert law. In addition to
isolating the effect of tissue scattering, SFDI is a wide-field, non-contact technique that can be
implemented using a simple setup that includes a camera and a projector. These advantages
make SFDI suitable for many clinical applications that necessitate accurate StO2 measurements,
such as burn wound assessment,15,16 pressure ulcer staging and risk stratification,17 image-guided
surgery,7,11 and cancer therapy evaluation.18

Despite its growing use in various applications, there are several factors that limit the clinical
translation of SFDI. First, compared with probe-based oximetry, SFDI components are costly.
For example, digital micromirror devices or spatial light modulators are often used to produce
programmable structured illumination. Second, SFDI requires carefully controlled imaging
geometries, which can be difficult to achieve in clinical settings. Moreover, conventional SFDI
requires six images per wavelength (0, 2

3
π, and 4

3
π phase offsets at two spatial frequencies) and a

pixel-wise lookup table (LUT) search to generate a single optical property map. For robust oxy-
genation estimates, absorption coefficients at a minimum of two wavelengths are needed, and an
additional least square fitting step is performed [Fig. 1(a)].19 Previous work has shown that real-
time imaging can be achieved with single-snapshot acquisition20 and either an optimized LUT21

or a machine learning inversion method.22 However, single image acquisition and frequency
filtering often result in image artifacts and high per-pixel error.23 Therefore, wide-field, rapid,
and accurate StO2 measurement still remains a challenge.

In recent years, convolutional neural networks (CNNs) have emerged as a powerful tool in
many medical imaging-related tasks.24,25 By employing convolutional filters followed by dimen-
sion reduction and rectification, CNNs are capable of extracting high-level features and inter-
preting spatial structures of input images.26 For image translation tasks, generative adversarial
networks (GANs) improve upon conventional CNNs by utilizing both a generator and a dis-
criminator27 to effectively model a complex loss function. The two components are trained
simultaneously, with the generator learning to produce realistic output and the discriminator
to classify the generator output as real or fake. Recently, GANs have been employed to predict
optical properties from single structured-illumination images (GANPOP).28 As a content-
aware network, this technique significantly improves upon the accuracy of model-based single-
snapshot techniques in estimating optical properties. However, to compute StO2 with the
GANPOP approach, multiple wavelength-specific networks must be run to first estimate absorp-
tion coefficients, followed by chromophore fitting, which compounds errors and increases com-
putational demand [Fig. 1(b)]. In this study, we present an end-to-end technique for computing
StO2 directly from structured-illumination images using GANs (OxyGAN). OxyGAN maps
StO2 from single-snapshot images from 659- and 851-nm sinusoidal illumination. We train gen-
erative networks to estimate both uncorrected and profile-corrected StO2 and compare the per-
formance of the end-to-end architecture versus intermediately calculating optical properties.
We accelerate OxyGAN model inference by importing the framework into NVIDIA TensorRT
for efficient deployment. Finally, we demonstrate real-time OxyGAN by recording its estimation
over the course of a 3-min occlusion experiment.
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2 Methods

For training and testing of OxyGAN, single structured-illumination images were acquired at two
different wavelengths (659 and 851 nm) and paired with registered oxygenation maps. Ground
truth oxygenation is obtained using the absorption coefficients measured by conventional SFDI
at four wavelengths (659, 691, 731, and 851 nm). Experiments were conducted using both pro-
file-corrected29,30 and uncorrected ground truth. The training set included human ex vivo esopha-
gus samples and in vivo feet. OxyGAN was evaluated using unseen tissues of the same type as
the training data (human in vivo feet) and in different tissue types (human in vivo hands and a pig
in vivo colon). Its performance was additionally compared with single-snapshot optical proper-
ties (SSOP)23,31 as a model-based benchmark that utilizes a single structured-light image.

2.1 Ground Truth Tissue Oxygenation

In this study, conventional SFDI was used to obtain ground truth StO2 maps. At each wave-
length, structured-illumination images were captured using a commercial SFDI system (Reflect
RS, Modulim Inc.) at two spatial frequencies (0 and 0.2 mm−1) and three phase offsets (0, 2

3
π,

and 4
3
π). The process was implemented for both the sample of interest and a reference phantom.

The acquired images were then demodulated and calibrated against the response of the reference
phantom at each frequency. The DC (0 mm−1) and AC (0.2 mm−1) diffuse reflectance of the
sample were fit to an LUT generated by White Monte Carlo simulations.32 This pixel-wise LUT
search resulted in an optical property map of the sample, which consisted of scattering corrected
absorption (μa) and reduced scattering (μ 0

s) coefficients. In experiments in which profile-
corrected ground truth was used, we also implemented height and surface normal angle correc-
tion.29,30 With μa measured at four different wavelengths (659, 691, 731, and 851 nm), we
subsequently estimated chromophore concentrations using the Beer–Lambert law:

EQ-TARGET;temp:intralink-;e001;116;99μaðλiÞ ¼
XN

n¼1

ϵnðλiÞcn; (1)

(a)

(b) (c)

Fig. 1 Comparison of (a) SFDI, (b) GANPOP, and (c) OxyGAN StO2 techniques. Ground truth
SFDI uses 24 input images (2 spatial frequencies, 3 phases, and 4 wavelengths), while GANPOP
and OxyGAN use 2 input images (1 spatial frequency, 1 phase, and 2 wavelengths). SFDI and
GANPOP absorption maps are subsequently fit to basis chromophores to estimate StO2. OxyGAN
directly calculates oxygen saturation with a single network, reducing compounding errors and
processing time.
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where ϵnðλiÞ stands for the extinction coefficient of chromophore n at wavelength λi, cn is its
concentration, and N is the total number of chromophores. Oxygen saturation was then calcu-
lated as

EQ-TARGET;temp:intralink-;e002;116;699stO2 ¼
cO2Hb

cO2Hb
þ cHHb

; (2)

where cO2Hb
and cHHb represent the concentrations of oxygenated and de-oxygenated hemoglo-

bin, respectively. We estimated ground truth oxygenation maps using absorption coefficients at
all of the NIR wavelengths available in the system (659, 691, 731, and 851 nm).

2.2 SSOP Benchmark

In this study, we implemented SSOP as a model-based benchmark. Briefly, this method calcu-
lates tissue optical properties from single structured-illumination images by 2-D filtering in the
frequency domain.23,31 We applied anisotropic low-pass filtering using a sine window and high-
pass filtering using a Blackman window.31 The absorption coefficients measured by SSOP at 659
and 851 nm were substituted into Eqs. (1) and (2) to estimate StO2.

2.3 OxyGAN Framework

In this study, we pose StO2 mapping as an image-to-image translation task. OxyGAN uses an
adversarial training framework to accomplish this task (Fig. 2). Specifically, OxyGAN is a con-
ditional generative adversarial network (cGAN) that consists of two CNNs—a generator and a
discriminator. Both networks are conditioned on the same input data, which are single struc-
tured-light images in our case. First proposed in Ref. 33, the cGAN structure has been shown
to be an effective solution to a wide range of image-to-image translation problems.34 While con-
ventional single-network CNNs require simple, hand-crafted loss functions, cGANs can be more
generalizable because the discriminator can effectively learn a complex loss function.

For the OxyGAN generator, we implement a fusion network that combines the properties of a
U-Net and a ResNet (Fig. 2).35,36 Similar to a U-Net, the OxyGAN generator is an encoder–
decoder setup with long skip connections between the two branches on the same level. However,

b

Real

Fake

Fig. 2 The OxyGAN framework. OxyGAN produces StO2 maps directly from single-phase SFDI
images with 659- and 851-nm illumination. The generator is a fusion network that combines the
properties of a U-Net and a ResNet. The number under each block describes the number of chan-
nels. The discriminator is a PatchGAN classifier with a receptive field of 70 × 70 pixels. The dis-
criminator trains to classify the current image pair versus an input–output pair randomly sampled
from a pool of 64 previously generated images.
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OxyGAN also includes short skip connections within each level and replaces U-Net concatena-
tion with additions, making the network fully residual.28,37 The residual blocks on each level
consist of five 3 × 3 convolutional layers, with residual additions between the outputs of the first
and the fourth layers. Dimension reduction on the encoder side and expansion on the decoder
side is achieved with 2 × 2 maxpooling and 3 × 3 up-convolutions, respectively. We use regular
ReLUs for the encoder and leaky ReLUs with a slope of 0.2 for the decoder. A final 3 × 3 con-
volution followed by a Tanh activation function is applied to generate the output. The discrimi-
nator is a three-layer PatchGAN with leaky ReLUs (slope ¼ 0.2),34 which results in a receptive
field of 70 × 70 pixels. To stabilize the training process, we incorporated spectral normalization
after each convolution layer in both the generator and the discriminator.38 We use an adversarial
loss of

EQ-TARGET;temp:intralink-;e003;116;604LcGANðG;DÞ ¼ Ex;y½logðDðx; yÞÞ� þ Ex½logð1 −Dðx; GðxÞÞÞ�; (3)

where G is the generator (G∶X → Y) and D is the discriminator.34 During training, G tries to
minimize this objective while its adversary, D, tries to maximize it. The discriminator is trained
to classify both the current input–ground truth pair and an image pair randomly sampled from a
buffer of 64 previously generated images. Determine if a given pair of images forms a correct
reconstruction for a given input. This classification is made from data that include the current
input–ground truth pair and an image pair randomly sampled from a buffer of 64 previously
generated pairs. Additionally, an L1 loss is included to improve the generator performance and
training stability:

EQ-TARGET;temp:intralink-;e004;116;476LL1ðGÞ ¼ Ex;y½ky − GðxÞk1�: (4)

The full objective function is expressed as

EQ-TARGET;temp:intralink-;e005;116;431min
G

max
D

LðG;DÞ ¼ LcGANðG;DÞ þ λLL1ðGÞ; (5)

where λ is a hyperparameter that controls the weight of the L1 loss term and was set to 60.
OxyGAN models solved this objective using an “Adam” solver with a batch size of 1.39 G and
D weights were both initialized from a Gaussian distribution with a mean and standard deviation
of 0 and 0.02, respectively. These models were trained for 200 epochs, and a constant learning
rate of 0.0002 was used for the first 100 epochs. The learning rate was linearly decreased to 0 for
the second half of the training process. The full algorithm was implemented using Pytorch 1.0 on
Ubuntu 16.04 with a single NVIDIA Tesla P100 GPU on Google Cloud.28

2.4 Data Split and Augmentation

In this study, we conducted separate experiments to estimate both uncorrected (StO2) and pro-
file-corrected oxygenation (StO2;corr) from the same single-snapshot structured-light image
input. These networks were trained and tested on 256 × 256-pixel patches paired with registered
oxygenation maps. To generate training datasets, each 520 × 696 image was segmented at a
random stride size, which resulted in ∼30 image pairs per sample. The input data were arranged
in a way so that the three image channels normally used for color were efficiently utilized
(Fig. 3). The first and second channels are flat-field corrected, single-phase illumination images
at 659 and 851 nm, respectively. To account for system drift over time, we included the ratio
between demodulated AC (MAC) and DC magnitude (MDC) of the reference phantom in the third
channel. Reference measurements were taken on the same day as the tissue measurements, in the
same way as conventional SFDI workflows. As shown in Fig. 3, the ratios at 659 and 851 nm
alternate in a checkerboard pattern to account for any spatial variations.

To prevent overfitting of the models, we augmented the training data by flipping the images
horizontally or vertically. During each epoch, both flipping operations occurred with a 50%
chance and were independent of each other. Data augmentation was important for this study
because of the small size of the training set and because the testing set includes new object
types never seen in training. Additionally, since the classification task of the discriminator was
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easier than the generator, we applied the one-sided label smoothing technique when training the
discriminator. In short, the positive (real) targets with a value of 1 were replaced with a smoothed
value (0.9 in our case). This was implemented to prevent the discriminator from becoming over-
confident and using only a small set of features when classifying output.40

2.5 Samples

The training set of OxyGAN models included eight ex vivo human esophagectomy samples41

and four in vivo human feet, which resulted in ∼1200 image pairs after augmentation. The testing
set consisted of two in vivo human hands and feet and an in vivo pig colon. All models were
cross-validated by training on four of the six feet and testing on the remaining two each time. All
summary results indicate the average performance of these three sets of trained networks.
OxyGAN models never see data from hands or in vivo pig colon in training.

We additionally recorded a 400-s video of a healthy volunteer’s hand during an occlusion
study. We first applied a household pressure cuff (Walgreens Manual Inflate Blood Pressure Kit)
to the upper arm of the volunteer and imaged the hand at baseline for a minute. Then, the cuff
pressure was increased to 200 mmHg to occlude the arm for ∼3 min. The pressure was then
released, and the hand was imaged for another 2.5 min. Single-phase sinusoidal illumination was
used; it was alternated between 659 and 851 nm so that oxygenation could be measured at each
time point (Δt ¼ 0.73 s). To obtain ground truth oxygenation, conventional six-image SFDI was
implemented every 25 s, resulting in 15 measurements in total.

In this study, the protocols for in vivo imaging of human hands and feet (IRB00214149) and
ex vivo imaging of esophagetomy samples (IRB00144178) were approved by Johns Hopkins
Institutional Review Board. The in vivo imaging of the pig colon (SW18A164) was approved
by Johns Hopkins Animal Care and Use Committee.

2.6 Performance Evaluation

In this study, we benchmarked OxyGAN by comparing it with SSOP. We additionally com-
pared OxyGAN with an approach using GANPOP networks to first predict optical properties
at 659 and 851 nm and to subsequently fit the concentrations of oxygenated and de-oxygenated
hemoglobin using the Beer–Lambert law. These GANPOP networks were trained on the same
dataset as OxyGAN with cross validation. The performance of all three methods was evaluated
using normalized mean absolute error (NMAE), which is equivalent to absolute percentage error:

EQ-TARGET;temp:intralink-;e006;116;154NMAE ¼
P

N
i¼1 jStO2i

− StO2i;GT
j

P
N
i¼1 StO2i;GT

: (6)

StO2i
and StO2i;GT

are predicted and SFDI ground-truth oxygen saturation, respectively. N is the
total number of pixels. All testing datasets were manually masked to include only pixels that
sampled the object.

Fig. 3 Images of the three input channels. Channels 1 and 2 are flat-field corrected single-
snapshot SFDI images at 659 and 851 nm. Channel 3 gives ratios between demodulated AC
(MAC; ref) and DC magnitude (MDC; ref) of the reference phantom. The ratios at 659 and 851 nm
are alternated to form a checkerboard pattern, as shown in the 4 × 4-pixel template on the
right.
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3 Results

The average NMAEs are reported in Table 1 for SSOP, GANPOP, and OxyGAN tested on
human feet, hands, and in vivo pig colon. The hands and feet are from different healthy vol-
unteers with a wide range of pigmentation levels (Fitzpatrick skin types 1 to 5). It is worth
emphasizing that the in vivo hands and pig colon were completely new tissue types that were
not represented in the training set. On average, OxyGAN outperforms SSOP and GANPOP in
accuracy by 24.04% and 6.88%, respectively, compared with uncorrected SFDI ground truth.
Compared with profile-corrected ground truth, the improvement of OxyGAN over SSOP and
GANPOP becomes 24.89% and 24.76%, respectively.

Figure 4 compares the results of profile-corrected SFDI, SSOP, and OxyGAN applied to a
sample of each testing tissue type. Lower errors and fewer image artifacts are observed in
OxyGAN results. Error plots highlight the fringe artifacts commonly observed parallel to the
illumination patterns in SSOP. As expected, both SSOP and OxyGAN exhibited higher errors in
the pig colon, which had more complex surface topography and made single-snapshot predic-
tions more difficult.

We additionally implemented OxyGAN on a video of a volunteer’s hand during an occlusion
study (Fig. 5). The average oxygen saturation was calculated for a region of interest highlighted
by the red box in Fig. 5(c) and was compared with the SFDI ground truth in Fig. 5(d). OxyGAN
accurately measures a large range of oxygenation values and shows strong and stable agreement
with conventional SFDI.

4 Discussion

In this study, we have described a fast and accurate technique for estimating wide-field tissue
oxygenation from single-snapshot structured-illumination images using GANs. As shown in
Table 1, OxyGAN accurately measures oxygenation not only for sample types represented

Table 1 NMAE of StO2 predicted by SSOP, GANPOP, and OxyGAN on both uncorrected and
profile-corrected SFDI ground truth.

Uncorrected SFDI Profile-corrected SFDI

Feet Hands Pig Overall Feet Hands Pig Overall

SSOP 0.0396 0.0430 0.1508 0.0778 0.0601 0.0672 0.1404 0.0892

GANPOP 0.0438 0.0381 0.1085 0.0635 0.0795 0.0655 0.1220 0.0890

OxyGAN 0.0358 0.0335 0.1080 0.0591 0.0536 0.0466 0.1007 0.0670

Note: Bold values indicate best performance, and italic values indicate overall performance as the weighted
average of the hands, feet, and pig samples.

(a)

(b)

(c)

Fig. 4 Comparison of profile-corrected SFDI, SSOP, and OxyGAN StO2 results: (a) in vivo human
foot, (b) in vivo human hand, and (c) in vivo pig colon.
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in the training set (human feet) but also for unseen sample types (human hands and pig colon).
This supports the possibility that OxyGAN can be robust and generalizable. The occlusion video
(Fig. 5) further demonstrates the ability of OxyGAN to accurately measure a wide range of tissue
oxygenation levels and to detect changes over time.

Compared with training separate GANPOP networks to first estimate absorption coefficients,
OxyGAN produces an average improved accuracy of 15.8%. Moreover, a greater improvement
is observed in profile-corrected experiments. One potential explanation for this is that the errors
in absorption coefficients due to uncertainties in profilometry estimation propagate and result in
a larger error in oxygenation measurements. Additionally, compared with separate GANPOP
models, the end-to-end OxyGAN approach requires only one network and bypasses the Beer–
Lambert fitting step, thus greatly reducing the computational cost for training and inference. For
example, training a network on 350 patches took ∼2.2 h or 40 s per epoch on an NVIDIATesla
P100 GPU. Training separate GANPOP networks would take double the amount of time and
memory. To achieve real-time StO2 mapping, we first converted the trained model to the Open
Neural Network Exchange (ONNX) format. We then imported the ONNX model into NVIDIA
TensorRT 7 for reduced latency and optimized inference. For testing, OxyGAN inference on a
Tesla P100 took ∼0.04 s to generate a 512 × 512 oxygenation map. This is 8 times faster than
computing optical properties with two GANPOP networks and ∼10 times faster than two
GANPOP inferences followed by a Beer–Lambert fitting step. We expect OxyGAN to process
1024 × 1024 images at a similar framerate (25 Hz) on a quad-GPU workstation.

To evaluate model performance, we benchmarked OxyGAN by comparing it with a single-
snapshot technique based on a physical model (SSOP). Table 1 shows that, in estimating both
uncorrected and profile-corrected oxygenation, OxyGAN achieves higher accuracy than SSOP
in all tissue categories. In addition to improved average accuracy, OxyGAN results also contain
fewer subjective image artifacts (Fig. 4). These benefits are more pronounced for samples with
complex surface topography, such as the pig gastrointestinal sample. Unlike SSOP, which
relies on Fourier domain filtering, OxyGAN utilizes both local and high-level features. As a

(a)

(c) (d)

(b)

Time (s)

Fig. 5 Video of the occlusion-release experiment: (a) input at 659 nm, (b) input at 851 nm, (c) StO2

map predicted by OxyGAN, and (d) StO2 trend measured by OxyGAN and ground truth SFDI over
time (Video 1, MP4, 3.7 MB [URL: https://doi.org/10.1117/1.JBO.25.11.112907.1]).
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content-aware, data-driven approach, OxyGAN has the potential to learn the underlying distri-
bution of the data and accurately infer oxygenation in regions with low signal or non-uniform
surface structures.

In Table 1, we observe that GANPOP achieves similar accuracy to SSOP for profile-corrected
ground truth. This is expected for several reasons. First, the training set used in this study is
smaller than in the original GANPOP paper,28 excluding in vivo hands and tissue-mimicking
phantoms. Second, for physical model-based techniques, such as SSOP, the optical property
errors due to surface topography variation are correlated across wavelengths and can later be
reduced by chromophore fitting. For instance, for surface normal vectors pointing further away
from the detector, the predicted absorption coefficients will be overestimated for both 659 and
851 nm. However, the fitting of hemoglobin concentrations oxygen saturation, which relies on
the ratios of absorption coefficients, may mask the intermediate optical property errors. Because
the GANPOP networks are trained independently for 659 and 851 nm, the loss function does not
learn these correlations, resulting in smaller improvements in accuracy over SSOP for StO2 mea-
surements than for optical property measurements. This observation also provides some intuition
for why the OxyGAN network might improve accuracy over GANPOP. Because OxyGAN is
trained on multi-wavelength input and the loss function is computed from the StO2 estimate, it is
capable of modeling correlations between absorption at different wavelengths and learning to
reduce the effects of varying surface topography. Furthermore, a higher error rate is observed for
the pig colon sample for both GANPOP and OxyGAN, likely due to this tissue type not being
included in the training set and the complex topography of the colon specimen compared with
other training samples.

The architecture of OxyGAN is based on the GANPOP framework.28 The generator com-
bines the features of both the U-Net and the ResNet, in that it incorporates both short and long
skip connections and is fully residual. As discussed in Ref. 28, this fusion generator has advan-
tages over most other existing architectures because it allows information flow both within and
between levels, which is important for the task of optical property prediction. In this study, we
empirically trained a model with a standard U-Net generator. The model performed well on
sample types included in the training set; however, it collapsed and was unable to produce accu-
rate results when tested on unseen sample types, such as human hands. Compared with
GANPOP, OxyGAN employs data augmentation in the form of horizontal and vertical flipping,
which is important for preventing overfitting of models trained on small datasets. OxyGAN also
utilizes label smoothing in training the discriminator, which further improves model performance
and overall training stability. Finally, we found that adding a channel of checkerboard reference
phantom measurements to the 2-wavelength structured-light inputs improves accuracy for mea-
surements taken on different days, allowing OxyGAN to take system drift into account similarly
to conventional SFDI.

In the future, more work could be done to optimize the algorithm of OxyGAN to further
improve the data processing speed. The model could be trained and tested on larger datasets that
span a wider range of tissue types or scenarios that might be encountered clinically. To develop a
robust and generalizable model, future work should train on data with a range of spatial frequen-
cies acquired on several different instruments. Domain adaptation techniques could also be imple-
mented on the trained models to improve robustness to different imaging geometries. In addition,
similar to other single-snapshot techniques, one limit of OxyGAN is its expected sensitivity to
ambient light. Moreover, oxygenation mapping using SFDI structured illumination is currently
limited because it has a shallow depth of field and requires precisely controlled imaging geometry,
making its clinical adoption particularly challenging. One alternative is to use random laser
speckle patterns as structured illumination, which could be less costly than SFDI projection sys-
tems and more easily incorporated into endoscopic applications and may avoid fringe artifacts due
to sinusoidal illumination.42 Monocular depth estimation could also be incorporated for profile-
correction without requiring a projector and profilometry.43,44 Furthermore, a more sophisticated
LUT could be developed to directly estimate StO2 from SSOP data, which models the correlations
between reflectance measurements at different wavelengths and the underlying tissue oxygena-
tion. This pixel-wise estimation may provide a more accurate baseline that will help quantify the
benefit of the content-aware aspect of OxyGAN. Finally, data-driven methods may be useful for
taking higher-order optical property effects, such as the scattering phase function, into account.
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5 Conclusion

In this study, we have presented an end-to-end approach for wide-field tissue oxygenation map-
ping from single structured-illumination images using cGANs (OxyGAN). Compared with both
uncorrected and profile-corrected SFDI ground truth, OxyGAN achieves a higher accuracy than
model-based SSOP. It also demonstrates improved accuracy and faster computation than two
GANPOP networks that first estimate optical absorption. This technique has the potential to
be incorporated into many clinical applications for real-time, accurate tissue oxygenation mea-
surements over a large field of view.
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