
Burn wound classification model
using spatial frequency-domain
imaging and machine learning

Rebecca Rowland
Adrien Ponticorvo
Melissa Baldado
Gordon T. Kennedy
David M. Burmeister
Robert J. Christy
Nicole P. Bernal
Anthony J. Durkin

Rebecca Rowland, Adrien Ponticorvo, Melissa Baldado, Gordon T. Kennedy, David M. Burmeister, Robert
J. Christy, Nicole P. Bernal, Anthony J. Durkin, “Burn wound classification model using spatial frequency-
domain imaging and machine learning,” J. Biomed. Opt. 24(5), 056007 (2019),
doi: 10.1117/1.JBO.24.5.056007.



Burn wound classification model using spatial
frequency-domain imaging and machine learning

Rebecca Rowland,a Adrien Ponticorvo,a Melissa Baldado,a Gordon T. Kennedy,a David M. Burmeister,b
Robert J. Christy,b Nicole P. Bernal,c and Anthony J. Durkina,d,*
aUniversity of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
bUnited States Army Institute of Surgical Research, San Antonio, Texas, United States
cUC Irvine Regional Burn Center, Department of Surgery, Orange, California, United States
dUniversity of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States

Abstract. Accurate assessment of burn severity is critical for wound care and the course of treatment. Delays in
classification translate to delays in burn management, increasing the risk of scarring and infection. To this end,
numerous imaging techniques have been used to examine tissue properties to infer burn severity. Spatial
frequency-domain imaging (SFDI) has also been used to characterize burns based on the relationships
between histologic observations and changes in tissue properties. Recently, machine learning has been
used to classify burns by combining optical features from multispectral or hyperspectral imaging. Rather
than employ models of light propagation to deduce tissue optical properties, we investigated the feasibility
of using SFDI reflectance data at multiple spatial frequencies, with a support vector machine (SVM) classifier,
to predict severity in a porcine model of graded burns. Calibrated reflectance images were collected using
SFDI at eight wavelengths (471 to 851 nm) and five spatial frequencies (0 to 0.2 mm−1). Three models
were built from subsets of this initial dataset. The first subset included data taken at all wavelengths with
the planar (0 mm−1) spatial frequency, the second comprised data at all wavelengths and spatial frequencies,
and the third used all collected data at values relative to unburned tissue. These data subsets were used to train
and test cubic SVM models, and compared against burn status 28 days after injury. Model accuracy was estab-
lished through leave-one-out cross-validation testing. The model based on images obtained at all wavelengths
and spatial frequencies predicted burn severity at 24 h with 92.5% accuracy. The model composed of all values
relative to unburned skin was 94.4% accurate. By comparison, the model that employed only planar illumination
was 88.8% accurate. This investigation suggests that the combination of SFDI with machine learning has poten-
tial for accurately predicting burn severity. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JBO.24.5.056007]
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1 Introduction
Although a variety of optical imaging modalities have been
investigated to assess burn wound depth, visual inspection by
an experienced clinician is still the standard method for deter-
mining burn wound severity.1,2 With about 500,000 patients
admitted to burn units in the United States annually,3,4 accurate
and expedient treatment of burn wounds is integral to mini-
mizing hospital stay and the risk of scarring or infection.5

Superficial burns require monitoring and minimal dressing, as
tissue damage only extends to the epidermis and the papillary
dermis. Deep-partial and full thickness burns involve more
aggressive treatment (i.e., debridement and grafting) because
tissue damage extends into the reticular dermis and underlying
subcutaneous fat. At postburn time points earlier than 24 h,
the accuracy of clinical impression in differentiating between
superficial-partial thickness and deep-partial thickness burn
severity is between 60% and 80%.6 While accuracy improves
the longer the clinician waits to make a diagnosis, outcomes are
improved the sooner debridement and grafting is performed.4,5

Additionally, failure to graft regions of full or deep-partial burns

has the potential to result in infection, hypertrophic scarring,
contraction, tissue necrosis, delayed wound healing, and a
longer hospital stay.7

The need to accurately and quickly determine which burns
require grafting has led to the investigation of various optical
imaging modalities for identifying burn severity. For example,
multispectral imaging has been used in preclinical models by
implementing spatially uniform (planar) illumination to measure
reflectance at different wavelengths.8,9 Each wavelength sam-
ples different depths within tissue and subsequently shows a
change in signal in the presence of tissue damage.10–12

Spatial frequency-domain imaging (SFDI) has also been
used to determine burn severity through the measurement of
absorption and scattering properties of burn tissue in animal
models.13–16 SFDI is a unique, noncontact, wide-field imaging
modality that provides quantitative, spatial maps of tissue opti-
cal properties based on diffuse optical spectroscopic principles.
Unlike multispectral imaging, which only uses planar (0-mm−1

spatial frequency) illumination, this modality utilizes a range of
spatial frequencies to interrogate different depths and calculate
tissue scattering. The measured reduced scattering coefficient
indicates the structure and density of underlying tissue, whereas
the wavelength-dependent absorption coefficient can be*Address all correspondence to Anthony J. Durkin, E-mail: adurkin@uci.edu
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converted to concentrations of oxyhemoglobin, deoxyhemoglo-
bin, and water.

Previously, we have used SFDI to quantitatively and nonin-
vasively characterize burn wound severity, and track burn
wound healing over time.13–17 SFDI was used on a rat model
to track wound healing by monitoring the changes in scattering,
water fraction, oxyhemoglobin concentration, and deoxyhemo-
globin concentration as the vasculature and collagen reformed in
damaged regions.15 Preceding work in both rat and swine model
established a correlation between burn depth as determined by
histology and reduced scattering determined using SFDI. This is
likely a consequence of thermal denaturation of collagen that
affects the arrangement of collagen fibers.13,16 The results of
these investigations have suggested that scattering can be
used to accurately differentiate superficial-partial, deep-partial,
and full thickness burns at the 24-h postburn time point, which is
commonly used as a temporal reference point when comparing
predictive performance of various burn wound severity assess-
ment tools.17 While the approach of visualizing SFDI burn data
at multiple parameters appears to be promising, initial investi-
gations into machine learning have indicated an improved way
of employing SFDI data within a burn severity assessment
context that enables rapid and more nuanced visualization of
burns.18

Machine learning has been utilized in previous SFDI
studies.19,20 Regressive machine learning models are used to
estimate optical properties and trained with SFDI-derived reflec-
tance values. Datasets made with varying absorption and
reduced scattering values are built through computationally
intensive Monte Carlo modeling, and the machine learning
model outputs are compared against other proven quantitative
modeling techniques, such as diffuse approximation and
Monte Carlo-derived look-up-tables.

Machine learning algorithms have recently been employed in
conjunction with wide-field imaging modalities to segment and
classify the severity of burn wounds. In supervised machine
learning-based approaches, models are trained using image fea-
tures that correspond to a known classification output. Once
trained on a representative set of data, the model can then be
applied to data acquired in the same way, but where the true
output is unknown, and examined for its potential to inform
the output. The support vector machine (SVM) is one such
model, which separates data within a multidimensional space
by determining the plane that optimally separates classes at adja-
cent values.21 Using an approach based on machine learning,
parameters can be combined to predict the burn severity for
each individual pixel within the image of a burn region.
Previously, machine learning models have been trained and
tested on data from multispectral and hyperspectral imaging
devices that employ conventional planar imaging. These meth-
ods resulted in classification accuracies between 63% and
76.9%.9,22 Various filtering techniques have also been applied
to these datasets, increasing the accuracy of burn severity pre-
diction to 77.8%.23

In the investigation presented herein, we examine the ability
of a cubic SVM classification model to predict burn wound
severity using calibrated reflectance data from multiple wave-
lengths and spatial frequencies obtained via SFDI. Machine
learning-based classification potentially enables rapid clinical
interpretation of SFDI data by compiling multiple parameters
into a single output that does not require differentiation into
scattering at multiple wavelengths or individual chromophores.

Tangentially, we compare the predictive performance of an
SVM model that uses only conventional planar multispectral
image data to a model that uses data at multiple spatial
frequencies.

2 Methodology

2.1 Animals

The data employed in this investigation were obtained from im-
aging studies that were carried out in a porcine model of graded
burn wounds in compliance with the UC Irvine Institutional
Animal Care and Use Committee (IACUC protocol #2015-
3154). Two Yorkshire pigs were used through the duration of
the study. Each animal was allowed to acclimate for 7 days
after their arrival to the facility, prior to experimentation. They
were initially anesthetized with tiletamine-zolazepam (Telazol,
6 mg∕kg). The animals were intubated and anesthesia
was maintained throughout the experiment with 1% to 3%
isofluorane. The respiration rate was controlled to 10 breaths
per min. Before imaging, hair on the animal’s dorsum was
clipped, and the area cleaned of any debris. At the end
of each imaging period, burn wounds were covered with
saline-soaked nonadherent gauze (Telfa, Tyco Healthcare,
Mansfield, Massachusetts) and held in place with an Ioban™
dressing (3M, St. Paul, Minnesota).

2.2 Creation of Controlled, Graded Burn Wounds

Controlled, graded burn wounds were created using a custom
burn tool, as described in previous studies.13,14 This burn tool
composed of 3-cm-diameter brass rods, was heated to 100°C
within an aluminum block inside an Isotemp™ dry bath incu-
bator (Thermo Fisher Scientific Inc., Pittsburgh, Pennsylvania).
Fiducial markers were placed with a surgical pen at 2.5 cm from
the center of each burn region, to assist with the placement of the
burn tool. To create the burns, one rod was held in a spring
loaded apparatus that enables the user to safely apply a con-
trolled, constant pressure while creating each burn. The burn
wounds were placed in two rows along the prepared region
on the pig’s dorsum. Each pig received 16 burns, two of
each contact time, 1 cm from the spine, and 3 cm from each
adjacent burn. Contact times of the tool to with skin were 5,
10, 15, 20, 25, 30, 35, and 40 s, creating a range of superfi-
cial-partial, deep-partial, and full thickness burns. No debride-
ment or grafting was performed, and the burns were allowed to
heal for 28 days without surgical intervention besides biopsy
collection.

2.3 Clinical Assessment and Burn Classification

A clinical evaluation of each burn was used to define the true
classifications of each burn, before any data were compiled with
a machine learning model. A board certified burn surgeon with
15 years of burn-related experience used visual and tactile
examination to assess burn severity 28 days after the burn.
At 28 days, wound contraction and hypertrophic scarring
were apparent in regions of full and deep-partial thickness
burns, and the regions of tissue that received superficial-partial
burns re-epithelialized without contraction or scarring. The cli-
nician judged each burn and identified severe burn areas that, in
normal practice, would have been debrided and grafted within
the first week postburn. They also defined other burn areas as
regions where grafting would not be required. When making this
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assessment, the clinician was blinded to the contact times used
when creating the burns. This assessment was treated as the
ground truth and used as the known outcome while training
the machine learning models in order to gauge a model’s clas-
sification accuracy. The two burn outcomes served as two of the
classes for the machine learning model to predict. The hyper-
perfused border of burn and the unburned skin were also treated
as separate classes. The color images in Fig. 1 indicate examples
of these four classes at day 1 and day 28.

2.4 Spatial Frequency-Domain Imaging

SFDI combines projections of sinusoidal patterns at multiple
wavelengths with multispectral imaging to measure depth-
resolved optical properties over a wide field of view.24,25 The
addition of spatially modulating light at different wavelengths
changes the volume of tissue interrogated, and results in the
measurement of absorption and reduced scattering. In this study,
we employed the Reflect RS® (Modulated Imaging, Inc.,
Irvine, California), a commercial SFDI instrument capable of
imaging optical properties of tissues over large fields of view
(20 × 15 cm)24 (shown in Fig. 2). The measurements were
taken 24 h after the placement of the burns. In addition to im-
aging each burn, a measurement was made of a tissue-simulat-
ing optical phantom having known optical properties in order to
calibrate SFDI data. SFDI data for each region of tissue were
acquired within 35 s. The imaging device was placed at a work-
ing height of 32 cm and centered so each measurement captured
two neighboring burn regions. Illumination was provided by
eight light-emitting diodes (LEDs) at 471-, 526-, 591-, 621-,
659-, 691-, 731-, and 851-nm wavelengths and projected at spa-
tial frequencies of 0 (conventional planar illumination), 0.05,
0.10, 0.15, and 0.20 mm−1, as described in our previous

work.13,14 Each nonzero spatial frequency pattern was projected
at three phases, separated by 120 deg. All told, a single meas-
urement comprised of 120 images, each corresponding to a com-
bination of one of eight wavelengths, five spatial frequencies,
and three phases.

SFDI data acquisition and analysis were performed within
the MI Analysis v1.14.21 software suite, provided with the
Reflect RS™. Using this analysis software, raw measurement
reflectance data and raw calibration phantom reflectance data
at multiple phases were demodulated at each combination of
the eight wavelengths and five spatial frequencies into 40 total
images of calibrated reflectance, as described previously.26

In previous studies, models of light propagation in turbid
media were used to convert calibrated reflectance data into opti-
cal properties and chromophore concentrations.27–30 For this
study, only calibrated reflectance data were used in the training
and testing of cubic SVM classification algorithms.

2.5 Color Photography

After each SFDI measurement, color photographs were taken of
each burn with a 14-megapixel digital camera (NEX-3, Sony
Corporation of America, New York, New York).

2.6 Development of Classifier based on Support
Vector Machine

A cubic SVM model was used to classify burn regions.
This algorithm segmented data by identifying a hyperplane
that optimally separated classes within the data at the point
where classes were most dissimilar.31–33 In the case of the
cubic SVM, the hyperplane is described with a cubic polyno-
mial, which could account for nonlinear separation between

Fig. 1 ROIs corresponding to four classification regions (unburned skin, hyperperfused burn periphery,
burn that did not require grafting, and burn that should have been grafted) were chosen from calibrated
reflectance images collected 24 h after the burn. Displayed are the images taken with SFDI at 0.00-
(multispectral imaging) and 0.20-mm−1 spatial frequencies with 471-, 691-, and 851-nm wavelengths,
as well as graphs plotting the training regions over all wavelengths.
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classes. Optimization and analysis were performed using the
Statistics and Machine Learning Toolbox™ within MATLAB
2017a (Mathworks, Inc., Natick, Massachusetts). The cubic
SVM model is a supervised classification that requires training
data in order to learn how to correctly classify data, in this
case, regions of tissue that had undergone thermal insult.
First, the clinical assessment and day 28 color photography
were evaluated for areas that represented one of four tissue
health classes describing burn severity. The first class (marked
in red in Fig. 1) characterized unburned skin that never
received thermal injury. The second class (marked in green
in Fig. 1) referred to the hyperperfused region bordering the
burn. The third class (marked in blue in Fig. 1) categorized
regions of the burn wound that re-epithelialized without scar-
ring at the day 28 time point and would not have required a
skin graft. The fourth class (marked in violet in Fig. 1) indi-
cated areas where scarring, wound contraction, or lack of re-
epithelialization were apparent, signifying a need for debride-
ment and grafting.

A 5 × 5 pixel (1.4 × 1.4 mm) region of interest (ROI) was
selected in the day 1 calibrated reflectance image, then averaged
and labeled with the corresponding tissue health class as estab-
lished at the 28-day postburn time point. ROIs were necessary
since accurate point-by-point severity assessment of day 1 cali-
brated reflectance images could not be performed due to wound
contraction by day 28. The ROI size was chosen as the largest
size that could definitively spatially encompass all burn severity
classes. The limiting case was the hyperperfused regions, which
were typically only 2-mm wide. Finally, this same ROI was
selected in every iteration of wavelength and spatial frequency.
Examples of these classes and the regions of interest chosen for
the training set can be seen in Fig. 1. For this model, 40 regions
were labeled for each class type, resulting in 160 regions for the
training dataset. All data regions from the training set were
selected from a single pig. Data from the second pig were
used to test the pretrained model.

Three iterations of the cubic SVM model were compared, in
order to assess how the addition of spatially modulated light
affects the accuracy of classifying burn wounds. The first
version used a training set that included only a subset of the
SFDI data, where images were taken with 0-mm−1 spatial fre-
quency illumination at all eight wavelengths. This subset of the
SFDI data represented a dataset that would be obtained from
conventional planar multispectral imaging. The second model
used the complete set of SFDI data, five spatial frequencies
and eight wavelengths. The third model also included the com-
plete set of SFDI data, but each calibrated reflectance value was
normalized relative to unburned skin. These values were divided
by an average calibrated reflectance value of all the ROIs clas-
sified as unburned skin. This model was used to compensate
for relative differences in calibrated reflectance values between
animal subjects.

The accuracy of each model was determined using k-fold
cross-validation for 10 folds,34–37 a leave-one-out validation
method. Sixteen regions were removed from the training set,
and a model was created using the remaining 144 data regions.
The 16 regions were treated as a testing set, containing four
regions from each class. The trained algorithm was applied
to the testing set, and the outcome compared to the true classes
of each test region. This was repeated 10 times for different
training and testing sets, such that each data region was included
in a testing subset once. The overall accuracy of each model
was the average of these 10 repetitions and is summarized in
Table 1 and the confusion matrices of Figs. 4(a)–6(a). These
confusion matrices also describe the sensitivity and precision
that each model predicts individual classes. Here, sensitivity is
defined as proportion of correct positive predictions to all
positive outcomes, and precision is defined as the proportion of
correct positive predictions to the sum of all positive predictions.

Finally, each of these models was tested against day 1 cal-
ibration reflection data from 16 burns created on a separate pig.
Figure 3 shows the results from each model on a single burn.

Fig. 2 A schematic of the SFDI device. Eight LEDs (wavelengths 471 to 851 nm) project sinusoidal
patterns at five spatial frequencies (0 to 0.2 mm−1). Raw images are converted to calibrated reflectance.
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3 Results

3.1 Clinical Assessment and Color Photography

Out of the set of burns used to derive the training set, seven out
of the 16 burns were considered healed at the 28-day time point
and would not have required a skin graft. The clinician noted
that regions within the remaining nine burns were either
deep-partial or full thickness burns. In normal practice, these
regions would have been debrided and then received a skin
graft. The color images were used to associate the classification
of training set regions with the clinical assessment at day 28.
The tissue health classification prediction provided by the cubic
SVM models was also compared to the assessment on day 28.

3.2 Model Based on Conventional Planar
Wide-Field Multispectral Imaging

The first model incorporated reflectance images where the
illuminaiton was projected with 0-mm−1 spatial frequency (con-
ventional planar illumination). The training set k-fold cross-
validation accuracy was 88.8% across all classes. Within this

model, the prediction of hyperperfused burn regions was the
most accurate. As seen in the confusion matrix, Fig. 4(a),
this model identified 40 out of 40 points that described the
hyperperfused border, with a precision of 97.6% and a sensitiv-
ity of 100%. This model was least accurate at predicting regions
of superficial and superficial-partial thickness burn regions.
The model correcty identified 32 of the 40 points of superficial
burns within the training set, with a precision of 76.2% and
a sensitivity of 80%.

3.3 Model from Combined Spatial Frequency Data

The following model combined images taken at all five spatial
frequencies and eight wavelengths. This combined model was
92.5% accurate for all classifications. As shown in the confusion
matrix in Fig. 5(a), this model accurately classified all 40 of the
40 training points for unburned skin. The precision was 95.2%
and the sensitivity was 100%. The model was the least accurate
when predicting burn wound regions that would not require a
graft, correctly classifying 33 of 40 points for each class. For
this classification, the precision was 89.2% and the sensitivity
was 82.5%.

3.4 Model from Relative Dataset

The final model also used the combined dataset from all spatial
frequency and wavelength images, but each point in the data was
related to the average calibrated reflectance values for unburned
skin, as shown in Figs. 6(a)–6(b). Across all classifications, this
model was 94.4% accurate. As with the combined data model
without normalization, this model accurately assessed all 40 of
the training set points for unburned skin. The model’s precision
was 95.2% and sensitivity was 100%. The model also identified
all 40 of the hyperperfused regions, with a precision of 97.6%

Table 1 Model accuracy for all four classes was determined by
a 10-fold cross-validation of 160 ROIs.

Input data spatial
frequencies

0 mm−1

(planar)
All spatial
frequencies

All spatial
frequencies
(relative to

unburned skin)

Cross-validation
accuracy for training
set (%)

88.8 92.5 94.4

Fig. 3 Classification predictions from the three models on a 15-s burn. ROIs and day 28 color image
indicate the true burn classification.
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and a sensitivity of 100%. The model indicated burn regions that
did not require grafting with a precision of 94.4% and sensitivity
of 85%.

3.5 Summary

The k-fold cross-validation outcomes for each model are shown
in Table 1.

4 Discussion

4.1 Planar (0 mm−1) Model and Spectroscopy

Previous instances of machine learning as a means with which to
predict burn wound severity have used multispectral imaging
data to train an algorithm. The SFDI dataset of calibrated reflec-
tance values taken only at the 0.00-mm−1 spatial frequency is

comparable to conventional multispectral imaging in previous
studies. These modalities collect images at multiple wavelengths
of light but do not utilize spatially modulated illumination.
A previous burn imaging study used multispectral imaging in
a Hanford pig model.9 Reflectance images taken at eight wave-
lengths with the range of 420 to 972 nm were compiled with the
linear SVM and k-nearest neighbors methods, and included an
additional outlier detection algorithm. These model outcomes
were between 63% and 76% accurate for all classifications.
Another series of studies was performed on Hanford pigs using
a combination of reflectance measurements from multispectral
imaging at eight wavelengths between 420 and 850 nm, param-
eters from the digital color images such as gradient and skew,
and photoplethysmography (PPG).22,23 These studies described
four classes for unburned skin, shallow burn, deep burn, and
exposed wound bed due to debridement. Quadratic discriminant
analysis models were created from measurements with each

Fig. 4 (a) Confusion matrix of 10-fold cross-validation performed on the cubic SVM model created using
0-mm−1 spatial frequency data. (b) Cubic SVMmodel based on 0-mm−1 data, applied to day 1 calibrated
reflectance imaging data of burns in a single pig (middle row). Corresponding day 28 color image (bottom
row) shows the true outcome for each burn.

Fig. 5 (a) Confusion matrix of 10-fold cross-validation performed on the cubic SVM model created using
all spatial frequency data. (b) Combined data cubic SVM model applied to day 1 calibrated reflection
data of burns in a test pig (middle row). Corresponding day 28 color image (bottom row) shows the
true outcome for each burn.
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individual modality and the combined data from all the modal-
ities. These models predicted classifications at accuracies
between 73.4% and 74.4% for all classes for the models created
through multispectral imaging alone, and accuracies between
76.9% and 77.8% when multispectral data were combined with
features from PPG and color image data.

Hyperspectral imaging data have also been used to train
machine learning models to segment burns. A study on Noroc
pigs used hyperspectral data from 400 to 2500 nm and models
compiled by the k-means algorithm and spectral–spatial image
segmentation.8 The outcomes from these methods indicated
considerable heterogeneity, even in regions of unburned skin.
Additionally, classifications through this method cannot be
related back to physiologic differences since the segments were
determined by unsupervised learning and not trained according
to known burn severity.

The model using a subset of the SFDI data that contained
only the planar (0-mm−1 spatial frequency) calibrated reflec-
tance data resulted in an accuracy of 88.8% across all classes.
While this subset of data is similar to that of previous groups
using multispectral imaging, differences in model types, classi-
fication labels, and methods of assessing the classification
accuracy make it difficult to directly compare model accuracy
between studies.

4.2 Machine Learning with Spatially Modulated
Light

In the models that used the complete set of SFDI data, accuracy
across all classes was 92.5%, and 94.4% for the model relative
to unburned skin. This improvement in accuracy of these two
models over the model using the subset of planar (0 mm−1)
SFDI data demonstrates how the addition of spatially modulated
light improves the machine learning model. The source of these
differences in model output and overall accuracy can be seen in
the graphs of calibrated reflectance plotted against wavelength
in Fig. 2. The graphs for data taken at the planar (0 mm−1)
spatial frequency show some variation at lower wavelengths
between regions of unburned skin, superficial burns that
would not have required surgical intervention, and deep or

full thickness burns that should have received a skin graft.
Alternately, there is variation in calibrated reflectance between
these same regions at multiple wavelengths at the 0.20-mm−1

spatial frequency. The addition of this spatial frequency data
to the model can account for an increase in the model accuracy,
as there is more contrast between regions of different
classifications.

Ideally, the outcomes predicted by the application of these
models to our testing set would be further validated against
another quantitative method that provides similar outputs. Such
validation methods can be seen in previous SFDI works, where
machine learning regression models are used to interpret optical
properties.19,20 Here, the machine learning-derived optical prop-
erties are compared against gold-standard methods of deriva-
tion, such as diffuse approximation and Monte Carlo-based
look-up-tables. However, a quantitative classification model
of burn wounds through optical imaging and independent of
machine learning has not been established. To this end, model
validation is assessed through k-fold accuracy and qualitative
visual comparison of the model predictions.

This model could conceivably be simplified into a binary
predictor, separating regions that require grafting with regions
that do not require any kind of intervention. While the identi-
fication of the hyperperfused and unburned skin may not
seem relevant to the clinical outcome, marking these two classes
provides landmarks by which to compare color images to the
final model prediction. Also, as seen by the graphs in Fig. 1,
inclusion of these regions in the training set is necessary to
take into account the low calibrated reflectance in the hyperper-
fused region. Additionally, even though this area will re-epi-
thelialize, this zone is involved in the inflammatory response
during burn wound healing.38

Compiling all calibrated reflectance data into a single output
also simplifies the final outputs previously gained in burn stud-
ies with SFDI. In previous works, SFDI was performed on burns
in a porcine model.13–17 These earlier experiments reported val-
ues for scattering and absorption at every wavelength, as well as
oxyhemoglobin and deoxyhemoglobin concentrations. While it
is more difficult to equate classification values with physiologi-
cal effects, the classifications are still based in real tissue optical

Fig. 6 (a) Confusion matrix of 10-fold cross-validation performed on the cubic SVM model created using
all spatial frequency data, relative to values of the unburned skin regions. (b) Combined data cubic SVM
model applied to day 1 calibrated reflection data of burns in a test pig (middle row). Corresponding day 28
color image (bottom row) shows the true outcome for each burn.
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properties. For example, deoxyhemoglobin and oxyhemoglobin
concentrations speak to vessel patency, and reduced scattering
coefficients are related to the extent of collagen coagulation.
While these different parameters have meaning, the machine
learning outcome has the advantage of being a single intuitive
result, rather than a series of multiple datasets that require
further interpretation.

5 Conclusion
Machine learning has previously been used with multispectral
imaging data to classify burn wound severity. Here, we show
that the planar (0 mm−1) spatial frequency subset of SFDI
data can similarly be used to create an accurate model.
However, the addition of modulated illumination at more spatial
frequencies improves the accuracy of machine learning models
to classify burns. The final outcome of this model creates a sin-
gle image that can be easily interpreted by clinicians to assess
burn wound severity. Ultimately, a faster diagnosis will allow for
more appropriate and expedient treatment decision improving
outcomes and reducing costs associated with burn care.

This work has shown that the addition of calibrated reflec-
tance data collected with spatial modulation adds predictive
power to a classification model for burns. Further investigation
can now be made into how individual wavelengths and spatial
frequencies improve the model outcome, and how these aspects
may correlate with physiological differences between regions of
the burn wound.
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