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Abstract. Diffuse reflectance spectroscopy (DRS) can be used to noninvasively measure skin properties. To
extract skin properties from DRS spectra, you need a model that relates the reflectance to the tissue properties.
Most models are based on the assumption that skin is homogenous. In reality, skin is composed of multiple
layers, and the homogeneity assumption can lead to errors. In this study, we analyze the errors caused by
the homogeneity assumption. This is accomplished by creating realistic skin spectra using a computational
model, then extracting properties from those spectra using a one-layer model. The extracted parameters
are then compared to the parameters used to create the modeled spectra. We used a wavelength range of
400 to 750 nm and a source detector separation of 250 μm. Our results show that use of a one-layer
skin model causes underestimation of hemoglobin concentration [Hb] and melanin concentration [mel].
Additionally, the magnitude of the error is dependent on epidermal thickness. The one-layer assumption
also causes [Hb] and [mel] to be correlated. Oxygen saturation is overestimated when it is below 50% and under-
estimated when it is above 50%. We also found that the vessel radius factor used to account for pigment
packaging is correlated with epidermal thickness. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
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1 Introduction
Diffuse reflectance spectroscopy (DRS) is an optical technique
that has been widely used to noninvasively measure skin optical
properties.1–9 Typically, a DRS probe consists of a group of
fibers that are placed in contact with the skin. The most common
fiber orientation is the six-around-one geometry where a central
fiber connected to a light source injects light into the tissue, and
the six peripheral fibers collect the light that has travelled
through the tissue and returned to the surface. This light contains
quantitative information about the tissue that it has passed
through, and this information can be used to assess the tissue’s
physiological state. A model that relates the diffuse reflectance
to physiological properties of tissue is used to extract physio-
logical parameters from the DRS spectra. Many models
based on the diffusion approximation have been developed to
extract properties from DRS spectra; however, this technique
requires source detector separations (SDSs) of at least
1 mm.2,10,11 Because the thickness of the epidermis is on the
order of 100 μm,12 SDSs much less than 1 mm are necessary
in order to probe the epidermis properties, meaning the
assumptions required for the diffusion approximation are
invalid. To overcome this problem, recently developed models
for extracting physiological properties from DRS spectra have
used Monte Carlo (MC) simulations to model the transport of
photons through tissue.13–15 Most of these models are based on
the assumption that skin is homogeneous and that its properties
are independent of depth. In reality, skin is composed of

multiple layers with different properties. For example, melanin
is primarily located in the epidermis, whereas hemoglobin is
only located in the dermis. Additionally, the thickness of the
epidermis varies with anatomical location. Assuming that
skin is homogenous can lead to errors in the extracted physio-
logical properties because variations in epidermal thickness can
make the measurement of chromophore concentrations difficult
by changing the sensitivity of the probe to each layer. Some
multilayered inverse models of skin have been developed to
overcome this problem.16–21 While depth-dependent hetero-
geneities were analyzed in this study, heterogeneities that are
spatially in the plane of detection were not considered. Such
heterogeneities would include the border of a nevus or other
concentrations of pigment in the skin as well as the localization
of hemoglobin in vessels which was investigated by Fredriksson
et al.20 Additionally, Fredriksson et al. generated a spectra using
a two-layer model of skin with individual blood vessels and fit
those spectra with a one-layer model. They found that using the
one-layer model led to much greater errors in extracted param-
eters when compared to using a three-layer model to fit the
spectra.20

In this study, we analyze the specific errors that are caused by
the one-layer assumption of skin. This is accomplished by first
creating modeled DRS spectra using a two-layered forward dif-
fuse reflectance skin model in the 400 to 750 nm wavelength
range with an SDS of 250 μm. Next, parameters are extracted
from the spectra using an inverse one-layer, or homogenous,
skin model. The extracted parameters can then be compared
to the parameters used to generate the modeled two-layer spec-
tra, and this allows for a quantitative and systematic analysis of
the errors that arise from the homogeneity assumption for skin.
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2 Materials and Methods

2.1 Two-Layer Forward Model

Modeled spectra were created using a two-layer skin model
based on an MC lookup table (MCLUT) approach.16 A four-
dimensional MCLUT was created using a two-dimensional
MC code written in ANSI C22 implemented on an NVIDIA
GTX 560 Ti GPU on 386 parallel threads.23 The refractive
index above the tissue was set to 1.45 to match the refractive
index of an optical fiber, and the refractive index of the medium
was set to 1.4 to match the refractive index of tissue. Spatially
resolved diffuse reflectance was calculated by convolving
the impulse response using a Gaussian-shaped beam profile
with a radius of 100 μm, and reflectance was calculated at a
center-to-center SDS of 250 μmwith a 100-μm radius collection
fiber.24 This geometry was chosen because of its common use in
skin applications.25 Each entry in the MCLUT contains a reflec-
tance value for a given top layer thickness (Z0), epidermal
absorption (μa;epi), dermal absorption (μa;derm), and reduced
scattering coefficient (μ 0

s), which is assumed to be equal in
both layers. In the MCLUT, Z0 ranges from 0 to 1000 μm,
μa;epi ranges from 0 to 50 cm−1, μa;derm ranges from 0 to
50 cm−1, and μ 0

s ranges from 0 to 70 cm−1. Ten evenly spaced
increments were used for each of the parameters, giving a total
of 10,000 separate MC simulations. A total of 107 photons were
used for each MC simulation. The Henyey–Greenstein phase
function was used for sampling scattering angles. Scattering
anisotropy was set to 0.85 for all simulations.

The MCLUT-based forward model for diffuse reflectance is
based on a two-layer skin model where a reference absorption
spectrum of melanin26 is used for the top layer and oxy- and
deoxy- hemoglobin27 spectra are used for the bottom layer
with a wavelength range of 400 to 750 nm. Spectra are generated
by first selecting the following properties: (1) epidermal thick-
ness (Z0), (2) hemoglobin concentration ([Hb]), (3) oxygen sat-
uration (SO2), (4) melanin concentration ([mel]), and (5) μ 0

sðλ0Þ.
Reduced scattering at all wavelengths is calculated using
Eq. (1), which is commonly used in tissue optics,13–16

μ 0
sðλÞ ¼ μ 0

sðλ0Þ ×
�
λ

λ0

�
−B
; (1)

where μ 0
s is the reduced scattering coefficient at wavelength λ,

λ0 ¼ 630 nm, and B is the scattering exponent, which is related
to the size of the scattering particles. Absorption in the top layer
at each wavelength is calculated using Eq. (2)

μa;epiðλÞ ¼ εmelðλÞ½mel�; (2)

where μa;epiðλÞ is the epidermal absorption coefficient at wave-
length λ, εmelðλÞ is the extinction coefficient of melanin at wave-
length λ, and [mel] is the concentration of melanin. Absorption
in the bottom layer at each wavelength is calculated using
Eq. (3),

μa;dermðλÞ ¼ ½Hb�½εHbO2
ðλÞSO2 þ εHbðλÞð1 − SO2Þ�; (3)

where μa;dermðλÞ is the dermal absorption coefficient at wave-
length λ, [Hb] is the total concentration of hemoglobin,
εHbO2

ðλÞ is the extinction coefficient of oxygenated hemoglobin
at wavelength λ, εHbðλÞ is the extinction coefficient of deoxy-
genated hemoglobin at wavelength λ, and SO2 is the oxygen

saturation. Once the optical properties are determined at each
wavelength, the MCLUT is used to determine the reflectance
at each wavelength. Cubic splines are used to interpolate
between values in the MCLUT.

2.2 One-Layer Inverse Model

A one-layer inverse skin model was used to extract the param-
eters from the two-layer spectra. The same code used to generate
the two-layer MCLUT was also used to create the one-layer
MCLUT. Refractive indices and probe geometry parameters
were also the same. In the one-layer MCLUT, μ 0

s ranges
from 0 to 70 cm−1 and μa ranges from 0 to 50 cm−1 to
cover the range of optical properties present in skin.28 Ten
evenly spaced increments were used for each parameter. In
the one-layer inverse model, the first step is to set initial values
to the following parameters: (1) μ 0

sðλ0Þ, (2) [mel], (3) [Hb],
(4) SO2, and (5) vessel radius (Rvess). Next, μ 0

sðλÞ is calculated
using Eq. (1) and μaðλÞ is determined using the following equa-
tion:

μaðλÞ ¼ εmelðλÞ½mel� þ μcorrecteda;Hb ðλÞ; (4)

where [mel] represents the concentration of melanin and
μcorrecteda;Hb ðλÞ is the wavelength dependent absorption due to
hemoglobin that has been corrected for the inhomogeneous dis-
tribution. Because hemoglobin is confined to very small vol-
umes in blood vessels, we account for this inhomogeneous
distribution in tissue by using the corrections described by
van Veen et al. to calculate a corrected absorption coefficient
of blood.29 The correction factor can be calculated as

CpackðλÞ ¼
�
1 − expð−2μa;blðλÞrvessÞ

2μa;blðλÞrvess

�
; (5)

where μa;blðλÞ is the absorption coefficient of whole blood and
rvess is assumed to be the mean vessel radius in the tissue volume
sampled. The packaging corrected absorption coefficient of
blood in tissue can now be written as

μcorrecteda;Hb ðλÞ ¼ CpackðλÞμa;blðλÞ; (6)

where

μa;blðλÞ ¼ ½Hb�½εHbO2
ðλÞSO2 þ εHbðλÞð1 − SO2Þ�; (7)

where [Hb] is the hemoglobin concentration, εHbO2
ðλÞ is the

extinction coefficient for oxygenated hemoglobin at wavelength
λ, εHbðλÞ is the extinction coefficient for deoxygenated hemo-
globin at wavelength λ, and SO2 is the oxygen saturation.
After Eqs. (1), (4) to (7) are used to calculate μaðλÞ and
μ 0
sðλÞ, the one-layer MCLUT is used to generate a reflectance

spectrum. The root-mean-sqared error between this spectrum
and the modeled two-layer spectrum is then calculated. The
parameters are then iteratively updated until the error is mini-
mized. An interior-point nonlinear optimization routine pro-
vided in the MATLAB® optimization toolbox (Mathworks,
Natick, Massachusetts) was used as the optimization algorithm.
In order to avoid converging to a local minima, the optimization
algorithm was run three times with three different sets of initial-
ization parameters and then we used the solution that gave the
smallest error. We are confident that the global minimum was
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found because the three different initialization parameters led to
very similar solutions.

2.3 Extracting One-Layer Properties from
Two-Layer Spectra

By fixing some parameters and changing others in the two-layer
forward model and then fitting the resulting two-layer spectra
with the one-layer model, we are able to systematically deter-
mine the errors that arise from the homogeneity assumption of
skin. The following experiments were performed:

1. changing [mel] and fixing all other two-layer
parameters,

2. changing [Hb] and fixing all other two-layer
parameters,

3. changing SO2 and fixing all other two-layer
parameters,

4. changing Z0 and fixing all other two-layer parameters
to analyze the relationship between Z0 and rvess, and

5. selecting random pairs of [mel] and [Hb] and fixing all
other two-layer parameters.

3 Results
Spectra based on a two-layer skin model were generated and
then parameters from the spectra were extracted using a one-
layer inverse skin model. Figure 1 shows a representative fit
and illustrates the good agreement between the two-layer
and one-layer spectra. Because the same scattering value
was used for both layers in the two-layer model, the error
in extracted scattering values was always less than 1.7%.
Figure 2 shows the two-layer [mel] versus the one-layer
extracted [mel]. This plot was created by varying the two-
layer [mel] used to create the spectra and fixing all other param-
eters at three different values for Z0 (50, 100, and 200 μm). [Hb]
was fixed at 1 mg∕ml, μ 0

s was fixed at 20 cm−1, SO2 was fixed
at 100%, and B was fixed at −1.5. [mel] ranged from 0 to

5 mg∕ml in 20 increments. The one-layer inverse model was
then used to extract [mel] from each spectra.

Figure 3 shows the two-layer [Hb] versus the one-layer
extracted [Hb]. This plot was created by varying the two-
layer [Hb] used to create the spectra and fixing all other param-
eters at three different values for Z0 (50, 100, and 200 μm).
[mel] was fixed at 1 mg∕ml, μ 0

s was fixed at 20 cm−1, SO2

was fixed at 100%, and B was fixed at −1.5. [Hb] ranged
from 0 to 3 mg∕ml in 20 increments. The one-layer inverse
model was then used to extract [Hb] from each spectra.

400 500 600 700
10

15

20

25

30

35

40

45

50

Wavelength (nm)

R
ef

le
ct

an
ce

 (
a.

u.
)

 

 
One−layer fit
Two−layer spectra

Fig. 1 A representative fit showing the good agreement between
the two-layer and one-layer spectra.
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Fig. 2 Two-layer [mel] versus the one-layer extracted [mel]. This plot
was created by varying the two-layer [mel] used to create the spectra
and fixing all other parameters at three different values for Z 0 (50,
100, and 200 μm). [Hb] was fixed at 1 mg∕ml, μ 0

s was fixed at
20 cm−1, SO2 was fixed at 100%, and B was fixed at −1.5. [mel]
ranged from 0 to 5 mg∕ml in 20 increments.
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Fig. 3 Two-layer [Hb] versus the one-layer extracted [Hb]. This plot
was created by varying the two-layer [Hb] used to create the spectra
and fixing all other parameters at three different values for Z 0 (50,
100, and 200 μm). [Hb] was fixed at 1 mg∕ml, μ 0

s was fixed at
20 cm−1, SO2 was fixed at 100%, and B was fixed at −1.5. [mel]
ranged from 0 to 3 mg∕ml in 20 increments.
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Figure 4 shows the two-layer SO2 versus the one-layer
extracted SO2. This plot was created by varying the two-
layer SO2 used to create the spectra and fixing all other param-
eters at three different values for Z0 (50, 100, and 200 μm).
[mel] was fixed at 1 mg∕ml, μ 0

s was fixed at 20 cm−1, [Hb]
was fixed at 1 mg∕ml, and B was fixed at −1.5. SO2 ranged
from 0 to 100% in 20 increments. The one-layer inverse
model was then used to extract SO2 from each spectra.

Figure 5 shows Z0 versus the vessel radius parameter used in
the one-layer inverse model. This plot was created by varying Z0

in the two-layer model used to create the spectra and fixing all
other parameters. [mel] was fixed at 1 mg∕ml, [Hb] was fixed at

1 mg∕ml, μ 0
s was fixed at 20 cm−1, SO2 was fixed at 100%, and

B was fixed at −1.5. Z0 ranged from 0 to 300 μm in 20 incre-
ments. The one-layer inverse model was then used to extract
vessel radius from each spectra. To illustrate the relationship
between the pigment packaging factor in the one-layer model
and the epidermal thickness, a pigment packaging factor was
not included in the two-layer model.

Figures 6(a) and 6(b) were created by generating 100 random
pairs of [mel] and [Hb] to generate two-layer spectra while all
other parameters were fixed. Z0 was fixed at 100 μm, μ 0

s was
fixed at 20 cm−1, SO2 was fixed at 100%, and B was fixed
at −1.5. The random pairs of [Hb] and [mel] used to generate
the two-layer spectra are plotted in Fig. 6(a) and the extracted
one-layer values for [Hb] and [mel] are plotted in Fig. 6(b). In
Fig. 6(a), [Hb] and [mel] have a Pearson correlation coefficient
(PCC) of R ¼ 0.0438. In Fig. 6(b), [Hb] and [mel] have a PCC
of R ¼ 0.7950.

4 Discussion and Conclusions
In this study, we investigated errors caused by using a one-layer
assumption for skin when using diffuse reflectance spectroscopy
to measure optical properties. This was accomplished by first
creating spectra using a two-layer skin model and then
extracting the properties from the modeled spectra using a
one-layer inverse skin model. The parameters used to generate
the two-layer spectra were then compared to the parameters
extracted with the one-layer inverse model.

Figure 2 shows the extracted one-layer [mel] versus the two-
layer [mel] for three different epidermal thicknesses. Notice that
the one-layer model underestimates [mel]; however, this would
be expected since the one-layer inverse model is extracting a
volume average for [mel], and the melanin is located only in
a thin top layer. Additionally, the magnitude of the error is de-
pendent on epidermal thickness, with an underestimation by
a factor of 5 when the epidermal thickness is 50 μm and by a
factor of approximately 1.25 when the epidermal thickness is
200 μm. If the epidermal thickness is unknown, it would not be
possible to interpret a [mel] value extracted with a one-layer
skin model. Similarly, Fig. 3 shows the extracted one-layer
[Hb] versus the two-layer [Hb] for three different epidermal
thicknesses. [Hb] is also underestimated when a one-layer skin
model is used; however, the errors are smaller than the ones for
[mel] and the relationship of the error to epidermal thickness is
the opposite with an underestimation of a factor of 1.2 when
the epidermal thickness is 50 μm and by a factor of 2 when the
epidermal thickness is 200 μm. Figures 2 and 3 show that [Hb]
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Fig. 4 Two-layer SO2 versus the one-layer extracted SO2. This plot
was created by varying the two-layer SO2 used to create the spectra
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layer spectra. (b) Extracted one-layer values for [Hb] and [mel].
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and [mel] will be underestimated when a one-layer skin model is
used and that the magnitude of the underestimation is a function
of epidermal thickness. If the epidermal thickness was known, it
could be possible to correct for these errors; however, in many
clinically realistic scenarios, the epidermal thickness will be
unknown.

Figure 4 shows the extracted one-layer SO2 versus the two-
layer SO2 for three different epidermal thicknesses. For
SO2 < 50%, the one-layer model overestimates SO2, and for
SO2 > 50%, the one-layer model underestimates SO2. The
magnitude of the errors is directly proportional to epidermal
thickness, meaning the error will be larger when the epidermis
is thicker with error levels reaching 20% when the epidermal
thickness is 200 μm. Similar to the problem with using a
one-layer model to extract [mel] and [Hb], it will be difficult
to interpret SO2 values that are extracted using a one-layer
skin model when the epidermal thickness is unknown.

To account for inhomogeneously distributed blood in skin,
many one-layer models have incorporated a pigment packaging
factor. This factor, often calculated as the average vessel radius,
accounts for the flattening of the hemoglobin absorption spectra
that is caused by the reduced path length of photons at wave-
lengths where the absorption is high. We noticed a similar
flattening phenomenon is caused by increasing the epidermal
thickness. Figure 5 was created in order to further investigate
the relationship between the vessel radius factor in a one-layer
model and the epidermal thickness in a two-layer model.
Figure 5 shows that there is a strong positive correlation between
epidermal thickness and the vessel radius factor. Because of
this, we believe the pigment packaging factor is influenced by
both the localization of blood in vessels and the localization of
blood under the epidermis.

In Fig. 6, we investigate if the one-layer assumption would
have any effect on the correlation between [mel] and [Hb]. First,
random pairs of [mel] and [Hb] were selected and used to gen-
erate two-layer spectra. These random pairs are plotted in
Fig. 6(a) and are essentially uncorrelated with a PCC of
R ¼ 0.044. Figure 6(b) plots the pairs of [mel] and [Hb] that
were extracted using the one-layer model and shows that
they are highly correlated with a PCC of R ¼ 0.795. This cor-
relation is due to the wavelength dependence of photon sam-
pling depth. At shorter wavelengths, both scattering and
absorption in skin are higher, therefore, photons with shorter
wavelengths have shallower sampling depths and are more
heavily weighted toward the properties of the epidermis.30

This means that the effect of melanin is larger at shorter wave-
lengths in a two-layer model. In a one-layer model, this does not
occur because hemoglobin and melanin are evenly distributed.
When you attempt to fit a one-layer model to two-layer data, the
one-layer model will underestimate the absorption due to mela-
nin at shorter wavelengths. To compensate for this, the optimi-
zation routine can increase the hemoglobin concentration since
hemoglobin absorbs strongly at shorter wavelengths. This
allows the optimization routine to minimize the error, but causes
the artificial correlation between melanin concentration and
hemoglobin concentration. We believe that this is the biggest
limitation of using a one-layer model since there is no way
to correct for the artificial correlation between [mel] and
[Hb]. Additionally, correlation between extracted parameters
can decrease the performance of a classifier. For example, if
the extracted parameters were used to train a classifier for
the diagnosis of skin cancer, we would expect an inferior

performance from the classifier because of the artificial corre-
lation between [mel] and [Hb] that is caused by the one-layer
assumption of skin.

We have demonstrated evidence that using a one-layer model
for skin to extract properties from DRS spectra leads to errors in
the extracted properties. By generating modeled spectra with
a more physiologically realistic two-layer model, and then
extracting properties from those spectra using a one-layer
inverse skin model, we were able to quantitatively and system-
atically analyze the errors that arise from the one-layer
assumption for skin. All of our simulations were performed
using a 400 to 750 nm wavelength range and an SDS of
250 μm since these values are common for DRS in skin. At
longer wavelengths where the absorption due to hemoglobin
and melanin is negligible, a one-layer model could be sufficient.
Additionally, a one-layer model could also be sufficient for
much larger SDSs where the effect of the epidermis is greatly
diminished. The main disadvantage of using a two-layer model
is the increased computational complexity; however, through
the use of an LUT method and advances in GPU computing,
this is no longer a major issue. Our results can be used to aid
in the interpretation of extracted one-layer parameters; but
more importantly, these results provide evidence showing that
a one-layer model is inadequate for extracting optical properties
from a two-layered tissue.
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