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Abstract. Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence
molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction
results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively.
Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-
NCG) algorithm, which has been proven to be able to increase the computational speed with low memory con-
sumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the
L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of
L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical
phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The
reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-
edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT. © 2014 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.4.046018]
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1 Introduction
As a promising low-cost and noninvasive molecular imaging
modality profiting from the availability of a variety of highly
specific fluorescent molecular probes, fluorescence molecular
tomography (FMT) has been applied for detection and fol-
low-up of tumor growths, cell trafficking, immune and treatment
responses, and is expected to find further applications in bio-
medical research and drug discovery.1–6 By detecting the photon
density over the animal surface, FMT can offer three-dimen-
sional (3-D) and quantitative visualization of fluorescence dis-
tribution in small animals in vivo.

However, only with the photon distribution measured at the
surface, the reconstruction of FMT is an ill-conditioned problem
due to the high degree of scattering of photons propagating
through tissues. This accordingly incurs a poor spatial resolution
in FMT, which is an important technical challenge. Even though
more fluorescence information can be captured by multispectral
technique7–10 or multiple spatial patterns of illumination,11–14 the
FMT inverse problem is still ill-conditioned and consumes much
time and memory. Moreover, the reconstruction of FMT is
highly susceptible to noise and numerical errors. To compute
a meaningful approximate solution, penalty terms are typically
incorporated into the regularization function. For example, regu-
larization functions are chosen to enforce smoothness,15 pro-
mote sparsity,16–18 or incorporate anatomical information.19–21

In addition, based on compressed sensing, some convex optimal
algorithms have been used in the FMT inverse problem.22–25

Among these, quadratic penalty (i.e., L2 regularization) is

commonly used since it is simple and can be efficiently solved
by a large range of standard minimization algorithms, such as
the Tikhonov method. However, the fast spatial changes in the
solution are often oversmoothed, and the localized features are
lost during the reconstruction process.16 Unlike L2 regulariza-
tion, L1 regularization can preserve details, such as edges and
smooth out noise, especially when the reconstructed fluorophore
distribution is sparse. Recently, we proposed an efficient
restarted L1 regularization-based nonlinear conjugate gradient
(re-L1-NCG) algorithm for FMT reconstruction, which can
increase the computational speed with low memory consump-
tion and high localization accuracy.26

From the aspect of algorithm design, a key issue is how to
design an algorithm to obtain the reconstruction results with
high spatial resolution. Plenty of efforts have been donated to
improve the spatial resolution of FMT by separating fluorescent
targets with small edge-to-edge distance (EED).21,27–30 By tak-
ing advantage of the different variation trends of fluorescence
yields caused by kinetic concentration or multispectral excita-
tion, principal component analysis was used to resolve fluoro-
phores neighboring each other closely.27,28 In the multimodality
imaging system combining positron emission tomography
(PET) and FMT, the target prior information from PET images
was employed in the FMT reconstruction procedure using the
iteratively reweighted least-squares method, and improved spa-
tial resolution was observed.21 In addition, time-resolved meas-
urement of early arriving photons has been demonstrated by a
number of groups to reduce photon scatter, which contributes to
improving the spatial resolution effectively.29,30 However, it
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should be noted that these aforementioned reconstruction meth-
ods rely on some auxiliary means, such as kinetic concentration,
multispectral excitation, prior information from anatomy
images, and early photons. These methods cause long data-col-
lection interval or require additional anatomical information for
the reconstructed targets, which will decrease the reconstruction
speed and consume much memory. Thus, it is very necessary to
design a reconstruction method that can improve the spatial res-
olution of FMTwithout any auxiliary information. In this paper,
the previously proposed re-L1-NCG algorithm is adopted to
obtain high spatial resolution in FMT.

In re-L1-NCG, the NCG algorithm with backtracking line
search (BLS) is used to solve the L1 regularization optimization
problem,31 which is abbreviated as L1-NCG. However, the con-
vergence speed of L1-NCGdecreases after some iterations due to
the ill-condition of FMT inverse problem. In order to increase the
convergence speed, we proposed a restarted strategy in which the
searching descent direction and the permission domain would be
reset after a fixed number of iterations. It should be noted that the
permission domain in this paper is obtained using L1-NCGwith-
out additional anatomical information. In order to compensate for
the low level of emission light coming from nodes deep in the
tissue, the pretreatment is carried out by normalizing the columns
of system matrix of FMT problem. For comparison, Tikhonov
(a conventional L2-regularized method) and L1-Ls (a well-
knownL1-regularizedmethod) are adopted. Through adding log-
arithmic barrier penalties, L1-Ls obtains the optimal point by a
specialized interior-point method using the preconditioned con-
jugate gradients (PCG) algorithm to compute the search direc-
tion.32 In simulation and physical phantom studies, double
fluorescent targets with different EEDs (0.1 to 0.6 cm) at a
depth of 1.5 cm are employed to evaluate the performance of dif-
ferent reconstruction methods in terms of spatial resolution.

This paper is organized as follows. In Sec. 2, the mathemati-
cal framework of FMT and the re-L1-NCG algorithm are pre-
sented, and a merit function is proposed to quantitatively
analyze the spatial resolution. In Sec. 3, numerical simulations
and physical phantom studies are conducted to validate the
enhanced spatial resolution in the reconstruction results using
the proposed algorithm. The results are discussed and this
paper is concluded in Sec. 4.

2 Method

2.1 Model of Diffusion Equation

To solve the forward problem is to predict the values of the
observable measurements, according to the distribution of
fluorochrome and other model parameters. Considering the
computational burden of the radiative transfer equation
(RTE), the forward model used to predict photon propagation
in highly scattering media is based on the coupled diffusion
equations (DE) with Robin-type boundary condition.33 In prac-
tice, absolute experimental measurements cannot be acquired
since it is nearly impossible to accurately measure the incident
light intensity and the corresponding instrumentation response
functions. Consequently, referencing approaches should be
adopted.34 Through the normalized Born approximation to
the DE, the nonlinear FMT problem can be linearized and all
the position-dependent gain factors in the forward model can
be canceled out.34,35 The normalized Born average intensity
at location rd corresponding to an illumination spot located
at rs can be formulated as follows:

ϕfðrd; rsÞ ¼
ϕemðrd; rsÞ
ϕexðrd; rsÞ

; (1)

where ϕemðrd; rsÞ denotes the average intensity at emission
wavelength λ2 and ϕexðrd; rsÞ denotes the average intensity at
excitation wavelength λ1. Then the normalized Born approxima-
tion can be formulated as follows:

ϕfðrd;rsÞ¼
S0υ

Gðrs;rd;λ1ÞDf

Z
Gðrd;r;λ2ÞxðrÞGðrs;r;λ1Þd3r;

(2)

where Gðrs; r; λ1Þ denotes the analytically calculated photon
field at excitation wavelength λ1 induced at position r by a
source at position rs in the tissue. Gðrd; r; λ2Þ is the Green’s
function, which describes photon propagation from point r to
the detector point rd at emission wavelength λ2. Df is the dif-
fusion coefficient of tissue at emission wavelength λ2, υ is the
speed of light in the tissue, and S0 is a calibration factor account-
ing for various system gain and attenuation factors. Kirchhoff
approximation (KA) as an analytical method is used to solve
the FMT forward model, in order to ease the computational bur-
den of numerical methods (such as the finite element method).36

After the image domain is discretized, the FMT problem can be
formulated as the following linear matrix equation:

Φf ¼ WX; (3)

where W denotes the weight matrix (or sensitive matrix) map-
ping the unknown vector of fluorochrome concentrations (X)
into the measured surface fluorescence vector (Φf). Detailed
descriptions can be found elsewhere.35

2.2 FMT Reconstruction Based on L1
Regularization

Through DE forward model, Eq. (3) couples the fluorochrome
distribution (X) to the measurements (Φf) with the weight
matrix W. To solve the inverse problem of FMT is to infer
the distribution of fluorochrome (X) from the measured values
of the observable measurements (Φf). The inverse problem can
be directly solved by inverting the weight matrix W. However,
this inversion is often ill-posed in the Hadamard sense, as the
dimension of the null space of W is not zero. To guarantee
the uniqueness and stability of FMT inverse problem and to pre-
serve high spatial resolution, L1 regularization is adopted.26 For
the FMT inverse problem, the optimization function is formu-
lated as follows:

argmin
X≥0

kWX −Φfk22 þ λkXk1; (4)

where λ is the regularization parameter balancing the data fitting
and L1 penalty. Through normalizing the columns of matrix W
defined in Eq. (3), the high attenuation of emission light coming
from deep fluorochromes in the tissue can be compensated.37 By
means of normalization, the resultant preconditioned optimiza-
tion function is rewritten as follows:

XL1 ¼ argmin
X≥0

½fðXÞ ¼ kWnewX −Φfnewk22 þ λkXk1�; (5)

Wnorði; jÞ ¼
� kWik−12 i ¼ j

0 i ≠ j
; (6)
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Wnew ¼ WWnor; Φfnew ¼ Φf∕maxðΦfÞ; (7)

where Wi is the i’th column of matrix W.
Equation (5) is solved through the NCG descent algorithm

with BLS. NCG methods are well known in unconstrained opti-
mization problems. However, it can be seen that Eq. (5) is con-
strained with non-negativity constraint. Although there are
many methods to deal with the non-negativity constraint,
such as logarithmic barrier penalties, alternating direction
method of multipliers (ADMM), split Bregman, and proximal
method, they seem a bit complicated compared with L1-NCG
because they proceed by iteratively updating the primal and
dual variables.16,38,39 In this paper, Eq. (5) is first computed
by L1-NCG without non-negativity constraint. Then the nega-
tive values are set to zero. The detailed description of L1-NCG
can be found elsewhere.26,31 As mentioned in Ref. 26, the search
directions in the L1-NCG method are not strictly conjugative
between each other, and the step lengths are approximated sub-
optimally, unlike in the linear conjugate gradient method. In
addition, the severe ill-posedness of the FMT inverse problem
makes it difficult to achieve satisfactory reconstruction results.
Thus, restarted strategy is adopted to remit the aforementioned
trouble of L1-NCG. In summary, the re-L1-NCG algorithm pro-
posed in Ref. 26 is composed of inner iteration and outer iter-
ation. When the search direction and initial value is set, the
L1-NCG is applied in the inner iteration to get the sparse
reconstruction results. Then based on the results reconstructed
using L1-NCG, the permission region including the recon-
structed fluorescent targets can be obtained. By resetting the
search direction and the permission region, restarted strategy
is realized in the outer iteration to increase the convergence
speed of L1-NCG, which gives rise to satisfactory
reconstruction results. The implementation of re-L1-NCG is
summarized in Fig. 1.

When the number of iterations in L1-NCG is equal to kinner,
the search direction for BLS is reset as negative gradient of fðXÞ
in Eq. (5).26 After kinner iterations, the negative value in Xk

re-L1 is
set to zero, and then the new Xk

re-L1 is used as the initial value for
the next round of iterations because the performance of L1-NCG
depends on the initial value. It is worth emphasizing that these
nonzero positions in Xk

re-L1 correspond to an approximate per-
mission region, which includes the true fluorescent targets.26

Then in matrix Wk
new, the columns corresponding to zero in

Xk
re-L1 can be removed. Because the number of unknowns is dra-

matically reduced, the ill-posedness can be alleviated and the
computational speed can be increased. Through the aforemen-
tioned permission region, the dimension of the matrix corre-
sponding to Eq. (7) scales down sharply. This can increase
the computational speed and reduce the memory consumption.
After the first kinner inner iterations, the permission region is big
enough to cover the true fluorescent targets. Along with the iter-
ation, the size of the permission region gradually shrinks to the
true size of the reconstructed fluorescent targets, until re-L1-
NCG is terminated. By means of the L1 regularization combined
with restarted strategy, reconstruction results with high spatial
resolution can be obtained. It should be noted that one of the
main roles of L1-NCG is to obtain an appropriate permission
region for the restarted strategy. With the non-negative con-
straints, ADMM, proximal method, or split Bregman can obtain
more accurate results, where the negative values do not appear in
the reconstruction results.38,39 However, in the frame of restarted
strategy, these methods seem more complicated and need more
time to obtain an appropriate permission region than L1-NCG.

When the cardinality of Xk
re-L1 is smaller than a certain value

(200) or the number of outer iterations exceeds the maximum
(30), the re-L1-NCG algorithm is terminated. In addition,
how to choose the regularization parameter under different
experimental conditions is a difficult task, as the regularization
parameter depends on the degree of ill-posedness. However, by
adopting the normalization strategy shown in Eqs. (6) and (7),
the reconstruction results with re-L1-NCG are not sensitive to
the regularization parameter in a proper range. In this paper, the
tuning parameters are manually optimized as described in
Ref. 26, where λ is set as 15.

In this paper, the Tikhonov method as a widely used analyti-
cal reconstruction method is adopted for comparison, and the
suboptimal regularization parameter for Tikhonov is experien-
tially selected based on 10−5 × trðWWTÞ.40 In addition, L1-Ls
as an L1-regularized method is adopted to solve Eq. (4).32 In
this paper, the optimal parameters of L1-Ls are set experien-
tially. In L1-Ls, the regularization parameter is set to
0.00001; the maximum number of Newton iterations is set to
200; and the maximum number of BLS iterations is set to 100.

Actually, the spatial resolution of FMT system depends on
several experimental parameters, including the wavelength of
the emission light, the thickness of the tissues, the depth of
the fluorescent targets, the arrangements of sources and detec-
tors, the optical parameters, the reconstruction algorithms, the
number of reconstructed fluorescence targets, etc.41,42 The
focus of this paper is the enhanced spatial resolution obtained
using the re-L1-NCG algorithm. In this paper, two targets are
separated with different EEDs in simulations and physical phan-
tom experiments. In order to quantitatively analyze the perfor-
mance of the algorithms in resolving the two targets, a relative
merit function is defined as follows:43

Fig. 1 Flow chart of the restarted L1 regularization-based nonlinear
conjugate gradient (re-L1-NCG) algorithm. k inner denotes the number
of inner iterations of L1-NCG; kouter denotes the number of outer iter-
ations; k denotes the current number of the outer iteration.
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R ¼ xpmax − xpvalley
xpmax − xpmin

; (8)

where xp denotes the value of the profile along a given line on
the reconstructed cross-section. xpmax and xpmin denote the maxi-
mal and minimal values of xp, respectively. xpvalley denotes the
valley value between the two peak values corresponding to two
targets. Thus, R ¼ 1 represents the highest spatial resolution and
R ¼ 0 represents the lowest spatial resolution.

3 Experiments and Results

3.1 Simulation Studies: Cylinder Model

Simulations are conducted to evaluate the performance of the re-
L1-NCG algorithm. Figure 2 shows the geometry configuration
of the simulations. A cylinder model was placed on a rotating
stage, with the rotational axis defined as the z axis and the bot-
tom plane set as z ¼ 0 cm. The fluorophores were excited by a
point source located at a height of z ¼ 0.75 cm. Fluorescence
images of 360 deg full view were collected at every 10 deg
(i.e., 36 projections were adopted). The numerical cylindrical
phantom had a height of 1.5 cm and a diameter of 3 cm.
Both fluorescent targets had a diameter of 0.4 cm and a height
of 0.5 cm, and they were located at a depth of 1.5 cm with differ-
ent EEDs ranging from 0.1 to 0.6 cm sequentially. In order to
approximate high scattering media, the absorption coefficient
and reduced scattering coefficient were set to 0.02 and
10 cm−1, respectively. The field of view (FOV) of the detector
corresponding to each excitation source was ∼130 deg, and the
detector sampling distance was set to 0.2 cm. In order to sim-
ulate realistic situations, 5% Gaussian noise was added to the
measurement data.

Through discretizing the geometry shown in Fig. 2, the linear
matrix equation [Eq. (3)] was obtained using the KA method.36

The size of the discrete elements was the same (0.13 cm) for
cylindrical targets with different EEDs. By normalizing the sys-
tem matrix and measurement data, the L1 regularization-based
optimization function was constructed as Eq. (5). The

reconstruction results obtained with the Tikhonov, L1-Ls, and
re-L1-NCG algorithms are shown in Fig. 3, respectively. All
the reconstructed images were normalized for better compari-
son. The small red circles in the slice images denote the real
positions of the fluorescent targets. All the reconstruction results
shown in Fig. 3 are taken from the z ¼ 1 cm plane. Different
columns in Fig. 3 denote the reconstruction results for different
EEDs. The first row of Fig. 3 denotes the reconstruction results
obtained using the Tikhonov method. The results in the second
and third rows of Fig. 3 are obtained using the L1-Ls and re-L1-
NCG methods, respectively.

As shown in Fig. 3, the reconstruction results obtained using
the L1-Ls and re-L1-NCG methods have higher spatial resolu-
tion and signal-to-noise ratio than those obtained using the
Tikhonov method. It can be seen in the first row of Fig. 3
that the two fluorescent targets reconstructed using the
Tikhonov method can be distinguished when EED is
> 0.4 cm. When the EED is <0.3 cm, the fluorescent targets
reconstructed using the Tikhonov method can hardly be distin-
guished. By contrast, the two fluorescent targets in the
reconstruction results obtained with L1-Ls and re-L1-NCG
can be distinguished, even when EED is 0.1 cm.

As a metric of the spatial resolution corresponding to differ-
ent methods, the R values calculated from Eq. (8) are listed in
Table 1, and the R value corresponds to the reconstructed cross-
section profiles across the two targets at x ¼ 0 (i.e., along the
y-axis direction) in Fig. 3. As shown in Table 1, the R values
corresponding to L1-Ls and re-L1-NCG are closer to 1, even
when the EED is 0.1 or 0.2 cm. It means that the L1-Ls and
re-L1-NCG methods can obtain higher spatial resolution com-
pared with the Tikhonov method. However, the search direction
in L1-Ls is approximately computed using the PCG algorithm,
which is time-consuming. The mean time consumed by L1-Ls
was 423 s. Owing to the restarted strategy, the mean time con-
sumed by re-L1-NCG was only 43 s.

3.2 Simulation Studies: Digital Mouse Model

In order to further evaluate the re-L1-NCG algorithm, numerical
simulations were also performed on an irregular model, which
employed the complex surface from 3-D mouse computed
tomography data.44 As shown in Fig. 4, the mouse torso con-
tained the heart, lungs, liver, and kidneys, with a total length
of 3 cm. Two cylindrical fluorescent targets with different
EEDs (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 cm) were embedded in
the liver. Similar to the cylinder model, the rotational axis of
the mouse was defined as the z axis and the bottom plane
was set as z ¼ 0 cm. The mouse was rotated over 360 deg
with 10-deg increments, and the excitation point source placed
at a height of z ¼ 1.5 cm was used for illumination. To accu-
rately simulate photons propagation, a heterogeneous mouse
model was set up. The optical parameters were assigned to cor-
responding organs according to Ref. 45. The other experiment
parameters were the same as those in the aforementioned cyl-
inder model, and 5% Gaussian noise was added to the measure-
ment data. In order to alleviate mismatch between the forward
model and the inverse problem, the heterogeneous model based
on anatomical information was adopted to construct the weight
matrix W of the FMT inverse problem in the form of Eq. (3).

As far as the sparsity is concerned, the fundamental
assumption of the aforementioned studies is that fluorochrome
is confined within small isolated regions. However, in in vivo
animal experiments, animals typically have nonzero background

Fig. 2 Geometry configuration of the simulation study with double
cylindrical fluorescent targets separated with different edge-to-edge
distances (EEDs) (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 cm). The diameter
of the cylindrical phantom is 3 cm, and the diameter of the cylindrical
targets is 0.4 cm.
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fluorescence. To simplify the problem, the background fluores-
cence concentration in all organs was regarded as the same. In
order to mimic the nonzero background fluorescence to different
degrees, the fluorochrome concentration ratio (FCR) between
fluorescent targets and background fluorescence was set to 10
and 100, respectively. Owing to the existence of nonzero back-
ground fluorescence, the reconstructed fluorochrome distribu-
tion (X) based on Eq. (3) is not strictly sparse. However,
through a predesigned threshold thr, the reconstruction result
with high spatial resolution can still be obtained using the re-
L1-NCG algorithm, when the fluorochrome distribution is rela-
tively sparse. In this situation, step 2 in the re-L1-NCG algorithm
(Fig. 1) should be replaced as follows:

Xk
re-L1 ¼ 0 when jXk

re-L1j < thr ×maxðXk
re-L1Þ: (9)

In the digital mouse model, the parameter thr is experien-
tially set as 0.01. Optimization of parameter thr needs much
deeper research, which is beyond the scope of this article.

Using the Tikhonov, L1-Ls, and re-L1-NCG methods, the
reconstruction results with different FCRs between fluorescent
targets and background fluorescence are shown in Fig. 5.

Although optical parameters based on the anatomical informa-
tion were employed when constructing the FMT inverse prob-
lem, the adopted reconstruction methods themselves in this
paper did not incorporate any anatomical prior information.
The columns of Fig. 5 denote the cross-sections corresponding
to different EEDs. The first row in Fig. 5 illustrates the labeled
mouse atlas images denoting the anatomical cross-sections,
where the white circles denote the real positions of the fluores-
cent targets in the liver. The small red circles in the reconstructed

Fig. 3 Reconstructed fluorescent targets corresponding to different EEDs. The first, second, and third
rows represent the cross-section reconstructed by Tikhonov, L1-Ls, and re-L1-NCG algorithms, respec-
tively. The EEDs of the two fluorescent targets range from 0.1 to 0.6 cm.

Table 1 Quantification of spatial resolution calculated from Eq. (8) for
the simulation study with cylinder model.

Edge-to-edge distance (cm) 0.1 0.2 0.3 0.4 0.5 0.6

R (Tikhonov) 0.0 0.1 0.39 0.58 0.86 0.95

R (restarted L1 regularization-
based nonlinear conjugate
gradient)

0.81 0.96 1 1 1 1

R (L1-Ls) 0.9 0.95 0.96 0.94 0.94 0.96

Fig. 4 Geometry of the mouse torso region including two fluorescent
targets in the liver. Double cylindrical fluorescent targets, with diam-
eters of 0.4 cm, are separated with different EEDs (0.1, 0.2, 0.3, 0.4,
0.5, and 0.6 cm).
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slice images denote the real positions of the fluorescent targets.
All the normalized reconstruction results in Fig. 5 are shown in
the z ¼ 1.5 cm plane, with the unified coordinate system.

Like the L1-Ls method, the proposed re-L1-NCG method
obtains the reconstruction result by incorporating a priori

L1-norm penalty into the L1-regularized optimization function.
In this paper, the sparsity of the fluorophore distribution is
used as a priori L1-norm penalty in the form of Eq. (4). In
the case of FCR ¼ 10, the reconstructed fluorophore distribution
is no longer sparse because of the strong background

Fig. 5 Reconstructed fluorescent targets for digital mouse model with different fluorochrome concentra-
tion ratios, using different algorithms. The columns denote the cross-sections corresponding to different
EEDs (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 cm). The first row illustrates the labeled mouse atlas cross-sections,
where the white circles denote the real positions of the fluorescent targets in liver. The second and third
rows are the reconstruction results obtained using the Tikhonov method. The fourth and fifth correspond
to the L1-Ls method. The sixth and seventh rows correspond to the re-L1-NCG method.

Fig. 6 Sketch of the free-space full-angle fluorescence molecular tomography system.
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fluorescence, and, in this case, the reconstructed fluorophore dis-
tribution includes not only the two fluorescent targets but also the
strong background fluorescence. Thus, the sparsity of the fluoro-
phore distribution is not a suitable a priori penalty. However, in
this case, results can still be reconstructed using the L1-Ls and re-
L1-NCG methods, which can be seen in the fourth and sixth rows
of Fig. 5. Because the true fluorophore distribution itself has
strong background, the corresponding reconstruction results
have low contrast. In the case of FCR ¼ 100, the background
fluorescence is very small compared with the target fluorescence.
Thus, the sparsity of the fluorophore distribution is a suitable a
priori penalty. Reconstruction results with high contrast and high
spatial resolution can be obtained using the L1-Ls and re-L1-
NCG methods, as shown in the fifth and seventh rows of Fig. 5.

Compared with the Tikhonov method, the L1-regularized
algorithms can obtain higher contrast and higher spatial resolu-
tion when the FCR is large (i.e., the fluorophore distribution is
relatively sparse), which can be seen in the third, fifth, and sev-
enth rows of Fig. 5. When FCR is small, the fluorescent targets
can still be reconstructed using the L1-regularized algorithms,
although the results are similar to that obtained using the
Tikhonov method. In addition, although the reconstruction
results obtained using L1-Ls are similar to that obtained
using re-L1-NCG, the mean computational time consumed by
L1-Ls is ∼10 times more than that consumed by re-L1-NCG.
On the other side, Fig. 5 shows that the spatial resolution is
enhanced with an increase of FCR because the fluorescence sig-
nals emitting from double targets gradually dominate in the
detected fluorescence signals, with the decrease of background
fluorescence.25

3.3 Physical Phantom Study

Physical phantom experiments were conducted based on the
experimental system developed in our laboratory.46 A point inci-
dent lightwas adopted to excite the phantom, and fluorescent pro-
jection signals were collected by a high sensitive cooled charge
coupled device (CCD) camera. The schematic of this system is

depicted in Fig. 6. A 4 × 4 CCD binning was used for collection
of fluorescent projection images and the exposure time was 2 s.
The phantom used in the experiments was a transparent glass cyl-
inder with a diameter of 3 cm and height of 6 cm. The cylinder
was filled with 1% intralipid (the absorption coefficient is
0.02 cm−1; the reduced scattering coefficient is 10 cm−1,
which has homogeneous optical properties. Fluorescent targets
in the phantom were two cylinders (with a diameter of
0.4 cm) filled with 20 μL indocyanine green (ICG) with a con-
centration of 1.3 μM. To excite the ICG, a band-pass filter with a
center wavelength of 770 nm and full width half maximum
(FWHM) of 10 nm was used in front of the Xenon lamp.

The main focus of this paper is the performance of the
reconstruction algorithm. Optimization of the experimental
parameters can be referred elsewhere.41,42 Here, the detector
FOV corresponding to the point excitation source was
∼130 deg and 36 projections were adopted. The size of the
weight matrix W was determined by the product of the number
of measurements utilized and the number of voxels employed to
discretize the volume of interest, where the detector sampling
distance was set as 0.2 cm and discretized mesh resolution
was 0.13 cm. The emission light was collected by the CCD cam-
era using a band-pass filter with 840-nm center wavelength and
10-nm FWHM. Then the normalized Born measurements in
Eq. (3) were approximately equal to the ratio between the
light intensities measured at the emission and excitation
wavelengths.

The physical phantom study with two fluorescent targets sep-
arated with different EEDs (0.1, 0.2, 0.3, 0.5, and 0.6 cm) was
conducted. The other experiment parameters were all the same.
Figure 7(a) shows the white light images of the physical phan-
toms with different EEDs. A representative phantom with an
EED of 0.2 cm is shown in Figs. 7(b) and 7(c).

Figure 8 shows the fluorophore distribution reconstructed
from the normalized Born average intensity using the
Tikhonov, L1-Ls, and re-L1-NCG methods, respectively. All
the images are normalized by the maximum of the
reconstruction results and then displayed with the same color

Fig. 7 Physical phantoms with different EEDs. (a) The white light images of the physical phantoms with
different EEDs. The three-dimensional (3-D) rendering (b) and cross-section (c) of the representative
physical phantom with an EED of 0.2 cm. The red circle in the 3-D rendering denotes the position of
the cross-section.
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Fig. 8 The reconstructed fluorescent targets of the physical phantom experiments. Five columns re-
present different EEDs. The reconstruction results are shown in the form of cross-section and 3-D ren-
dering. (a1) to (e2) The reconstruction results obtained using the Tikhonov method. (f1) to (j2) The
reconstruction results obtained using the L1-Ls method. (k1) to (o2) The reconstruction results obtained
using the re-L1-NCG method.
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scale. The fluorophore distribution is depicted using horizontal
cross-sections at a height of 2.6 cm. In Fig. 8, the first two rows
represent the reconstruction results obtained using the Tikhonov
method. The third and fourth rows correspond to the cross-sec-
tions and 3-D renderings of the reconstruction results obtained
using the L1-Ls method. The fifth and sixth rows correspond to
the reconstruction results obtained using the re-L1-NCG algo-
rithm. Five columns represent different EEDs, respectively.

When the EED is <0.3 cm, the two targets are barely distin-
guished using the Tikhonov method, as shown in Figs. 8(a2),
8(b2), and 8(c2). However, they can be clearly distinguished
using the re-L1-NCG algorithm, as shown in Figs. 8(k2),
8(l2), and 8(m2). Compared with re-L1-NCG, Tikhonov as
an L2-norm regularization method results in an oversmoothing
effect (i.e., the volume of the reconstructed targets is much larger
than the truth volume). In the simulation study with a cylinder
model, high spatial resolution can be obtained using the L1-Ls
algorithm. However, in the physical phantom, the reconstructed
fluorescent targets obtained using the L1-Ls method cannot
be well distinguished when the EED is <0.3 cm. By contrast,
two fluorescent targets reconstructed using the re-L1-NCG

algorithm can be distinguished when EED is 0.2 or 0.1 cm.
In addition, the mean time consumed by L1-Ls was 364 s,
while the mean time consumed by re-L1-NCG was only 34 s.

The profiles across the two targets at x ¼ 0 (i.e., along the
y-axis direction) in the cross-sections of Fig. 8 are shown in
Fig. 9 in order to better clarify the spatial resolution of the
re-L1-NCG algorithm. As shown in Fig. 9, the peak locations
of the profiles obtained with re-L1-NCG have a better match
with the true locations, and the FWHM of the profiles obtained
with Tikhonov is larger than that of L1-Ls and re-L1-NCG. The
FWHM obtained using re-L1-NCG is reduced by 50 to 80%
compared with the Tikhonov method. Figure 9 shows that,
when using Tikhonov method, the contrast between the peak
and valley values in the profiles is reduced as the EED
decreases. It means that the spatial resolution obtained using
Tikhonov is degraded with a decreased EED. However, when
using re-L1-NCG algorithm, the contrast has slighter degrada-
tion when the EED is decreased. In Fig. 9(a), when the EED is
decreased to 0.1 cm, the peaks corresponding to the two fluo-
rescent targets can still be separated by using the re-L1-NCG
algorithm. As shown in Figs. 9(c), 9(d), and 9(e), the L1-Ls

Fig. 9 Intensity profiles corresponding to different EEDs along the y -axis direction in the cross-sections
of Fig. 8.
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method can obtain higher spatial resolution than the Tikhonov
method. However, compared with the re-L1-NCG algorithm, the
L1-Ls method obtains lower spatial resolution when the EED is
small, which can be seen in Figs. 9(a), 9(b), and 9(c).

To quantitatively analyze the spatial resolution, the perfor-
mance metrics defined in Eq. (8) for each profile in Fig. 9
are listed in Table 2. As shown, higher spatial resolution
(i.e., larger R) can be obtained using the re-L1-NCG algorithm.

4 Discussion and Conclusion
It is well known that the ill-posedness of FMT inverse problem
causes relatively low spatial resolution in the reconstruction
results. In this paper, enhanced spatial-resolution reconstruction
is obtained using the re-L1-NCG algorithm, where the sparsity
of the fluorophore distribution is used as a priori L1-norm pen-
alty. As an L1 regularization-based algorithm, re-L1-NCG can
preserve the high-frequency information like edges and reduce
the noise of image effectively, when the fluorophore distribution
is sparse. The re-L1-NCG algorithm is composed of inner and
outer iterations. In view of the nondifferentiability of L1 penalty,
L1-NCG was used in the inner iteration to solve the regulariza-
tion optimization problem. Because the FMT inverse problem is
severely ill-posed, the convergence speed of L1-NCG will
deteriorate. However, L1-NCG can obtain an appropriate per-
mission region without additional anatomical a priori informa-
tion for the reconstructed fluorescent targets. Then the restarted
strategy is adopted in the outer iteration to expedite the conver-
gence of L1-NCG, by resetting the permission region and initial
value. With the help of permission region, the computational
speed can be increased with low memory consumption,
which has been discussed in our previous work.26 Thus, re-
L1-NCG is an efficient algorithm for FMT reconstruction
without anatomical a priori information for the reconstructed
fluorescent targets. Moreover, the restarted strategy profits
from the fact that the convergence of L1-NCG depends on
the initial value. Thus, the proposed restarted strategy can be
used for other algorithms benefiting from the initial value. In
order to cancel out the position-dependent gain factors in the
forward model, normalized Born approximation is adopted.
By normalizing the columns of weight matrix W, the high
attenuation of emission light coming from deep fluorescence
targets can be compensated.37 For comparison, the Tikhonov
(a representative L2-regularized method) and L1-Ls (a well-
known L1-regularized method) are adopted.

The simulation and physical phantom studies demonstrate
that the re-L1-NCG algorithm can significantly improve the spa-
tial resolution of reconstruction results compared with the
Tikhonov method, and re-L1-NCG has better performance
than L1-Ls in terms of time consumption and spatial resolution,

especially in the physical phantom study. The reconstruction
results show that the re-L1-NCG algorithm has the ability to
resolve targets with an EED of 0.1 cm, at a depth of 1.5 cm.
The simulation study with digital mouse model demonstrates
that the re-L1-NCG algorithm can obtain high contrast and spa-
tial resolution when the FCR between fluorescent targets and
background fluorescence is relatively large. For small FCR
(i.e., FCR ¼ 10), the fluorescent targets can still be recon-
structed using re-L1-NCG, although the contrast between the
reconstructed fluorescent targets and the background fluores-
cence is relatively low. In order to obtain high spatial resolution
for small FCR, the transform sparsity of the fluorophore distri-
bution can be included in the L1-regularized optimization func-
tion, which will be our future work.

For FMT reconstruction, the ill-posedness depends on sev-
eral experimental parameters, including the scattering properties
of the tissue, the position of the fluorescence targets in the tissue,
the shape and size of the fluorescence targets, and the size of the
discretization grid. It is difficult to compare the performance of
different reconstruction algorithms because it depends on many
factors, such as regularization parameters, number of iterations,
and initial value. In this paper, the regularization parameters for
the Tikhonov, L1-Ls, and re-L1-NCG methods were manually
optimized through picking out suboptimal parameters in proper
ranges. As the gradient projection approach, the L1-NCG
method benefits from a good initial value. Thus, the warm-
start technique can be adopted.47 Automatic selection of the
optimal or near-optimal regularization parameters by means
of analyzing the ill-posedness will be our future work. In
view of the advantage of total variation (TV) in preserving
the boundary of large object and removing small features,48

TV regularization will be incorporated in our future work.
For FMT reconstruction with high spatial resolution, another

important factor lies in the accuracy of the photon propagation
model itself.16,48 Except for the DE, the forward model based on
RTE or higher-order approximations to RTE can be adopted to
obtain higher spatial resolution solution, while the hetero-
geneous model can be utilized for more accurate solution.
The re-L1-NCG algorithm can potentially be utilized in FMT
reconstruction with these improved models, and in vivo small
animal experiments will be conducted in the future.
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