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1 Introduction
Each year in the US alone, over 200,000 women are diagnosed
with breast cancer and 1 in 8 women will carry the diagnosis
over the course of a lifetime.1 Breast cancer remains a leading
cause of death in women as it is responsible for about 40,000
deaths each year in the US.1 Since the rate of cancer survival
rapidly declines with the delay in diagnosis and treatment,2

there is a pressing need for accurate detection of breast cancer
during the initial exam at early stages to reduce the potential
revision operations.

Although various techniques such as magnetic resonance im-
aging, x-ray computed tomography (CT), ultrasound, and mam-
mography are clinically used to detect the presence of breast
cancer, breast biopsy is needed to definitively establish the diag-
nosis prior to treatment. Although the diagnostic yield of breast
biopsy remains relatively high (over 90%) for large masses,3

smaller masses are more difficult to sample with a reduced diag-
nostic yield of about 60%.4 Among the three major types of
breast biopsies that are routinely performed—fine-needle aspi-
ration biopsy (FNAB), core needle biopsy, and excisional lum-
pectomy—FNAB using a 23 gauge (Ga) or smaller needle is the
least invasive and, therefore, the least risky and most tolerable
procedure.5,6 For palpable mass lesions, most FNAB procedures
are performed without the aid of ultrasound-guidance. Although
this technique is certainly adequate in many instances, the diag-
nostic yield of the FNAB may be relatively modest depending
on the training of the biopsy physician.7

Ultrasound-based imaging techniques have shown to
increase the diagnostic yield by helping the radiologist to
more precisely place the needle within the suspicious mass.8,9

Improved diagnosis and early detection of cancer could spare
patients from more invasive and traumatizing surgical proce-
dures. However, in addition to proper needle placement, several
factors can impact the success of the biopsy. Such factors

include tumor heterogeneity, which results in sampling errors,
suboptimal preparation of the cytology/histology slides, and
limited experience of the radiologist and cytopathologist. In par-
ticular, tumor heterogeneity plays an important role in biopsy
yield.10,11 Tumors can have varying degrees of necrosis, fibrosis,
and tissue repair admixed with tumor tissue. These additional
tissue types negatively impact the diagnostic yield. For example,
the aspiration of the nonviable area of the tumor results in a non-
diagnostic FNAB in about 20% of the cases.3 Therefore, acquir-
ing adequate aspirate material that can be used for cytologic
interpretation remains challenging. Needle placement in a
cancer-rich environment would substantially reduce the number
of nondiagnostic aspirates and, therefore, the frequency of
repeated biopsies. Although nonoptical image-guidance modal-
ities, such as CT or ultrasound, help to see a mass distinct from
the normal breast tissue, their limited resolution does not allow
identifying tissue cellularity, which is defined as the composi-
tion of the tissue with regards to the categories of constitu-
ent cells.

Optical approaches such as optical coherence tomography
(OCT) and low-coherence interferometry (LCI), the nonimaging
variant of OCT, have been successfully applied toward tissue
discrimination between cancerous and noncancerous breast
lesions.12–16 OCT and LCI are advantageous over radiological
and ultrasonic imaging because they can probe the tissue with
high resolution (5 to 10 μm) and thus they can be used to evalu-
ate cellularity. Furthermore, these techniques use a probe that
can be fitted in a fine needle bore providing the potential for
real-time analysis during the initial FNAB.11,16 The main chal-
lenge remains in building reliable minimally invasive probes
that can be used in conjunction with very small bore biopsy nee-
dles (22 to 25 Ga) and in automatically processing LCI or OCT
findings to provide real-time feedback to the physician perform-
ing the biopsy. Our group has previously demonstrated
prototype OCT probes and automated algorithms for differen-
tiating among tumor, adipose, and fibrous human breast
tissues.16–18*Address all correspondence to: Nicusor Iftimia, E-mail: iftimia@psicorp.com

Journal of Biomedical Optics 116005-1 November 2014 • Vol. 19(11)

Journal of Biomedical Optics 19(11), 116005 (November 2014)

http://dx.doi.org/10.1117/1.JBO.19.11.116005
http://dx.doi.org/10.1117/1.JBO.19.11.116005
http://dx.doi.org/10.1117/1.JBO.19.11.116005
http://dx.doi.org/10.1117/1.JBO.19.11.116005
http://dx.doi.org/10.1117/1.JBO.19.11.116005
http://dx.doi.org/10.1117/1.JBO.19.11.116005
mailto:iftimia@psicorp.com
mailto:iftimia@psicorp.com


In this paper, we report advancements in the LCI instrumen-
tation and data processing for aiding FNABs. A new highly
engineered instrument and a recently designed hand-held
LCI/biopsy probe, as well as an improved scoring algorithm
for automated differentiation of the three major tissue types (adi-
pose, muscle, and tumor) are presented. This technology was
tested in vivo on the tumor masses of mice and correlated
with cytology/histology results. The capability of the algorithm
for reliable differentiation of tissue types at the tip of the biopsy
needle was demonstrated. We report improved sensitivity, speci-
ficity, and the positive predictive value (PPV) over our previous
studies.

2 Methods

2.1 Instrumentation

An LCI instrument, based on the Fourier domain swept source
approach, was developed and used in our study. The instrument
is based on a fiber optic Michelson interferometer that uses a
1310 nm 16 kHz MEMS-based light source (SANTEC, Japan)
with a bandwidth of about 80 nm and a specially designed LCI-
biopsy probe in the sample arm. The theoretical axial resolution
provided by the source is in the order of 7 μm in tissue (given by
Δz ¼ 0.44λ2∕nΔλ, where Δλ is the bandwidth of the light
source and n is the refractive index of the tissue). The instrument
was engineered to meet the clinical requirements: portability,
ease of setting, use of a hand-held probe, and relatively small
overall foot print. Pictures of the instrument are shown in Fig. 1.

The instrumentation box and the computer are compact (2U/
19 in. format). The instrumentation box includes the light
source, the power supplies, a fiber optic interferometer, and
an optical delay line. The processing of the LCI signal (back-
ground subtraction, interpolation, fast Fourier transforms, and
dispersion compensation) is performed in the field program-
mable gate array while a graphical processing unit (GPU), resid-
ing in the computer, is used for LCI data analysis and display.

This instrument uses a specially designed biopsy gun (see
Fig. 2) that has a dual functionality: tissue type investigation
with LCI and biopsy specimen collection. This dual function-
ality aspect is extremely important because the specimen has

to be collected from the exact same location as the LCI
sampling.

The biopsy gun uses a regular 10 cc syringe with a modified
plunger that allows for passing an optical fiber to a microcon-
nector. A disposable stilet-type fiber probe is attached to the
plunger distal end and sealed with the plunger gasket to maintain
a negative pressure in the syringe body when the plunger is
pulled to produce an aspirate. In this way, when pulling the
plunger, the stilet is pulled as well, allowing for the biospecimen
to be collected within the bore of the needle. The stilet consists
of a 300-μm outer diameter stainless steel hypodermic tube and
a single mode fiber (SMF28) inside. The fiber is polished at
8 deg to minimize back-reflections. The stilet can be passed
through a regular 23 Ga biopsy needle. The biopsy gun allows
for placing the syringe plunger into a spring-loaded mechanism
such that the operator has to compress the spring when collect-
ing a specimen, and then just release the handle to express the
specimen on a microscope slide.

2.2 Data Processing

A previously reported data processing algorithm18 has been fur-
ther improved and used for this study. The main goal was to
further improve tissue differentiation specificity. Briefly, the
algorithm is based on the processing of the individual A-
lines to extract tissue-type specific information. The acquired
LCI data from a fixed position (1000 A-lines with 1024 depth
pixels in each A-line, representing tissue reflectivity profile),
with the DC component removed, are time averaged over 25
A-lines. Then a low-pass filter is applied to each averaged pro-
file to get a linear fit and determine its slope. To extract the AC
signal, the filtered signal is subtracted from the averaged profile.
Changes in the slope can indicate the presence of one or more
tissue types within the same A-line. Therefore, the A-line is di-
vided into small windows (minimum 100 pixels each), and the
local slopes are first calculated. If there is a change in the slope,
the analysis of the AC signal is performed separately in each
window. Otherwise, the processing is performed over the entire
A-line. Examples of the low-pass filtered profiles and slope esti-
mation are shown in Figs. 3(b), 3(e), and 3(h).

(a) (b)

MEMS 
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FPGA-based RT 
processing board

Fiber interferometer and 
optical delay linePower supplies

Balanced detector

Probe

Fig. 1 Low-coherence interference (LCI) instrument. (a) General view and (b) detail of the instrumenta-
tion unit.
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Strong inherent backreflections from the stilet tip can cause
significant changes in the intensity of the signal that often causes
a deviation from the linear fits. To avoid such deviations, the first
25 depth points are averaged and used as a starting point for a
linear fit. The total depth of a profile is determined as the

distance from the initial point of fitting to the depth location
corresponding to the 4% signal level of the initial point. The
minimum length of fit was set as the smaller value between
20% of the profile depth and 100 pixels. Within the profile
depth, the fitting is performed iteratively involving the

(a) (b)

c) 

(c)

LCI stilet-type probe 
0.5 inch 0.5 inch 

23 Ga needle 
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Plunger 
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Handle 

FC/APC 
     FO  
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Needle 

LCI probe 

Syringe body Plunger 

Gasket (seal) FO connector Optical fiber 

Fig. 2 (a) Biopsy gun; (b) syringe distal end showing the stilet attached to the plunger; (c) schematic of
the modified syringe with the LCI probe passing through the bore of the biopsy needle.

Fig. 3 Illustration of the initial processing steps applied to three data sets corresponding to adipose (a),
fibrous (d), and tumorous tissue (g) each frame has 100 A-lines. Corresponding depth profiles and linear
fit are shown in (b), (e), and (h). The profile variation around the linear fit on the single scattering (SS)
contribution is shown in (e). MS stands for the contribution of multiple scattering, while PD stands for
the full penetration depth. The extracted AC components of the reflectivity profiles are shown in
(c), (f), and (i).
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calculation of 1∕R2 (linear fit goodness) value. This iterative
fitting is performed on the entire profile depth. The end point
of the linear fit is varied to maximize the 1∕R2 value. For all
fits, it is assumed that no more than one tissue type is present
in a single window. Again, the window here refers to a portion of
the reflectivity profile that has a constant slope.

Six parameters are derived from this signal and used in our
processing algorithm. The first parameter used in the tissue dif-
ferentiation algorithm, standard deviation (Std), is obtained from
subtracting the raw profile from the linear fit in the linear region
and calculating its variance. Std varies from one tissue type to
another as a function of the scattering properties. Std is high in
adipose tissues due to the high scattering of the cell membrane
and very low scattering from the cytoplasm. Std is moderate to
high for muscle and fibrotic tissues or tissue stroma, depending
on the exact nature of the tissue, and is relatively small for tumor
tissues that are formed by densely packed cells with relatively
similar size.

The MeanPeakDistance or the average distance between con-
secutive peaks within an A-line or depth scan is the second
parameter. This parameter is indicative of the cellular bounda-
ries, as well as of the nuclear/cytoplasmic ratio. In adipose tis-
sues, it shows the approximate size of the fat cells, while on the
muscle, stromal, and tumor tissues, it is indicative of the nuclear/
cytoplasmic ratio.

Std PeakDistance is the third parameter used in the algo-
rithm. It estimates the Std of the distance between the peaks.
The adipose/fibroadipose, stromal, and even muscle tissues
can be quite heterogeneous, and thus the value of the StdPeak-
Distance can be relatively high (over 100 μm) for these tissues.
Tumor tissues are packaged with uniformly distributed cells;
therefore, the StdPeakDistance is relatively small (tens of
meters) for this tissue class.

The next two parameters, PeakNr and PeakArea, are derived
by calculating the power spectrum of the signal. The power
spectrum is first normalized to its maximum. Then the number
of power spectrum peaks (PeakNr) is derived by counting the
number of frequency peaks greater than or equal to a threshold
value, experimentally set to 0.35. These peaks indicate the num-
ber of dominant frequencies. A heterogeneous tissue, such as
fibroadipose, has a larger number of peaks than a more homo-
geneous tissue, such as tumor. These peaks correspond to sig-
nificant variations of the cytoplasm/nuclei ratios. The total area
of the peaks (PeakArea) identifies the spread of the dominant
frequencies. A high spread of the dominant frequencies was
found for adipose tissue where the cell size can vary, while
the lowest spread was found for the tumor tissue which has
densely packed cells with enlarged nuclei, and thus these
frequencies have a relatively small spread.

The new parameter used in our algorithm measures the ratio
of the single scattering (SS) depth to the total penetration depth
(PD). Therefore, it is called the SS versus PD ratio. The single

backscattering regime can be approximated with a linear fit of a
depth profile, while the multiple scattering regime starts at a
depth point where the linear fit ends.19 As is well known, besides
the single scattered photons, also called ballistic photons, the
multiple scattered (MS) photons can contribute to the LCI signal
if they reach the detector within the coherence gate, which is a
function of the bandwidth of the light source used. The ampli-
tude of the MS wave does not decrease as rapidly with depth as
that of the SS wave, and this translates into a less steep slope of
the tail of the LCI signal than the slope of the SS portion. As
observed from Fig. 3, SS is significantly shorter for tumor tissue
than for the other two tissue types (adipose and muscle).
Adipocytes do not scatter light significantly; scattering occurs
mostly on the cell membrane. Therefore, ballistic photons
from higher depths than those from tumor tissues at the same
depth can reach the detector within the coherence gate.
However, muscle fibers scatter light more intensively than adi-
pocytes, therefore, the SS depth is slightly smaller than in the
adipose case. Furthermore, tumor tissue is formed by densely
packed cells with enlarged nuclei, and scatters light more inten-
sively than the adipose and even muscle tissues to result in the
shortest SS depth of the three tissue types.

Figure 4 summarizes the new set of six parameters and their
statistical significance in tissue discrimination. It is noted that all
of the parameters have statistical significance over at least one
tissue type and only the SS/PD parameter is statistically signifi-
cant among all tissue types.

This set of six parameters (Std, PeakArea, PeakNr, Mean-
PeakDistance, StdPeakDistance, and SS versus PD ratio) is cal-
culated for a training set of tissues with known pathologies. The
training set is carefully selected based on a histology report to
represent each tissue type to be evaluated in a validation set.
First, mean values x̄i of each parameter are calculated for the
three major tissue types: adipose (i ¼ 1), muscle (i ¼ 2), and
tumorous (i ¼ 3). Next, covariance matrices for all tissue types
are computed via

Ci ¼
1

ni

Xni

j¼1

ðxi;j − x̄iÞ ðxi;j − x̄iÞT; (1)

where ni is the number of samples in each tissue type of the
training set, and the superscript T indicates matrix transpose.20

For tissue classification, a quadratic discrimination score is
calculated using the mean values and covariance matrices by

Qi ¼ −0.5 ln jCij − 0.5ðx − x̄iÞTC−1
i ðx − x̄iÞ; (2)

where j:j is the matrix determinant, C−1
i is the inverse matrix of

Ci and x is the column vector with six parameters of an unknown
tissue. It should be noted that the quadratic discrimination score
is the logarithmic probability that a certain sample belongs to
each tissue type. To determine the tissue type of an unknown

Fig. 4 Parameters from the training set. Statistically significant values are labeled for p values <0.05 (*);
<0.005 (**); and <0.0005 (***).
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sample, all scores are calculated and the tissue type that gives the
maximum score to the particular sample is chosen as the result
of the diagnosis.

2.3 Animal Model and Data Collection

A tumor xenograft animal model was used in this study. The
xenograft models are widely used to investigate the main factors
involved in malignant transformation, invasion, and metastasis,
as well as to examine responses to therapy.21 In such models,
human tumor cells are injected into immunocompromised
mice that do not reject human cells. In our case, subcutaneous
injection of approximately 107 breast carcinoma human cells
(MDA-MB-231) was performed in the mammary fat pad of
mice without immune response. In a relatively short time
after implantation, these cells start to proliferate in an uncon-
trolled manner. This process is known to be caused by the muta-
tions in the genes responsible for regulating the growth of the
cells. As a result, the cells gain the ability to keep dividing with-
out control or order, producing more cells which invade nearby
healthy tissue and make their way into the underarm lymph
nodes.

In our study tumors started to develop 2 weeks after cell
implantation. To avoid distress, tumor growth was evaluated
daily by simple palpation of the injected area. After the tumors
have grown to approximately 5 to 10 mm3, the animals were
considered ready for the biopsy study. Out of the 70 animals
used in our study, 58 developed tumors with a moderate growth
rate, while four animals had to be sacrificed before starting the
LCI study because of very rapid tumor growth and signs of dis-
comfort. Eight animals did not develop any tumor over the
course of our study.

One issue with this animal model is that the incidence of the
fibrotic stroma around the tumor is infinitively smaller com-
pared to humans, therefore, we could not precisely place the
needle in the stromal tissue to build a library of benign stromal
tissue. The closest tissue type, in terms of light absorption/scat-
tering properties, was muscle. However, the algorithm trained
on the muscle cannot be further applied to the stromal tissue.
Whenever the algorithm is applied to differentiate specific tissue
types, it needs proper training on matching tissue types.

The mice were prepared (sedated) for the biopsy by
Ketamine/xylazine injection (90 mg∕9 mg∕kg body weight).
Following anesthesia, biopsy aspirates were collected from
the tumor site. In most cases, the tumor was palpable. In
cases where the tumor was not palpable, a portable ultrasound
machine was used to locate the tumor. The optical biopsy needle
was inserted into the presumed subcutaneous tumor site (3 to
5 mm from skin surface), fat pad, and muscle, and LCI measure-
ments were collected over the course of about 10 s. Since the
instrument was able to collect data with a speed of 20 frames∕s
(1000 A-lines/frame), about 200 frames were collected from
each measurement location. A tissue aspirate was then obtained
from the LCI measurement site. The needle insertion site was
marked with India ink for histology correlation. After complet-
ing the biopsy procedure, the animals were sacrificed
(Pentobarbital 200 mg∕kg i.p.).

The animals used for this study were divided in two groups:
30 for a training set study and 40 for a validation set study. The
training set data were needed for building the covariance matri-
ces with the six training set parameters, while the data collected
from the validation set were used to test the algorithm capability
for differentiating tissue types. Two biopsies for each tissue type

(fat, fibromuscular, and tumor) were performed for the training
set (180 biopsies in total). Multiple LCI data sets were recorded
for each biopsy site. The animals from the training set were sac-
rificed after recording the LCI measurements and performing
the biopsies. Histology and cytology results were used to clas-
sify tissue types and correctly assign the LCI measurements to
each tissue type. The main reason for using combined histology/
cytology analysis instead of cytology alone was that FNAB has
limited sampling capabilities, and thus tumor can be missed.
India ink markings of needle incision location were used as
reference points for histology analysis.

For the validation set, at least three biopsies were performed
in each animal. This number of biopsies was reasonable consid-
ering the fact that each biopsy was done under general anes-
thesia and did not take>5 min. The animals from the validation
set were sacrificed as well after performing the LCI measure-
ments and the biopsy aspirates. Histology was also performed
to eliminate the doubt of nonconclusive cytology results (i.e.,
presence of necrotic or adipose cells only on the aspirates).
However, since eight animals from the validation set did not
develop visible tumors and four animals had to be sacrificed
before starting the LCI study because of tumor burden and
signs of discomfort, the validation set was reduced to 28 tumor
bearing animals and eight animals without any tumor. Out of the
28 animals, about half had developed small to medium size
tumors (<5 mm in diameter), and thus they were the most suit-
able candidates for excising sufficient fat pad tissue for histol-
ogy. Therefore, for histology correlation, we used 28 tumor
specimens in our study and 40 normal specimens (20 muscle
and 20 adipose) from the 12 animals with small tumors and
from the eight animals that were tumor free.

Cytological/histological analysis was performed by an expe-
rienced pathologist. The correlated histological/cytological find-
ings were used as the gold standard to associate each tissue type
to a specific class: adipose, fibrous, and tumor. The cytopathol-
ogist used a three-category diagnosis comprising present, few,
and scant or none. When a tissue carried the diagnosis of present
or few, it was diagnosed to be tumorous. When only necrotic or
adipose cells were present on the biopsy location, the cytology
results were categorized as “nondiagnostic.”

3 Results and Discussion
First, the LCI data collected from the training set of animals was
used to build up the set of six parameters (Std, PeakArea,
PeakNr, MeanPeakDistance, StdPeakDistance, and SS versus
PD ratio) for each tissue type. Then, the decision algorithm
was retrospectively applied to the training set of LCI data.
Over 97% correlation between algorithm findings and histology
was obtained, indicating algorithm suitability for the validation
study. Figure 5 shows the representative LCI images and corre-
sponding findings of the algorithm for the three tissue types:
adipose [Figs. 5(a) and 5(a′)], fibrous [Figs. 5(b) and 5(b′)],
and tumor [Figs. 5(c) and 5(c′)]. Figures 5(a′′)–5(c′′) show
the representative histology appearance for these three tissue
types. It is to be noted that only the cells from Fig. 5(c′′) exhibit
dark staining, confirming their tumoral nature.

Then the algorithm was applied to the validation set of LCI
data. Since the intended goal of this technology is to provide
feedback to the clinician performing the biopsy to properly
orient the needle and reach the viable tumor cells to produce
an aspirate, we tested algorithm capability for distinguishing
between viable tumor tissue, normal tissue (adipose, muscle,
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and combination of adipose and muscle), and nonviable tumor
tissue (necrotic cells). Note that the aspiration of fat or necrotic
cells does not provide any diagnostic value.

Histology findings were tested against algorithm findings.
The sensitivity and specificity of the diagnostic results were cal-
culated with

Sensitivity ¼ TP∕ðTPþ FNÞ;
Specificity ¼ TN∕ðTNþ FPÞ; (3)

where TP is the true positive value that was correctly attributed
as positive to cancer findings, FN is the false negative value that
was falsely ascribed to tumor as nontumorous, TN is the true
negative value that was properly assigned to the normal tissue,
and FP is the false positive value that was falsely assigned as
tumorous to normal tissues.

Finally, cytology findings were tested against histology and
algorithm findings. The results of the correlations are summa-
rized in Table 1. Sensitivity and specificity of 0.89 and 0.875
were found with only five FP cases. The PPV, as defined by
the ratio of true positives to the total number of positive calls,
was 0.96. While all of these results outperform the reported val-
ues in previously reported ex vivo as well as in vivo studies, the
PPV was improved by the biggest margin when compared to the
previous values of 0.73 and 0.78.21,22 It is to be noted that the
cytology/histology correlation was 94.1%. Out of the 68 corre-
lated specimens, cytology failed to provide a diagnostic result in
only four cases, when only fluid was aspirated (no cells were
found within the aspirate). However, this is not the usual out-
come when measurements are taken in humans with tumors
that have a high degree of heterogeneity. The false negatives
and the nondiagnostic aspirates can be relatively high in
these cases.3–7 Necrotic cells admixed with viable tumor cells
were found as well in multiple aspirates.
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Fig. 5 Representative results of automated algorithm findings within the training set. (a)–(c) LCI frames
of adipose (a), fibrous (b), tumor, and (c) tissues. (a′)–(c′) Corresponding algorithm assignment of tissue
type. (a″)–(c″) Associated histology (40× magnification). H&E staining was used. The LCI frames were
truncated in depth (512 pixels out of the 1024 are shown).

Table 1 The results of the automated algorithm.

Automated algorithm results

Cytology
interpretation

Histology
interpretation

Normal tissue
(fibroadipose or

fibrous)

Tumor or tumor
admixed tissue

Normal tissue 40 (36 normal and 4
nondiagnostic-no cells found)

40 35 (TN) 5 (FP)

Tumor or tumor
admixed tissue

28 (tumor cells admixed with
adipose muscle, or necrotic cells

28 (clear tumor areas or infiltration
of tumor cells within muscle or
adipose tissue)

3 (FN) 25 (TP)

Total samples 68 68 Sensitivity: 0.89; Specificity: 0.875
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A representative case of algorithm findings is shown in
Fig. 6. The LCI frames (1000 A-lines/frame) are displayed in
the first row, while algorithm interpretation of LCI data is pre-
sented in the second row. Averaging over 25 A-lines was used to
reduce the impact of motion and speckle artifacts. Lastly, cytol-
ogy data are displayed in the third row. It is to be noticed that the
algorithm/cytology correlation was still not 100% over the entire
frame, especially for the fibrous and tumor tissue. This can be
explained by the temporal variations in the LCI signal and lim-
ited specificity of the algorithm, which cannot correctly interpret
every A-line.

Although in most of the cases we observed one single tissue
type within the LCI depth reflectivity profile, there were some
cases where at least two tissue types were present. A represen-
tative case is shown in Fig. 7 where muscle and tumor tissue
were present within the same depth reflectivity profile. The
changes in the slope from the frame averaged reflectivity profile
from Fig. 7(b) suggest the presence of at least two tissue types.
Indeed, the algorithm has found muscle and tumor tissue within
the same A-scan. Again, the percentage of each tissue-type is
automatically calculated by the algorithm and the clinician
can then decide if sufficient viable tumor is present to produce
an aspirate that will provide a diagnostic value. Both histology
and cytology confirm these findings [see Figs. 7(d)–7(f)].
Histology correlation was aided by marking with India ink
the biopsy site (see dark areas in the histology slide).

Algorithm capability for identifying necrotic areas of the
tumors was tested as well. As discussed, the necrotic tissue
does not provide any diagnostic value, therefore, an aspiration
from the necrotic area has to be avoided. Several animals have
developed larger tumors that became necrotic. The LCI probe
was intentionally oriented toward the center of the tumor to

reach the necrotic area and then toward tumor periphery. The
locations of needle insertion as well as its insertion depth
were carefully determined every time for LCI/histology corre-
lation. The PD parameter was the weighting factor in the tissue
differentiation algorithm to differentiate between viable and
necrotic cancer. The threshold for depth penetration was deter-
mined experimentally. Less than a 20% PD ratio (PD relative to
the length of the A-line) was determined as providing about a
90% correlation with the histology data (9 out of the 10 exam-
ined necrotic core tumors were correctly retrieved by the
algorithm).

A representative case for necrotic core detection is shown
in Fig. 8.

The two marked areas on the histology image were magni-
fied to determine the tissue nature. During histology processing,
the area near the center of the tumor did not preserve the blood
and dead cancer cells suspended in the blood and tumor ulcer-
ation fluid. Therefore, the core of the tumor shows up in the
histology as an empty area. LCI shows a clear difference in
the PD between the necrotic core and viable tumor locations.
This is explained by the high scattering of the blood cells
from the necrotic core and the high absorption of the ulceration
fluid.

To test the performance of the modified algorithm against the
previously tested algorithm, we generated receiver operating
characteristic (ROC) curves (see Fig. 9). An ROC curve graphi-
cally illustrates the performance of each binary classifier by
plotting the true positive rate (TPR) against the false positive
rate (FPR) as its discrimination threshold is varied.22 TPR
is defined as sensitivity and FPR as (1-specificity). The discrimi-
nation threshold is defined as the amount of tumor diagnosis
within a single LCI frame above which the automated algorithm

Fig. 6 Representative results of automated algorithm from in vivo biopsy imaging. (a)–(c) LCI frames and
frame averaged reflectivity profile of adipose (a), fibrous (b), tumor, and (c) tissues. (a′)–(c′)
Corresponding algorithm assignment of tissue type. (a′′)–(c′′) Cytology results. The biopsied tissue
cells were expressed (smeared) on a microscope glass slides and stained. Staining of the cell nuclei
is observed only on (c′′), indicating their tumoral nature.
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determines the tissue type as tumor and it varied from 49% to
80%. The dotted diagonal line in Fig. 9 represents the random
guesses and ROC curves; points above the line of random
guesses are considered good classifiers, with the best ones
near the (0, 1) coordinate that maximize the area under the
curve (AUC). The points along the ROC curves are generated
from all samples used in this study, including both tumorous and
normal.

To illustrate the contribution of the SS versus PD radio
parameter, we compared the ROC of the previous model with
the ROC for the improved model [see Fig. 9(a)]. As seen in

Fig. 9(a), the modified classifier used in this paper with the
SS versus PD radio parameter showed an improved discrimina-
tion performance over previous classifiers without this param-
eter. It also helped to differentiate between the necrotic and
viable tumors. The tumor diagnosis threshold value that resulted
in the best sensitivity and specificity was computed to be 51%
for the SS versus the PD radio parameter included classifier.

In addition, to test the contribution of each parameter, we
also compared the ROC for all six parameters with the ROC
for five parameters by sequentially eliminating one parameter
at the time [see Fig. 9(b)]. As observed, the new added
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parameter plays an important role in tissue discrimination.
Moreover, the deletion of three parameters deemed redundant
or insignificant (slope, PeakFrequency, and StdFrequency)
used in the previous work with OCT did not affect the classi-
fication performance; the AUC values with the original param-
eters was 0.73 while the five parameter algorithm without the SS
versus PD ratio AUC was 0.72.

4 Discussion and Conclusion
In this paper, we have presented a portable preclinical LCI
instrumentation featuring the second generation LCI-based
biopsy probe and improved scoring algorithm for tissue differ-
entiation. With the refinement of the algorithm including the
addition of a new parameter related to the ratio between the
SS depth and the total PD, we were able to enhance the differ-
entiation of tissue types in vivo and reach a specificity of ∼0.88,
sensitivity over 0.89, and PPVof 0.96. The respective 95% con-
fidence intervals for specificity and sensitivity computed with
the Wilson score interval23 were [0.53 0.98] and [0.72 0.97].

The instrumentation and tissue differentiation algorithm are
not intended to replace the current biopsy, but rather to aid it by
“telling” the biopsy physician if the tissue at the needle tip
belongs to the desirable class (viable tumor) or not before per-
forming an aspiration. In this way, the physician can move the
needle tip around searching for the viable tumor tissue.

Our preliminary results suggest that the improved LCI instru-
mentation and algorithm for aiding FNABs have the potential
for robust differentiation of tumor tissues from surrounding nor-
mal parenchymal tissues on the basis of adequate and well-doc-
umented training sets. However, since the LCI signatures for
human fibrous breast parenchyma are quite different than
those of the animal muscle, the training set for the animal
study does not apply to the human study. A new training set
has to be developed for the human tissue and algorithm valida-
tion has to be performed using this new training set. The actual
version of the algorithm has only been tested on muscle, adi-
pose, and tumor mouse tissue. A training set has to be estab-
lished for each tissue class coming for a given organ before
applying the algorithm. For example, breast and liver, or breast
and kidneys have vastly different tissue types. Therefore, the
algorithm has to be trained for each organ/tissue type, especially

when there is a clear difference among the type and the sizes of
the cells in various organs.

The current algorithm is not sensitive to tumor development
stage, meaning that it cannot differentiate between rapidly grow-
ing tumors and slowly developing ones. The analysis is based on
the changes within the LCI reflectivity profile, which reflects the
micron scale changes within the refractive index of the tissue
over the measured depth. It is also not sensitive to the tissue
vascularization status. The presence of blood weakens LCI sig-
nal due to the highly scattering nature of blood cells, as well as
due to the absorption in blood plasma. Based on this, additional
metrics, such as Doppler presence in the LCI signal, can be
added to account for the blood passage and thus for tissue vas-
cularization status.

The advantage of the proposed LCI approach is that it is
based on a nonscanning approach, enabling the use of relatively
simple small probes that can be passed through the bore of fine
needles of 23 and potentially 24 or 25 Ga, which are suitable for
an aspiration biopsy. On the other hand OCT, which is the scan-
ning variant of LCI, has clear superiority over LCI in imaging
true tissue morphology. Due to access to the tissue morphology
data, texture analysis can be performed to differentiate tissue
types with very good sensitivity and specificity as shown
by other investigators.24 OCT imaging through core needles
(18 Ga), using fast scanning mechanisms, and probe protection
that minimizes tissue disruption has been published before.25

Therefore, OCT imaging may also be considered for guiding
biopsies. However, the probe would be more complex, imaging
would require a longer acquisition time, and real-time data
analysis would require the use of fast parallel processing
approaches.

This technology may become suitable for clinical use if it
will enable reliable real-time clinical feedback. The current
processing time in MATLAB is 0.5 s∕frame. Due the parallel
processing capabilities of GPU, this time can be easily reduced
by a factor of 5 (to 0.1 s or less), providing a reasonable refresh
rate (>10 Hz) of the processed signal. Therefore, it is clear that
further work is needed to optimize and improve the processing
speed of the algorithm. Fortunately, advancements in the parallel
processing with graphics processing units seem to enable real-
time data processing and thus might allow for real-time tissue
differentiation. Furthermore, the Doppler capability may be
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added to the data processing algorithm to account for changes in
tissue vascularization, and thus to determine tumor development
stages and aggressiveness. Fortunately, advancements in both
technology and algorithm development might help to make
this technology more effective and potentially translatable to
the clinic.
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