Biomedical Optics

SPIEDigitalLibrary.org/jbo

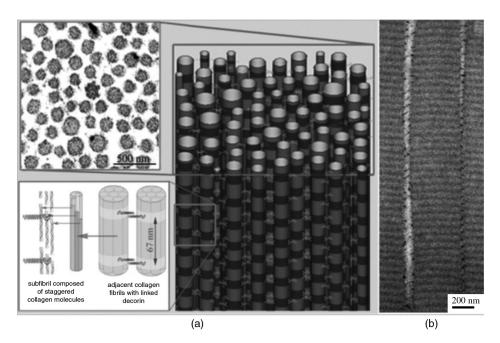
Errata: Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography

Ying Yang Asha Rupani Pierre Bagnaninchi Ian Wimpenny Alan Weightman

Errata: Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography

Ying Yang,^a Asha Rupani,^a Pierre Bagnaninchi,^b Ian Wimpenny,^a and Alan Weightman^a

^aKeele University, Institute of Science and Technology in Medicine, Stoke-on-Trent, United Kingdom ^bThe University of Edinburgh, MRC Centre for Regenerative Medicine, Edinburgh, United Kingdom


[DOI: 10.1117/1.JBO.18.1.019801]

This article [*J. Biomed. Opt.* **17**(8), 081417 (2012)] was originally published online on 2 August 2012 with an error in the reference citation of Fig. 1. The correct figure caption and references for Fig. 1 are shown below. A new reference was added to the reference list, shown here.

The article was corrected online on 16 January 2013.

References

 G. Fessel and J. G. Snedeker, "Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon," *Matrix Biology* 28, 503–510 (2009).

Fig. 1 The model and pictures of interfibrillar connection between proteoglycan and collagen bundles.^{6–8} (a) the model of collagen fiber bundles with proteoglycan (decorin) cross-linking collagen fiber bundles; (b) SEM picture showing the collagen fiber bundles with the presence of small items between the bundles. Reprinted with permission from the article of Fessel and Snedeker, 2009.⁶