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Abstract. Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation,
stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell
level have been hampered by the lack of enabling experimental techniques. We present a measurement platform
that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells
under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of
interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present
the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and inter-
acting human epithelial cells. We measured the effects of cell-to-cell interactions by using the system’s capability to
isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based
characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant
positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates.
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1 Introduction
Cell-to-cell heterogeneity is a major factor in many vital cell
processes including differentiation, proliferation, survival, stress
response, and carcinogenesis. It can be caused by genetic and/or
nongenetic variations in the cell. Although genetic heterogene-
ity results from alterations in the genomic DNA sequence, non-
genetic intercellular heterogeneity is caused by intrinsic (e.g.,
differences in gene expression) and/or extrinsic (e.g., microen-
vironmental factors) noise in gene transcription machinery,
which results in differential gene expression levels that can
lead to phenotypic alterations in a cell.1–3 Under stress condi-
tions, this phenotypic heterogeneity can, in turn, lead to changes
in a cell’s homeostasis, survival, or death because of a transi-
ently high or low abundance of relevant proteins, imparting
to the cell a selective advantage over other cells under given
conditions.4 Studies of intercellular variability are therefore
critical as they can help reveal novel details as to why and
how cells alter their phenotypes from benign to malignant. In
addition to providing deeper insight into fundamental questions
of cell biology, studies on cell population heterogeneity bear the
potential of opening new ways for prevention and more effective
treatment of cancer and other diseases with high morbidity and
mortality. The most direct way to address intercellular hetero-
geneity is to perform studies at the single-cell level. Information
with single-cell resolution, such as how the phenotype of one

individual cell differs from another and what implication
these differences may have in the context of cell population,
is crucial to understanding the behavior of complex multicellular
organisms.

Most experimental methodologies for cellular phenotype
characterization provide ensemble-averaged data based on the
analysis of bulk samples comprising 105 to 107 cells. Studies
with individual cells pose several challenges to existing technol-
ogies, including the requirement for high-detection sensitivity
and specificity.5 Because of the small volumes (∼500 fL) and
the number of biomolecules in a single mammalian cell, altera-
tions in the physiologic cell state need to be measured with
ultra-high sensitivity, far exceeding that of bulk cell experi-
ments. In recent years, the field of single-cell biology research
has benefited from significant advances and technological
developments that permit the genome,6,7 transcriptome,8,9

and proteome9,10 to be studied at an unprecedented level of
detail. However, these techniques are disruptive end-point
analyses that provide only a snap-shot in time of a cell’s
state. For a deeper understanding of the changes a cell undergoes
in dynamic response to stimuli and stress, studies of cellular-
response mechanisms in real time are necessary.

One vital cellular process is energy production by oxidative
phosphorylation. Oxidative phosphorylation requires molecular
oxygen as an electron acceptor at the end of the electron trans-
port chain, thus resulting in characteristic oxygen consumption
rates in aerobic organisms. Because almost every molecular
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mechanism inside the cell depends on the energy stored in high-
energy bonds in the form of ATP, changes in the physiologic
state of a cell will be reflected in alterations in energy
demand.11–14 Therefore, changes in oxygen consumption can
serve as a sensitive indicator for alterations in the physiologic
state of the cell.

Several different approaches have been developed for mea-
suring oxygen in single live cells. Geissbuehler et al.15 used the
quenching of the triplet state of a fluorophore by oxygen to
quantify changes in intracellular oxygen concentration.15 Other
approaches employed direct detection of singlet oxygen phos-
phorescence in single cells.16,17 Although providing a tool for
intracellular oxygen concentration measurements, these meth-
ods do not enable the determination of oxygen consumption
kinetics. The available experimental approaches for oxygen con-
sumption measurements in individual cells can be divided into
two groups: one set of techniques is based on microprobes,18–22

whereas the second involves the isolation of individual cells in
microwells.23–26 Although microprobe methods provide a robust
and sensitive tool for oxygen flux measurements at the single-
cell level, they suffer from several limitations, including low
throughput (one cell at a time) and the inability to separate
potential contributions from adjacent cells in high-density
cultures.

Optical sensors offer several advantages over electrochemi-
cal probes, as they are relatively simple to produce, feature
fast response times, and most importantly, consume minimal
oxygen. In addition, optical sensing offers the capability of mul-
tiplexing by using spectrally or spatially separated microsensors.
Multiplexing electrochemical probes would require operating
multiple microelectrodes within small volumes in the vicinity
of the cell to be interrogated. Submicrometer-sized, ratiometric,
fiber-optic oxygen sensors have excellent sensitivity, reversibil-
ity, and stability characteristics, and have been proposed for
measurements of intra and extra-cellular oxygen concentration
in single-cells.27

A different approach for measuring oxygen consumption
rates of individual cells has been developed by our group
and is based on the measurements of oxygen fluxes in isolated
hermetically sealed microwells containing single cells.23–26 In
contrast to microprobe-based oxygen consumption measure-
ments, methods based on isolation of individual cells in micro-
wells offer at least one order of magnitude higher throughput
and true single-cell measurement capability. Enclosing indivi-
dual cells in hermetically sealed chambers provides a unique
possibility to measure isolated oxygen consumption with true
single-cell resolution. These methods rely on measurements
of the luminescence lifetime of an optical sensor as a function
of oxygen concentration in a sealed chamber containing a single
cell. However, although offering adequate dynamic range and
sensitivity, lifetime-based techniques require fairly complex
and expensive excitation sources and detection electronics.
Owing to the relatively long luminescence lifetimes (microse-
conds) of the oxygen sensors (see Ref. 28 and references
therein), technical requirements for high-speed electronics on
the excitation and detection components are somewhat
relaxed.28 However, the slow, microsecond-long emission life-
times of metallo-porphyrin complexes or ruthenium-based oxy-
gen sensors represent the exception among optical sensors. Most
optical sensors designed for other biological analytes of interest,
including Ca2þ, Zn2þ, Kþ, and Naþ, exhibit excitation decay
times in the nanosecond range. As a result, using these sensors

for emission lifetime-based measurements for the corresponding
analytes would require either subnanosecond pulsed (for
time-domain lifetime measurements), or multiple high-speed
modulated (for frequency-domain lifetime measurements),
excitation sources replete with complex timing circuitry, and
data acquisition and analysis software.

Another, nontrivial aspect of perhaps equal importance in
isolation-based methods is sample preparation. Creating cul-
tures of single cells in the required arrangement, i.e., individual
cells placed at particular distances inside microfabricated
features for the production of sealed chambers, represents a
challenge in itself. The reported methods23–26 use random cell
seeding, where the bottom part (wells) of the microwells are
populated with cells by randomly distributing cells suspended
in media over an array of wells. Although the approach is simple
and produces satisfactory results, its major limitation is the low
efficiency of populating the wells with single cells. Even after
careful optimization of cell concentrations, it is impossible to
precisely control the number of cells per well, which generally
results in a Poisson distribution of the number of cells populat-
ing individual wells. For single-cell analysis, random seeding
produces a bottleneck in the overall experimental flow, lowering
the throughput, as only a fraction of wells will contain single
cells. More importantly, random seeding does not allow targeted
selection of cells of interest, e.g., based on fluorescence staining,
to be loaded into the wells. Another shortcoming of these
methods is the immediate vicinity of the sensor to the cells,
which may adversely influence normal cell function because
of photochemical activity of the sensor, including reactive
oxygen species and singlet oxygen production.

To address the limitations of current technologies, we devel-
oped an improved, efficient, integrated platform for studies of
intercellular oxygen consumption heterogeneity at the single-
cell level. The system is based on microfabricated devices
and extracellular optical sensors and is potentially expandable
to multiparameter metabolic phenotype characterization in indi-
vidual cells. The approach features a highly efficient, aspiration-
based cell loading technique that achieves rapid, minimally
invasive loading of single cells of different types into micro-
wells. The cell loading method facilitates image-based selection
of cells of interest based on morphologic features or specific
fluorescence probes in or on the cell. To address any potential
issues involving sensor proximity to the cell, the extracellular
sensors are separated from the cells by approximately 30 μm.
In contrast to the previous techniques, we quantify oxygen
concentration based on a ratiometric measurement of the sensor
emission intensities, which is a function of oxygen concentra-
tion within the sealed microwell containing the cell.

Compared with the previous cell isolation-based techniques,
the approach presented in this paper offers the following advan-
tages: 1. relatively simple intensity-based ratiometric measure-
ments that can easily be integrated on existing commercial
imaging systems; 2. ability to select and load desired numbers
of individual cells of interest for intercellular interaction studies;
3. significantly decreased sensor phototoxicity and biocompat-
ibility effects because of sensor positioning at a distance from
the cell; and 4. higher overall throughput. We present system
characterization data and experimental results of single-cell
respiration measurements on isolated or interacting, cultured,
human epithelial cells. Future applications, including the devel-
opments for multiparameter sensing and extensions of the
approach are discussed.
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2 Materials and Methods

2.1 Microwell Design

Our approach is based on enclosing single cells in hermetically
sealed fused silica (glass) microwells of about 140 pL volume
containing extracellular optical sensor material embedded in a
polymer matrix. Ratiometric measurements of sensor emission
intensity changes in response to oxygen concentration altera-
tions were conducted using this sealed microwell and optical
sensing phenotype characterization apparatus. In the current
implementation 3 × 3 arrays of symmetrically arranged micro-
wells (50 μm ID and 20 μm deep) and matching lids [80 μm ID
and 20 μm deep; Fig. 1(a), 1(b)] were used. Lids and microwells
were fabricated in fused silica substrates using wet-etch litho-
graphy.29 The hermetic seal was produced by placing lipped
lids containing the extracellular oxygen sensor on top of the
microwells and applying pressure to the lid array [Fig. 1(c),
1(d)]. A layer of compliant material was placed between the
piston and the lid substrate to ensure equal force distribution
across the lids.

2.2 Cell Culture

For this study, we used two immortalized human esophageal
epithelial cell lines, CP-A and CP-C, derived from patients
with Barrett’s esophagus without dysplasia and with dysplasia,

respectively.30 Cells were cultured in T75 tissue-culture flasks
(Corning, Corning, NY) to approximately 80% confluence, at
which time they were trypsinized, centrifuged at 900 rpm for
3 min, and resuspended in 2 mL of cell growth medium.

The CP-A and CP-C cells were grown at 37°C, under
5% CO2 atmosphere in cell culture flasks using GIBCO®
Keratinocyte SFM cell growth medium (Invitrogen, Carlsbad,
CA), supplemented with hEGF (Peprotech, Rocky Hill, NJ)
at 2.5 μg∕500 mL, bovine pituitary extract (BPE) at 25 mg∕
500 mL and penicillin/streptomycin solution (Invitrogen) at
100 units∕100 μg∕mL. Prior to loading, cells were detached
from the flask bottom using 0.05% trypsin-ethylenediamine-
tetraacetic acid (EDTA) solution and transferred to a Petri dish.

2.3 Cell Loading into Microwells

Individual cells were loaded using a custom microfluidic plat-
form31 optimized to enable aspirating and dispensing one or mul-
tiple cells into each microwell. The cell loader is built around a
custom designed high-precision diaphragm micropump that
allows for subnanoliter volumes to be aspirated and dispensed
in a highly controlled manner.32 Single cells were aspirated
and dispensed using a glass micropipette with a tip of 40 μm
inner diameter attached to the pump. To accomplish the loading
of a single cell, the cell of interest was brought into the center of
the field of view of the microscope objective. Then, the tip of the
micropipette that was attached to the micropump was lowered

Fig. 1 Microwell array design and characterization. (a) Design of the upper (lid) and lower (well) parts of the microwells used in this study. Different
designs were tested to optimize seal integrity for high oxygen sensitivity. Dimensions were chosen to provide uncomplicated cell loading into wells.
(b) Topographic images of wells and lids obtained utilizing noncontact optical profilometry. 3 × 3 arrays of wells and lids with 300-μm center-to-center
spacing were fabricated on fused silica wafers using hydrofluoric acid (HF) deep wet etch lithography. Well and lid sidewalls show isotropic etch
profile (insets). Average surface roughness was ∼16 nm for 20-μm etch depth. Overall process yield and repeatability was >90%.29 (c) 3 × 3 array of
microwells and lids microfabricated in fused silica substrate, and (d) hermetically sealed microwells with a total volume of 140 pL.
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and positioned within 40 to 70 μm from the cell, and then the cell
was aspirated into the micropipette by the micropump. Once the
aspiration step was complete, the micropipette tip was raised and
aligned with a second Petri dish containing the microwell sub-
strate using a motorized microscope stage.

After trypsinization, the cells were loaded into microwells
immediately to prevent cells from adhering to the bottom of
the Petri dish. Glass substrates containing 3 × 3 arrays of
microwells were glued to the bottom of a Petri dish with a precut
hole of a slightly smaller diameter than the substrate using
medical-grade epoxy glue (K45-S-14ML, Chemical Concepts,
Huntingdon Valley, PA). The Petri dish containing the microwell
array was placed on the cell loader platform adjacent to the Petri
dish containing suspended cells. For single-cell experiments,
loading was performed by aspirating one or several cells into
the micropipette at a time. For the experiments with 2 or 3
cells per well, individual cells were aspirated and loaded in
the microwells one at a time. This was necessitated by the
need for higher precision in the fluid flow control required to
prevent an already loaded cell from being ejected from a
well while loading the next one. The dispensing step was con-
ducted using a computer-controlled vision-feedback algorithm
that facilitated the release of one cell at a time from the micro-
pipette tip; this required 5 to 8 min to load a 3 × 3 array of
microwells with 1 cell per well. Loading 2 or 3 cells per
well in a 3 × 3 array required 15 to 25 min.

After loading cells into the microwells, the arrays were incu-
bated for 16 to 24 h under normal physiologic conditions to
allow for cell adhesion and recovery from potential stress caused
by manipulation [Fig. 2(a)]. No lid was placed on top of the
wells during incubation to ensure cell access to nutrients and
oxygen. We assessed cell viability after cell loading and incuba-
tion using the CalceinAM/Sytox Orange live/dead assay (Invi-
trogen, Carlsbad, CA). We found that > 99% of cells loaded in

microwells showed enzymatic activity. Five to 10% of loaded
cells divided in the microwells during the incubation time,
which suggests excellent cell health and near-normal function
after confinement in microwells. We account for these micro-
wells by using transmission bright-field imaging to determine
the number of cells in each microwell prior to experiments.
Wells containing cells that underwent division during the incu-
bation time are not included in the data analysis.

2.3.1 Cell loading software overview and description

The cell loading software was implemented as a LabVIEW
(National Instruments, Austin, TX) program used to automate
the cell loading process, i.e., the process of selecting cells
from a source Petri dish and transferring them to a selected des-
tination microwell array for use in OCR experiments. Although
the main LabVIEW program provides automation for cell load-
ing-specific tasks, the system software uses generic laboratory
automation code libraries to provide access to and automation of
the system components.

The user interface is a LabVIEW program that allows the
user to select from a variety of automation tasks required to
accomplish the cell loading process. These tasks include: auto-
mated positioning of the Petri dish over the objective lens and
under the transfer pipette, automated positioning of the selected
microwell array over the objective and under the transfer pipette,
raising and lowering of the pipette, and control of the pico-
pump (Fig. 3).

2.4 Sensor Deposition and Characterization

To quantify oxygen concentration in the microvolume surround-
ing a cell we used a self-referencing, ratiometric measurement of
sensor emission intensity. The main advantage of this approach
is that the signal is independent of deposited sensor volume.

Fig. 2 Experimental single-cell respirometry platform. (a) Micrographs of microwells with 50-μm ID containing one (top), two (middle), and three
(bottom) CP-A cells incubated 22 h after cell loading; and (b) single-cell OCR experimental setup. Prior to producing gas impermeable seal, lid
and microwell were aligned using motorized rotation stage and manual XYZ stage mounted on the microscope XY stage. Inset: close-up view of
microwell produced by placing array of lids over microwells containing single cells.
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We used platinum porphyrin derivative, Pt(II) Octaethylpor-
phine (PtOEP, Frontier Scientific, Logan, UT) as the oxygen
sensor and silicon octaethylporphine (SiOEP, Frontier Scienti-
fic) as the reference luminophore. For deposition in the micro-
wells we used 1 mg PtOEP (O2 sensor) and 1 mg SiOEP
dissolved in 1 g of monomer ethyoxylated-(3)-trimethylol-
propane triacrylate (SR454, Sartomer, Exton, PA) solution con-
taining 10 mg azobisisobutyronitrile (AIBN, Sigma-Aldrich,
St. Louis, MO). AIBN was used as a thermal initiator of free
radical polymerization of SR454. The mixture was sonicated
until a homogenous solution was obtained and then stored at
4 °C until used.

The sensor was deposited in lids using a noncontact piezo-
electric liquid dispensing robot (Rainmaker au301, Aurigin
Technology Inc., Phoenix, AZ). We deposited 100 to 200 pL
of sensor material in each microwell lid. The deposition step
took approximately 200 μs for each lid (Fig. 4). The fused silica
(interior lid) surface receiving the sensor material droplet was
functionalized with a companion moiety designed to covalently
bind to the SR454 polymer matrix. Prior to sensor deposition
the lid surface was cleaned, plasma-treated, and functionalized
with trimethylsilylpropyl acrylate (TMSPA) by vapor deposition.
TMSPA binds to the hydroxyl radicals on the fused silica surface
generated by the plasma treatment. SR454 monomer containing

Fig. 3 Cell loading software architecture overview.

Fig. 4 Sensor deposition. (a) Schematic representation of piezoelectric sensor dispenser head (left); micrograph of glass capillary with nozzle (middle);
micrograph of 40-μm nozzle orifice (right). (b) Stroboscopic time series of sensor droplet deposition. Sensor material is dissolved in SR454 monomer.
Time series shows formation of ∼100 pL (D ∼ 57 μm) droplet of SR454 by focusing acoustic wave produced by piezoelectric element at convergent
orifice of capillary. Dispensing of droplet takes 200 μs.
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the sensor binds covalently to the acrylate moiety of the surface-
bound TMSPA during thermal polymerization. After deposition
the substrates were placed into a vacuum drying oven (DX400,
Yamato, Santa Clara, CA) and thermally cured for 3 h at 80°C
under nitrogen atmosphere (70 mmHg∕0.01 MPa).

Although the PtOEP phosphorescence signal depends strongly
on oxygen concentration (O2) in the surrounding medium, the
SiOEP fluorescence intensity remains constant over a wide
range of O2 [Fig. 5(a)]. The sensor response to changes in O2

was calibrated using reference solutions containing known con-
centrations of dissolved oxygen. The reference aqueous solutions
were prepared by purging water or cell culture media with N2 þ
O2 gas mixtures of the desired oxygen concentrations obtained
using a computer controlled gas manifold (Alicat Scientific, Tuc-
son, AZ). The calibration data were used for oxygen concentra-
tion determination in the OCR measurements. Fig. 5(b) shows
calibration of the sensor in lids submersed in cell media. The mea-
sured data points were fit with the Stern-Volmer equation to create
a continuous calibration curve. The goodness of fit supports the
assertion that sensor emission intensity is governed by diffusion-
limited dynamic quenching by oxygen.

2.5 Experimental Setup

The OCR measurements were performed on a custom experi-
mental platform built around an inverted microscope [Eclipse
TE2000, Nikon, Melville, NY; Fig. 2(b)]. All experiments
were performed at 37°C, controlled by means of an environmen-
tal chamber enclosing the microscope. The sensor was excited
using a narrow-band LED with an emission maximum of
396 nm (Lumibright, Innovations in Optics, Woburn, MA)
coupled to the epi-illumination port of the microscope. A diffu-
ser was placed in front of the LED to produce uniform illumina-
tion of the field of view. The sensor was excited and emission
photons were collected utilizing a 10×, 0.45 NA Plan Apochro-
mat objective lens (Nikon) and a dichroic mirror (440 dclp,
Chroma Corp., Bellows Falls, VT) mounted in the filter turret
of the microscope. The emission signal was passed through one
of two band-pass filters (BP595/70 and BP650/50, Omega Opti-
cal, Brattleboro, VT) for SiOEP and PtOEP emissions, respec-
tively. These filters were mounted on a motorized filter wheel
rotating in an infinity plane outside the microscope. Sensor
emission images were collected using a cooled, electron

multiplying, charge-coupled device camera (Cascade II 512,
Photometrics, Tucson, AZ). The LED was operated in a pulsed
mode synchronized to the camera exposure time to ensure that
sensor excitation occurred only during image acquisition. Sen-
sor data was captured every 5 sec with an exposure time of
20 ms per spectral channel. Alignment of well and lid arrays
and the production of an air-tight seal between them, were
accomplished using a high precision XYZ translation stage
and a motorized rotation stage mounted on the microscope
stage (Fig. 6).

Sensor intensity data was extracted from the images by defin-
ing threshold-based, annular or circular regions of interest
(ROIs) encompassing each sensor’s area and calculating the
average intensity value within each ROI. The average intensity
values in both spectral detection channels were calculated using
the following equation:

Iave ¼
P

N
k¼1 Ik
N

; (1)

where N is the number of pixels in a ROI and Ik is the inten-
sity of k’th pixel.

Fig. 5 Ratiometric oxygen sensor calibration. (a) Emission spectra and intensity response of combined SiOEP and PtOEP sensor in SR454 thin-film
matrix at various oxygen concentrations. Reference dye SiOEP has emission maximum at 575 nm. Emission intensity of SiOEP does not change with
O2. PtOEP emission intensity, with maximum at 647 nm, exhibits strong inverse dependence on O2. (b) Calibration of PtOEP/SiOEP sensor after
deposition in lids. Different O2 concentrations were obtained utilizing a high-precision gas mixing manifold. Solid line represents a Stern-Volmer
fit to the calibration data.

Fig. 6 Bright-field micrograph of 3 × 3 array of hermetically sealed
microwells containing single cells.
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2.6 Data Analysis

Statistical analyses of the data and data fitting procedures were
performed using OriginPro software (v. 8, OriginLab, North-
ampton, MA). Data analysis software was written using Lab-
View 8.6 (National Instruments, Austin, TX). We note that
although all oxygen consumption data were analyzed after
the experiments, the same type of analysis can easily be per-
formed in real-time as well. We are currently modifying the soft-
ware code to accomplish this task.

3 Results and Discussion
Oxygen concentration in the microwells was determined every
5 s as described in “Materials andMethods”. The sensor intensity
values were converted to oxygen concentration using calibration
data obtained from the same sensor-containing lid prior to experi-
ments on isolated, live cells. Rather than absolute PtOEP
intensity values, we used ratiometric calibration and conversion
to oxygen concentration based on the ratio of PtOEP and SiOEP
emission intensities. Because of cell respiration, after the lids
were sealed, the O2 in the microwells fell monotonically from
ambient levels (7 ppm; 21%) to below the limit of detection
(LOD). We define the LOD as the change in O2 needed to pro-
duce a change in sensor emission intensity equal to three times
the standard deviation of a blank sample (0% O2) signal. We
determined the LOD of our system to be 168 ppb, comparable
with those reported in other studies.27 As the oxygen concentra-
tion in the microwell decreases, the signal-to-noise ratio (SNR) of
the sensor system increases with emission intensity. The average
SNR at the beginning and the end of the experiment are 4 (ambi-
entO2) and 8 (low O2), respectively. This increase was caused by
the increase in sensor emission intensity owing to decreased
quenching of the triplet state of PtOEP by molecular oxygen.

3.1 Respirometry of Individual, Non-Interacting Cells

To evaluate system performance characteristics we measured
OCRs of single cells from two different human epithelial
cell lines, CP-A and CP-C, which were derived from patients
having diagnoses of Barrett’s esophagus without dysplasia
and with dysplasia, respectively.30 Characteristic oxygen

consumption curves for the two cell lines are presented in
Fig. 7. We observed significant cell-to-cell differences in
OCRs within each cell line and between the cell lines, with
variations exceeding six-fold within a single cell line. Within
a single experiment accommodating nine cells of a given cell
line, we see marked OCR variations in all cell types. For exam-
ple, the time needed to reach a 0% O2 in the microwell varies by
about a factor of two for the CP-A cells [Fig. 7(a)]. Figure 7(b)
shows responses of a subset of the CP-C cells that exhibited
slow respiration kinetics. A significant portion of CP-C cells
showed faster respiration kinetics, similar to those shown in
Fig. 7(a) for CP-A cells. The fraction of slower-respiring
CP-C cells [Fig. 7(b)] seem to exhibit less variability in
OCR, as the times to approach 0% O2 vary only by factor of
approximately 1.5. This implies that faster-respiring, more
metabolically active cells may differ more from each other
than less active, slow-metabolizing cells of the same type.
The observed OCR heterogeneity within a cell type may be
partially attributed to the use of non-synchronized cells in
these experiments. Each cell’s phase in the cell cycle probably
contributed to the variability in OCR in addition to intrinsic
intercellular heterogeneity.

All oxygen consumption kinetics exhibited linear behavior
with a constant OCR in the oxygen concentration range between
7 and ∼0.2 ppm. Below 0.2 to 0.1 ppm, the OCR exhibits a
non-linear dependence on O2 concentration (Fig. 8). In this
study, we do not focus on oxygen consumption kinetics in this
low range of O2. Because it is thought provoking, other studies
are underway to address this finding in more detail. We exclude
the possibility that the observed nonlinearity in the respiration
curve in this O2 range is caused by changes in the sensor
response as oxygen concentration decreases. The sensor calibra-
tion demonstrated that sensor emission intensity changes caused
by differences in the amount of oxygen can be well described
by the Stern-Volmer law, and do not exhibit any significant
deviations as the oxygen concentration changes. Therefore, we
attribute the observed nonlinear behavior at low O2 to real
alterations in cell OCRs.

To calculate OCR values for each of the studied cells we
applied a linear fit to the oxygen consumption time course
data above 0.2 ppm (Fig. 9). The chosen linear function

Fig. 7 Comparison of single-cell OCR results obtained with two different cell lines. All cells were treated identically and incubated for 16 to 24 h prior
to OCR measurement. (a) OCR curves obtained with single cells of metaplastic human esophageal epithelial cell line CP-A. (b) OCR time courses of
slowly respiring individual cells of dysplastic human esophageal epithelial cell line CP-C. All cells exhibit linear OCR kinetics. Significant cell-to-cell
variations in OCR are demonstrated. Signal-to-noise ratio observed in OCR traces increases as O2 decreases because of stronger sensor emission
intensity at low O2. Data in all panels smoothed with sliding five-point average filter.
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might not be the most accurate: other, more complex models
may exist that describe the observed behavior more appropri-
ately. However, the SNR intrinsic to the current realization of
the method limits the ability to resolve more details. The linear
fit was chosen to provide a means for quantitative analysis and
comparisons among cells within and between cell lines. We cal-
culated the OCR values using the slopes of the linear regression
fit and converting the values into oxygen concentration using the
following equation:

OCR ¼ Vb
m

; (2)

where V is the total volume of the microwell, b is the slope of
linear regression model, andm is the molecular weight ofO2.

OCR distribution histograms of CP-A and CP-C cells are
presented in Fig. 10(a). A two-sample t test showed that
at the P ¼ 0.05 level the difference of the population
means is not significantly different. However, a comparison
of the two cell lines shows that there are differences in the
high OCR regime between 2 and 6 fmol∕ðmin · cellÞ. Even
though the majority of the CP-A and CP-C cells exhibit OCR

Fig. 9 OCR data analysis. Linear regression fit (solid line) to experimen-
tal data. Lower panel shows residuals of fit.

Fig. 8 Oxygen consumption in CP-C cells under severe hypoxia. Shows
zoomed-in region of low O2 of the respiration time course of cell 5 in
Fig. 7(b). At O2 levels <0.5 ppm respiration behavior is well fit with
exponential relation (solid curve).

Fig. 10 Summary of single-cell oxygen consumption rate (OCR) results.
(a) Distribution of single-cell OCRs in CP-A and CP-C cells. Significant
cell-to-cell variations in OCR within each cell line are observed. Broad
distributions may result from cells being in different cell cycle phases
and/or intrinsic cell-to-cell heterogeneity. Means of two distributions
are not significantly different at P ¼ 0.05, but the presence of subpopu-
lation of CP-A cells (but not CP-C cells) with OCRs between 2 and
5 fmol∕ðmin · cellÞ suggests metabolic differences between cell lines.
(b) Single (blue curve) and double (green curves, red curve—sum) Gaus-
sian fits were applied to CP-A (b) and CP-C (c) OCR distributions. Fits
show at least two subpopulations of cells within each cell type. Fit
results are summarized in Table 1. The differences in the OCR distribu-
tion shapes between CP-A and CP-C cells demonstrate the capability of
the method to distinguish and characterize groups of cells by resolving
intercellular differences in OCR in individual cells, where conventional,
bulk sample-based approaches would fail to do so.
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values centered around the population average (Table 1), a
fraction of cells respires at rates significantly higher (up
to ∼600%) than this average. This demonstrates the capabil-
ity of the technique to identify outliers in a population of
cells in terms of their respiration rate.

To better characterize the differences in OCR distribution
between the CP-A and CP-C cells, we performed Gaussian
fits on the OCR histograms. Although it may not represent
the best fit to the data, the Gaussian model was chosen to reveal
quantitative differences between the two types of cells. We
applied two Gaussian peak functions to fit the OCR histograms
of both cell types [Table 1; Fig. 10(b), 10(c)]. The fits show that
at least two subpopulations exist among the CP-A and CP-C
cells in terms of their respiration rates. CP-A cells exhibit
one “slow” fraction with OCR values centered at 1.07�
0.08 fmol∕ðmin · cellÞ and a second, “fast” subpopulation
with an OCR of 3.1� 0.6 fmol∕ðmin · cellÞ; (the absolute
error values indicated here and below represent the fit error).
The fractional contributions of the slow and fast subpopulations
are 59% and 41%, respectively. Use of the terms “fast” and
“slow” in this context are relative and meant to reflect the com-
parative nature of the data analysis. The CP-C cells show less
distinct differences in the two subpopulations compared with
CP-A. The slow fraction of CP-C cells has an average OCR
of 0.83� 0.04 fmol∕ðmin · cellÞ with a fractional contribution
of 38%, whereas the fast fraction is centered at 1.63�
0.27 fmol∕ðmin · cellÞ with a fractional contribution of 62%
of cells.

The observed OCR heterogeneity and the differences in
single-cell OCRs between cell types confirm the need for
single-cell studies. Ensemble-averaged OCR studies conducted
on samples of hundreds of thousands or millions of cells, or
mitochondria isolated from similar numbers of cells, revealed
a substantially linear oxygen consumption profile for O2 in
the range from 7 to 0.1 ppm, and a hyperbolic profile at oxygen
levels less than 0.1 ppm.33–35 These findings are in accord with
the temporal characteristics of the average OCR behavior
observed in this study. Because different cell types were used
in the previous studies and this work, it seems that the observed
common features of the OC kinetics are cell type-independent.
Obviously, more studies on different cell types need to be con-
ducted to confirm (or refute) this finding. Differences between
OCR values observed at the single-cell level in this study and the
bulk cell samples of previous reports may have two different
origins. One stems simply from the fact that the cell types
used in the previous and this study are different, thus making
it probable that OCR values can differ because of differences
in basal respiration rates. The second source of difference
can be the averaging of millions of unsynchronized responses
of individual cells inherent to bulk experiments. As evident
from the OCR data presented in this study [Figs. 7 and 10(a)],
unsynchronized individual cells exhibit significant variations in
oxygen consumption rate. Even so, the average OCR values for
CP-A and CP-C cells were found not to be statistically different.
In terms of their OCRs, at least two subpopulations were found
in the CP-A and CP-C cell groups. Thus, strong evidence is pre-
sented, which supports the assertion that averaging OCR data
from ∼105 to 107 cells results in obscuring details of respiration
kinetics and the cells’ physiologic responses to oxygen concen-
trations. Details that may be obscured include the substantial
cell-to-cell differences in OCR and the existence of subpopula-
tions of cells with a differing metabolism.
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In current system realization, the time needed to collect the
data of 150 cells ranges from 1.5 to 3 days. We are working to
increase the throughput by at least one order of magnitude to
enable faster data collection.

3.2 Effect of Homotypic Cell-Cell Interactions on Cell
Oxygen Consumption

In the second part of this study, we focused on measurement of
the effects of homotypic intercellular interactions on the OCRs
of CP-A cells. We placed one, two, or three cells in each micro-
well using the custom cell manipulation platform (see Materials
and Methods). All experiments were conducted using the same
loading, incubation, and OCR measurement conditions as with
single, non-interacting cells. Data obtained from the experi-
ments with one cell per well were used as a reference for
data from the experiments with two and three cells per well.
Occasionally, the number of cells per well changed after the
16 to 24-h incubation period because of cell division and/or
cell migration from the microwell. Therefore, prior to each
experiment the number of cells in each well was counted
using bright-field microscopy, and the data obtained from the
wells were sorted accordingly. In most cases the cell morphol-
ogy in wells containing more than one cell indicated that the
cells were adhered to the bottom and walls of the microwell,
and in some cases contacting one another [Fig. 2(a)].

Representative curves quantifying the kinetics of single and
interacting cell respiration are depicted in Fig. 11. Each curve in
the panels represents oxygen consumption kinetics of one
[Fig. 11(a)], two [Fig. 11(b)], or three [Fig. 11(c)] cells. As
expected, the OCR values increased with the number of cells
per well. Nonetheless, some of the curves measured with one
cell per well showed steeper slopes, i.e., faster respiration, com-
pared with two cells per well [Fig. 11(a) cell 4, and curves in
Fig. 11(b)]. It is unclear what could cause this significant
increase in the OCR in an individual cell. It may be attributed
to differences in the cell’s phase in the cell cycle. It is possible,
for example, that the cell 4 curve shown in Fig. 11(a) represents
a cell in late G2 or M phase, where the energy demand could be
elevated because of imminent or ongoing cell division. In gen-
eral, the data presented in Fig. 11 indicates that there are sig-
nificant cell-to-cell variations in oxygen consumption rates.
The slopes of the oxygen concentration time course differ up
to ∼6-fold with one cell per well, ∼2-fold in wells containing
two cells, and only 1.1 to 1.5-fold with three cells per well. This
apparent decrease in OCR variability as the number of cells per
well increases can be explained as the result of averaging the
oxygen consumption behavior of two or three cells. This finding
emphasizes an important feature of the approach: averaging for
even as few as two cells can markedly alter measurement results.

To compare among experiments with different numbers of
cells per microwell, we normalized the OCR values to the num-
ber of cells contained in a well (OCRnorm, Table 2) to obtain
respiration rates in femtomoles per minute per cell. This allows
for a direct comparison of oxygen consumption kinetics among
the experiments. The results are summarized in Fig. 12. Com-
parison with OCR values obtained in microwells with single
occupancy shows that, on average, the respiration rate per
cell in microwells with three cells increases 4.46 times that
of a cell in a microwell by itself. This finding indicates that
the cellular respiration rate is strongly affected by the presence
of neighboring cells of the same type. Moreover, the results
imply that the level of increase in cellular respiration depends

on the number of interacting cells. Compared to a lone cell, we
do not observe an increase in the OCR when a single interacting
neighbor is introduced, whereas a significant increase can be
seen when three cells are allowed to interact in a microwell.
The observed nonlinear dependence of oxygen consumption
on the number of interacting cells implies the existence of
complex cellular mechanisms which are capable of up or
down-regulation of respiration rates in response to intercellular
interactions. Interestingly, respiration measurements at bulk
cell levels (∼5.104 cells, 80% confluency, data not shown)

Fig. 11 Oxygen consumption curves measured with one (a), two (b),
and three (c) CP-A cells per microwell. In general, because of averaging,
the oxygen consumption kinetics show less well-to-well variation as the
number of cells per well increases. x-axes are scaled differently in each
plot.
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with both CP-A and CP-C cells showed OCR values similar to
the average OCR obtained in single-cell experiments. Although
more detailed studies are needed to address this fact in more
detail, the decrease in the average OCR in bulk samples may
be a result of cell growth inhibition at high confluency levels.
We are conducting more thorough studies, which focus on the
effects of population size on cell respiration rate.

Although the data set is small, it is difficult to determine
whether the observed increases in respiration rate were caused
by direct cell-to-cell contacts, signaling mediated by soluble
extracellular ligands, or both. Because some cells were in inti-
mate contact with one another [Fig. 2(a)], all three alternatives
are possible.

4 Conclusions and Future Outlook
In conclusion, these data demonstrate the capability of the
experimental approach to perform robust oxygen consumption
phenotype characterization at the single-cell level with indivi-
dual, non-interacting or interacting cells with a moderate
throughput of 50 to 100 cells∕day. At 5 sec intervals, the
data acquisition frequency was sufficient for fast respiring
cells; this could be decreased further to 1 sec or less to account
for even faster respiration rates, especially when multiple cells
are placed in a microwell. The flexible design of the experimen-
tal platform permits loading of cells of several different types
into microwells for heterotypic cellular interaction studies. In
this study, we performed the measurements until oxygen con-
centration decreased to 0.1 ppm or lower, thereby exposing
the cells to severe hypoxia or anoxia. However, by incorporating
the ability to repeatedly raise and then reseal the lid array, the
system design allows for measurements to be stopped and
resumed with the same set of cells at any desired point in
time. This enables, for example, introduction of chemical sti-
muli for drug dose-response studies, or for re-equilibration of
the immediate cell environs with the surrounding medium.
We were able to perform repeated oxygen consumption experi-
ments with the same set of cells up to three times while com-
pletely depleting and re-equilibrating oxygen in the microwells
(data not shown).

The platform design is flexible and adaptable, allowing for
facile implementation of multisensor, multiparameter cellular
phenotype characterization. The lid design can accommodate
multiple spectrally-separable sensors, or be changed to accom-
modate multiple spatially isolated sensors. We are currently
working on the development of a lid array that features multiple
micropockets inside each microwell lid for deposition of differ-
ent sensors to quantify multiple extracellular analytes in the
same microwell. We are developing an ATP sensor system,
and are in the process of optimizing custom optical sensors
that can be embedded in polymer matrices pH,Kþ, and tempera-
ture sensing.36–39 In the near future we will combine a fully auto-
mated platform developed by our group for spectrally-resolved
measurement of multiparameter sensor responses, combined
with a microfluidics module for serial or parallel delivery of bio-
chemical and environmental stimuli to cells confined in arrays of
microwells. We will combine metabolic profile measurements
with gene transcription level profiling at the single-cell level
that will be applied after phenotype characterization to establish
the relationships between expression levels of specific genes and
cell phenotypes.40 We will expand the scope of our studies to
other cell types, to primary cells, and to the administration of
a variety of stimuli using the automated multiparameter plat-
form. We expect to increase the overall system throughput by
using both modified cell-trapping approaches for highly parallel
cell loading and polymer-mediated hermetic sealing techniques
for increased cell array density.
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