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Abstract. All coronagraphic instruments for exoplanet high-contrast imaging need wavefront correction sys-
tems to reject optical aberrations and create sufficiently dark holes. Since the most efficient wavefront correction
algorithms (controllers and estimators) are usually model-based, the modeling accuracy of the system influences
the ultimate wavefront correction performance. Currently, wavefront correction systems are typically approxi-
mated as linear systems using Fourier optics. However, the Fourier optics model is usually biased due to inac-
curacies in the layout measurements, the imperfect diagnoses of inherent optical aberrations, and a lack of
knowledge of the deformable mirrors (actuator gains and influence functions). Moreover, the telescope optical
system varies over time because of instrument instabilities and environmental effects. We present an expect-
ation–maximization (E-M) approach for identifying and real-time adapting the linear telescope model from data.
By iterating between the E-step (a Kalman filter and a Rauch smoother) and the M-step (analytical or gradient-
based optimization), the algorithm is able to recover the system even if the model depends on the electric fields,
which are unmeasurable hidden variables. Simulations and experiments in Princeton’s High Contrast Imaging
Lab demonstrate that this algorithm improves the model accuracy and increases the efficiency and speed of
the wavefront correction. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JATIS.4.4.049006]
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1 Introduction
In the upcoming era of 30-m ground-based telescopes and
advanced space telescopes, direct imaging is believed to be
the next frontier in exoplanet detection and characterization.
Unlike indirect detection methods, such as radial velocity and
transit, direct imaging collects light from the planet itself rather
than its host star, thus enabling the spectral characterization of
the planet’s atmosphere and the full determination of its orbital
parameters. But exoplanets are much fainter than their parent
stars, requiring the starlight’s point spread function (PSF) to
be managed to make high contrast imaging of the exoplanet
possible.

A leading technology for achieving the high contrast needed
for exoplanet imaging is a coronagraph.1–4 Consisting of a series
of optimally designed masks and stops, coronagraphs are able to
suppress the spread of starlight and thus create high-contrast
detection regions, so-called dark holes, in the image plane.
However, since the coronagraphs are designed assuming perfect
optics, they are fundamentally sensitive to any wavefront per-
turbations. Even small aberrations introduce bright stellar speck-
les in the dark holes, which influence the instrument ability for
exoplanet obervations. To maintain a high contrast for exoplanet
observations, wavefront correction is required for all corona-
graph instruments. In a ground-based telescope, the wavefront
correction system typically includes a wavefront sensor, such as
a spatially filtered Shack–Hartmann sensor or a pyramid sen-
sor,5,6 in the pupil plane to measure the wavefront aberrations
and then directly compensates for them using deformable

mirrors (DMs). Such a system is able to cancel pupil phase aber-
rations due to atmospheric turbulence and achieve contrasts of
10−5 to 10−6 on current telescopes, allowing for the imaging of
young hot gas giant planets.7 Directly imaging dimmer planets
(down to Earth size) at higher contrast requires a space telescope
that reaches contrasts below 10−8 before postprocessing.8,9

For these coronagraph instruments targeting earth-sized planets,
the pupil plane approach with a separate wavefront sensor is not
capable of reaching the required high contrast values because
of noncommon-path errors. Instead, we need to estimate the
focal-plane electric field using only camera images and compute
the DM control signals for based on the estimated field. This
estimation and control problem is commonly referred to as
focal-plane wavefront correction (FPWC). Effective FPWC
algorithms require efficient estimation algorithms and accurate
models of the optical system, particularly of the influence of DM
voltage commands on the focal-plane electric field.

In all current FPWC systems, the optical models needed for
control and estimation have been derived by applying Fourier
optics to the optical layout. However, using only the Fourier
optics approach results in significant bias errors due to inaccur-
acies in measurements of the optical system, imperfect knowledge
of the systematic optical aberrations, and poor or biased models of
the DM influence. This has a detrimental effect on the wavefront
correction speed and the final achievable contrast. Classical
approaches for eliminating these model errors and improving
the system performance include pupil plane phase retrieval10,11

and laser interferometric DM surface characterization12 in
advance, which are usually time consuming and also introduce
noncommon-path errors. In this paper, we propose a data-
driven framework using the expectation–maximization (E-M)*Address all correspondence to: He Sun, E-mail: hesun@princeton.edu
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algorithm to accurately identify and adaptively control the
FPWC system. In contrast to classical approaches, our method
does not require a change to the optical system design, tracks
real-time systematic changes, and speeds up convergence of
the controller.

In the following sections, we first provide a brief overview
of the FPWC system, including mathematical modeling and
current state-of-the-art on wavefront estimation, control, and
model calibration. In addition, we also propose a idea to formu-
late the problem as a stochastic optimization problem. Then,
we review the E-M algorithm and derive the E-M equations of
the FPWC system. We finally report the simulation and exper-
imental results on the FPWC system identification and adaptive
control in the Princeton’s High Contrast Imaging Lab (HCIL) to
demonstrate the method’s ability.

2 Overview of High-Contrast Focal Plane
Wavefront Correction

In this section, we review the current state-of-the-art in
FPWC and we also introduce a idea to formulate FPWC as
a stochastic optimization problem. In Secs. 2.1–2.3, we review
the approaches of optical system modeling, wavefront estima-
tion and control, and model calibration, which are related to
our new algorithm. Readers already familiar with these subjects
may skip these sections.

2.1 Mathematical Modeling

The FPWC system with a coronagraph is typically formulated as
a state-space model for the convenience of control applications.
In this state-space formulation, the control inputs, observations,
and state variables are, respectively, the DM voltage commands,
camera images, and the focal plane electric fields. We begin this
section by deriving this underlying state-space model.

The block diagram in Fig. 1 shows the architecture of the
telescope optics and the control loop. We define Eab as the aber-
rated pupil electric field before the DMs and Δϕm as the phase
change introduced by the DMs at correction iteration m. The
coronagraph operator Cf·g represents the propagation from
the DM to the focal plane camera. After k correction iterations,
the focal plane electric field is given by

EQ-TARGET;temp:intralink-;e001;326;752Ek ¼ C
�
Eab exp

�
i
Xk
m¼1

Δϕm

��
: (1)

When the phase change due to the DM is small (typically, the
DM surface perturbation is smaller than 30 nm), the focal plane
electric field in Eq. (1) can be expanded in a Taylor series about
Δϕm to yield

EQ-TARGET;temp:intralink-;e002;326;667Ek ≈ CfEabg þ
Xk
m¼1

CfEabiΔϕmg

¼ Ek−1 þ CfEabiΔϕkg;
(2)

where we used the fact that the coronagraph is a linear operator
in the applied electric field (as it is composed of Fresnel
propagations, Fourier transforms, and coronagraph mask
multiplications).

The DM phase change, Δϕk, at each step is approximated by
summing weighted influence functions produced by each actua-
tor on the DM. That is, given an influence function, fq, which
represents the q’th actuator’s response to a unit voltage input,
the DM induced phase change across the pupil is approximated
by the linear superposition:

EQ-TARGET;temp:intralink-;e003;326;490Δϕk ≈
XNact

q¼1

uk;qfq; (3)

where Nact is the number of DM actuators and uk;q is the voltage
command change of the q’th actuator. We use uk;q instead of
Δuk;q in this paper for notational simplicity.

Substituting Eq. (3) into Eq. (2) results in a linear relation-
ship between the focal plane electric field and the DM voltage
commands:

EQ-TARGET;temp:intralink-;e004;326;372Ek ¼ Ek−1 þ
XNact

q¼1

uk;qCfEabifqg: (4)

By discretizing and vectorizing the 2-D electric fields, Eq. (4)
can be put in the common matrix form of the state transition
model:

Fig. 1 Telescope optical system architecture and focal plane wavefront control loop. System variables
are also marked on the diagram, where Eab is the aberrated pupil plane electric field, Δϕm is the DM
surface phase change at a single step, Cf·g represents the light propagation through coronagraph, Ek is
the focal plane electric field, Ik represents the camera images, uk represents the DM commands, and
Êk∕x̂ k are the estimated complex/real-valued states of electric field.
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EQ-TARGET;temp:intralink-;e005;63;752Ek ¼ Ek−1 þ FðEab; f1∶Nact
Þuk; (5)

where Ek; Ek−1 ∈ CNpix×1 are the complex state vectors,
uk ∈ RNact×1 is the DM control input vector, F ∈ CNpix×Nact is
the system Jacobian matrix, and Npix is the number of camera
pixels in the dark holes. The corresponding intensity on the
science camera is as follows:

EQ-TARGET;temp:intralink-;e006;63;675Ik ¼ E⋆
k ∘ Ek; (6)

where ∘ represents the elementwise multiplication and ⋆ denotes
complex conjugation. Equations (5) and (6) are, respectively,
the state transition and observation equation of the state-space
model.

Since the measurement Eq. (6) is the sum of the squares of
the real and imaginary components, it is impossible to extract
the full complex electric field from a single measurement.
Instead, the current approach is to apply n ðn ≥ 2Þ pairs of
opposite “probe” commands to the DM,13,14 denoted by
upk ¼ ½up;1k ; · · · ; up;nk �, which result in the set of 2n intensity
measurements:

EQ-TARGET;temp:intralink-;e007;63;522

Imþ
k ¼ ðEk þ Fup;mk Þ⋆ ∘ ðEk þ Fup;mk Þ; ∀ m ¼ 1; · · · ; n

Im−
k ¼ ðEk − Fup;mk Þ⋆ ∘ ðEk − Fup;mk Þ; ∀ m ¼ 1; · · · ; n:

(7)

These are then subtracted to form an overdetermined set of n
linear measurements of the electric field:

EQ-TARGET;temp:intralink-;e008;63;4332
664
ΔI1k
..
.

ΔInk

3
775 ¼

2
664
I1þk − I1−k

..

.

Inþk − In−k

3
775 ¼ R

8>><
>>:

2
664
4ðFup;1k Þ⋆ ∘ Ek

..

.

4ðFup;nk Þ⋆ ∘ Ek

3
775
9>>=
>>;

¼ R

8>><
>>:

2
664
4 diagfðFup;1k Þ⋆g

..

.

4 diagfðFup;nk Þ⋆g

3
775Ek

9>>=
>>;
; (8)

where diagf·g represents the diagonal matrix constructed from
a vector. Equations (5) and (8) make up the linear state-space
model of the FPWC system.

The elementwise product structure in Eq. (8) decouples the
linear state transition equations in each pixel, so the electric field
of a single pixel can be estimated based only on its own intensity
measurements. For mathematical convenience, we can further
split the real and imaginary part of the electric field and derive
real-valued state-space equations:

EQ-TARGET;temp:intralink-;e009;63;205xk;j ¼ xk−1;j þ Gjuk; zk;j ¼ Hk;jxk;j; (9)

where j ∈ f1; · · · ; Npixg is the index of camera pixels, and

EQ-TARGET;temp:intralink-;e010;326;752

xk;j ¼
�
RfEk;jg
IfEk;jg

�
; Gj ¼

�
RfFj;1∶Nact

g
IfFj;1∶Nact

g

�
;

zk;j ¼

2
664
ΔI1k;j

..

.

ΔInk;j

3
775; Hk;j ¼ 4ðGju

p
k ÞT: (10)

The elements of the state vectors and matrices are now real
numbers, which is more convenient for developing estimators
and controllers.

Good DM “probe” commands should help construct well-
conditioned measurement matrices, Hk;j, for all the pixels in
the dark holes. Commands that create “Sinc” waves on the
DM surface are usually good choices, because camera pixels
in two symmetric rectangular areas are influenced by this
type of probe according to Fourier analysis.15

2.2 Focal Plane Wavefront Estimation and Control

With the state-space model developed in Sec. 2.1, we now
introduce the wavefront estimation and control algorithms.
The baseline wavefront estimation approach used in most imple-
mentations to date is the least-square, batch process estimator
(BPE),13,14 which can be derived as follows. We begin with
the linear observation model in Eq. (9) but with an additive
noise term, nk;j, to represent camera measurement noise and
observation matrix errors (originally from Jacobian matrix
errors):

EQ-TARGET;temp:intralink-;e011;326;428zk;j ¼ Hk;jxk;j þ nk;j: (11)

Theoretically, the camera measurements should follow
Possion distributions. However, in our case, there are a sufficient
number of starlight photons for detection, making it safe to
assume the measurements follow centered Gaussian distribu-
tions on the top of the speckles, i.e., nk;j ∼N ð0; Rk;jÞ. We can
thus perform a least-square regression to estimate the expecta-
tion, x̂k;j, and the covariance matrix, Pk;j, of the state vector at
each time step, k:
EQ-TARGET;temp:intralink-;e012;326;308

x̂k;j ¼ ðHT
k;jHk;jÞ−1HT

k;jzk;j;

Pk;j ¼ ðHT
k;jHk;jÞ−1HT

k;jRk;jHk;jðHT
k;jHk;jÞ−1: (12)

Repeating this regression procedure for all pixels provides an
estimate of the entire electric field in the focal plane. Although
this algorithm is easy to implement, one weakness is that its esti-
mation accuracy, indicated by the estimation covariance, is fully
determined by the measurement noises. When the signal-to-
noise ratio is low (which happens as the dark hole improves),
this BPE may not provide accurate enough estimates to be
used for control.16

A better solution is to incorporate prior knowledge from the
model and the previous measurements using a Kalman filter.17

This formulation allows us to introduce an additive process
noise term, wk, to the state-space equations:

EQ-TARGET;temp:intralink-;e013;326;125xk;j ¼ xk−1;j þ Gjuk þ wk;j; (13)

where wk;j ≅ ΔGjuk þ rk;j, of which the first term comes from
the Jacobian matrix errors and the second term comes from sys-
tem instabilities, such as DM drift. Assuming elements of the

Journal of Astronomical Telescopes, Instruments, and Systems 049006-3 Oct–Dec 2018 • Vol. 4(4)

Sun, Kasdin, and Vanderbei: Identification and adaptive control of a high-contrast focal plane wavefront correction system



Jacobian matrix bias ΔGj and the instability term rk;j follow
zero-mean Gaussian distributions (the model bias ΔGj is the
difference between the true Jacobian matrix and the current
Jacobian matrix in use. Each element of Jacobian errors, ΔGj,
has zero mean, since we have no knowledge whether the current
Jacobian influence is larger or smaller than the true value. This
is intuitively true in real experiment because the biases of
different actuators may have influence of different directions,
so they will cancel with each other), the process noise also
becomes an additive Gaussian noise, wk;j ∼N ð0; Qk;jÞ, which
satisfies the requirement of Kalman filtering.

At control iteration k, the state transition model provides a
prediction of the current state, since we have x̂k−1;j and Pk−1;j
from the previous estimation. With this prior knowledge, we can
derive the log-likelihood function of the current state and the
observations:
EQ-TARGET;temp:intralink-;e014;63;576

log pðzk;j; xk;jÞ ¼ −
1

2
ðxk;j − x̂k;jjk−1ÞTP−1

k;jjk−1ðxk;j − x̂k;jjk−1Þ

−
1

2
ðzk;j −Hk;jxk;jÞTR−1

k;jðzk;j −Hk;jxk;jÞ;
(14)

where

EQ-TARGET;temp:intralink-;e015;63;482x̂k;jjk−1 ¼ x̂k−1;j þGjuk; Pk;jjk−1 ¼ Hk;jPk;jHT
k;j þ Rk;j;

(15)

are the a-priori state and covariance estimates and pðz; xÞ is
the joint probability density function for z and x. The Kalman
filter maximizes this log-likelihood function, so it optimally
combines the information from the model and the observations
and thus reduces the estimation covariance.

Recently, Riggs et al.16 introduced an incoherent light term
into the nonlinear observation model, Eq. (6):

EQ-TARGET;temp:intralink-;e016;63;363Ik ¼ E⋆
k ∘ Ek þ Iinco;k: (16)

They then employed an extended Kalman filter (EKF) to
simultaneously estimate both the coherent electric field and
incoherent intensity (which contains the planet). This method
removes the requirement for pairwise probing and makes simul-
taneous wavefront correction and planet detection possible. This
EKF approach is not used in this paper; however, it will be
applied to improve the system identification work described
here in a future paper to characterize system nonlinearities.

With the state estimates available, it is now possible to com-
pute the DM voltage commands to manipulate the focal plane
electric field. For mathematical simplicity, we construct a real,
linear state transition model by combining the state equations for
each pixel [Eq. (13)] into a single vectorized form:

EQ-TARGET;temp:intralink-;e017;63;188xk ¼ xk−1 þ Guk þ wk; (17)

where

EQ-TARGET;temp:intralink-;e018;63;146xk ¼

2
64

xk;1
..
.

xk;Npix

3
75; G ¼

2
64

G1

..

.

GNpix

3
75; wk ¼

2
64

wk;1

..

.

wk;Npix

3
75: (18)

The controller must drive the state xk as close to zero as pos-
sible to maintain a high contrast in the dark hole. Currently, the

two most popular model-based optimal controllers are electric
field conjugation (EFC)18 and stroke minimization (SM).19

EFC works by minimizing a cost function consisting of the
total energy in the dark holes and a Tikhonov regularization,
which can be written as follows:

EQ-TARGET;temp:intralink-;e019;326;697min
uk

xTk xk þ αkuTk uk; s:t: xk ¼ xk−1 þ Guk; (19)

where αk is the Tikhonov regularization parameter.
By contrast, SM aims to find the smallest DM commands

that achieve a target contrast, which can be formulated as the
constrained minimization:

EQ-TARGET;temp:intralink-;e020;326;616min
uk

uTk uk; s:t: xTk xk ¼ Ck; xk ¼ xk−1 þ Guk; (20)

where Ck is the target contrast, or total energy, in the dark holes.
The equality constraints can be incorporated into the cost func-
tion via a Lagrange multiplier, making SM into a similar formula
to EFC:

EQ-TARGET;temp:intralink-;e021;326;535min
uk

uTk uk þ μkðxTk xk − CkÞ; s:t: xk ¼ xk−1 þ Guk: (21)

The optimal solutions of Eqs. (19) and (21) give two corre-
sponding feedback control laws:
EQ-TARGET;temp:intralink-;e022;326;475

uk ¼ −ðGTGþ αkIÞ−1GTxk−1 and

uk ¼ −
�
GTGþ 1

μk
I

�
−1
GTxk−1; (22)

where I ∈ RNact×Nact is the identity matrix.
It is evident that EFC and SM, as more rigorously discussed

by Groff et al.,15 in fact, define the same control law except for
the tuning parameters, αk, and the Lagrange multiplier, μk. The
Lagrange multiplier, μk, is a function of the target contrast Ck,
which is the tuning parameter in SM. Both αk and μk introduce a
damping term, although based on different considerations, in the
matrix inversion, which helps avoid an ill-posed matrix inver-
sion problem and, more importantly, reduce the influence of
Jacobian matrix biases. Tuning the damping parameter, αk
and μk, which turns out to be nontrivial, is the key to properly
implementing the controllers.20

2.3 Model Calibration

Because the wavefront estimators and controllers are all model-
based, their performance highly depends on the accuracy of the
underlying model. It is common to precalibrate the model based
on some testbed measurments before running high-contrast
FPWC. To date, all the model calibration approaches work to
improve the Jacobian matrix in the linear state-space formulation.

As indicated by Eq. (5), the Jacobian matrix is fundamentally
a function of the aberrated pupil electric field, Eab, and the
actuator influence functions, f1∶Nact

, so an indirect approach
to improving the model is to characterize Eab and f1∶Nact

sep-
arately and then compute the Jacobian matrix based on the
coronagraphic propagation equation in Eq. (4). The influence
functions are usually characterized using laser interferometry.12

Since it is too time-consuming to measure the surface responses
of all the actuators (several thousands on each DM), typically,
only a few representative actuators are characterized with the
assumption that all actuators have similar responses. The pupil
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electric field, though, cannot be directly measured. It is typically
reconstructed from multiple focused and defocused images
using phase retrieval algorithms.21–24 However, all the phase
retrieval algorithms assume a certain light propagation model,
so they do not have the ability to diagnose any errors from an
incorrect optical layout prescription. In addition, since the corona-
graph typically blocks most of the light from the entrance pupil,
there are very few photons to provide the needed information.
To fix this, current phase retrieval approaches require removal
of the coronagraph to collect data; this makes the phase retrieval
time consuming and prone to noncommon path error.

Recent work by Zhou et al.25 started exploring system iden-
tification methods for determining the Jacobian matrix in favor
of directly identifying the Jacobian matrix by perturbing the DM
shapes and observing the resulting camera images. The physical
interpretation of a Jacobian matrix column is the influence of
a DM actuator with unit voltage command on the focal plane
electric field. Therefore, by definition, the Jacobian matrix
can be derived by commanding each actuator and estimating
the focal plane electric field changes. The least-squared, BPE
was employed in that work for the electric field estimation.
However, since BPE requires a large amount of data and is rel-
atively noisy, the identification procedure was time consuming
and the resulting identified model was too noisy to be used in the
wavefront correction. In addition, the identified model using
BPE was also limited by the initial knowledge of the Jacobian
matrix. Therefore, up to now, this work has only been used for
qualitatively understanding the sources of the model errors,
instead of quantitatively correcting the Jacobian matrix errors.

2.4 New Theoretical Results: FPWC as
a Stochastic Optimization Problem

As can be seen in Secs. 2.2 and 2.3, the typical approach to
focal-plane wavefront control is to examine the wavefront esti-
mation, wavefront control, and model calibration as separate
problems. In this section, we try to bridge these aspects by for-
mulating the FPWC problem as a single stochastic optimization
problem. As first shown by Sun et al.,26 this approach provides
better physical insights into the tuning parameters in the algo-
rithms and also provides theoretical ayalyses on how the wave-
front control, estimation, and model accuracy influence the final
contrast in the dark hole.

The ultimate goal of the FPWC is to minimize the total inten-
sity, xTk xk, in the dark holes. Since the state, xk, is a random var-
iable, we can formulate FPWC as a stochastic optimization/
control problem that minimizes the expectation of the dark
hole intensity, hxTk xki. The state variable follows the stochastic
process in Eq. (17). With the assumption that the process noise,
wk, has a zero mean, the expectation at step k can be distributed
as follows:
EQ-TARGET;temp:intralink-;e023;63;195hxTk xki ¼ hxTk−1xk−1iþ 2hxk−1iTGuk þ ukGTGuk þhwT

kwki
¼ hxTk−1ihxk−1iþ 2hxk−1iTGuk þ ukGTGuk þhwT

kwki

þ
XNpix

j¼1

Tr½varðxk−1;jÞ�; (23)

where the statistics of the previous state are provided by the past
wavefront estimation, hxk−1i ¼ x̂k−1 and varðxk−1;jÞ ¼ Pk−1;j.
(The covariance matrix Pk−1;j is an indicator for the estimation
accuracy, which is also a function of x̂k−1.)

The process noise, as explained in Sec. 2.2, includes
the Jacobian matrix errors and the system instabilities,
wk ≅ ΔGuk þ rk. Given rk ∼N ð0; SkÞ, the process noise
covariance in Eq. (23) becomes hwT

kwki ¼ uTk hΔGTΔGiuk þ
Sk, where hΔGTΔGi ≜ W models Jacobian uncertainties.

The stochastic optimization problem can now be written as
follows:
EQ-TARGET;temp:intralink-;e024;326;675

min
x̂k−1;uk

Φðx̂k−1; ukÞ ¼ x̂Tk−1x̂k−1 þ 2x̂Tk−1Guk þ ukGTGuk

þ uTkWuk þ
XNpix

j¼1

TrðPk−1;jÞ: (24)

Sk is eliminated in the optimization because it is a constant
covariance matrix. As this cost function indicates, the final con-
trast depends not only on the DM commands, uk, but also on the
estimation accuracy, TrðPk−1;jÞ, and the Jacobian uncertainties,
W. Minimizing the first four terms of the cost function over uk
defines the wavefront controller, while minimizing the trace of
the estimation covariance matrix, TrðPk−1;jÞ, over x̂k−1 defines
the wavefront estimator. In addition, system identification or
classical model calibration can be used to reduce the model
uncertainties, TrðWÞ ¼ kΔGk2F, which also improves the final
achievable contrast from the wavefront correction.

By definition, the entries of the regularization matrix are as
follows:

EQ-TARGET;temp:intralink-;e025;326;459Wm;l ¼
XNpix

j¼1

hΔGT
j;mΔGj;li; ΔGj ∈R2×Nact ; ∀j¼ 1; · · · ;Npix;

(25)

where the subscripts, m and l, represent the column indices of
the Jacobian bias matrices. Each column of ΔG gives the mod-
eling errors of an actuator’s influence, so Wm;l indicates the
covariance of Jacobian errors from the m’th and l’th actuators.
In general,W is a symmetric positive definite matrix with nearly
all the entries nonzeros.

The off-diagonal entries in W disappear if the modeling
errors of different actuators are assumed to be unrelated from
each other. EFC or SM with scalar regularization further assume
that the covariance of errors from different actuators is identical.
Thus, given that
EQ-TARGET;temp:intralink-;e026;326;272hΔGT

j;mΔGj;mi ¼ TrðvarðΔGj;mÞÞ ¼ 2σ2; ∀ j; m;

hΔGT
j;mΔGj;li ¼ TrðcovðΔGj;m;ΔGj;lÞÞ ¼ 0; ∀ j; m ≠ l;

(26)

where W degrades to a scaled identify matrix:

EQ-TARGET;temp:intralink-;e027;326;193W ¼ 2Npixσ
2I: (27)

This shows that tuning the Tikhonov regularization parameter
or Lagrange multiplier is equivalent to finding the magnitude of
Jacobian uncertainties in our model. A smaller regularization
parameter indicates smaller Jacobian errors, which finally leads
to higher contrast according to Eq. (24). In the following sec-
tions, we will present the system identification and the adaptive
control using the scalar regularization assumption in Eq. (26).
This assumption is not fundamentally necessary for our E-M
algorithm, but it will significantly simplify the algorithm
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implementation. Characterizing the filled regularization matrix
(by assuming each actuator’s error not independent) turns out
to be very hard, because the high-dimensional system suggests
that it is usually underdetermined and requires tremendous
amount of data for identification. To proceed with this idea,
we have to assume some known structure of the regularization
matrix (For example, we can assume only neighboring actuators
are coupled, which makes the matrix very sparse.) or incorporate
dimension reduction techniques, such as principal component
analysis or sigular-value decomposition, to reduce the number
of adaptable parameters. We will leave these explorations for
future work.

3 Expectation-Maximization (E-M) Algorithm
The stochastic optimization formulation in Sec. 2.4 indicates the
potential from system identification for improving the wavefront
corrections. Moreover, it indicates not only that identifying the
Jacobian matrix is necessary, but also that characterizing the
process and observation noises is important for tuning the opti-
mal estimators and controllers. In this section, we develop an
E-M algorithm-based approach27 to accomplish all of these goals.

3.1 Review of the E-M Algorithm

The E-M algorithm is an iterative system identification algorithm
to find the maximum a posteriori (MAP) estimates of the model
parameters in the presence of hidden variables.28,29 Hidden var-
iables are the states of a dynamical system, which are not directly
observable. Since the true values of the hidden variables are
absent, we cannot explicitly derive the log-likelihood function
and apply the maximum likelihood estimation (MLE) to identify
the model parameters as usual. Instead, we maximize a lower
bound of the log-likelihood of only the model inputs and outputs.
In general, with the hidden variables, the model inputs and out-
puts (the commands and observations of a system, usually
referred to as the training data), and the model parameters (coef-
ficients parametrizing the model function), denoted as X, Y, and
θ respectively, the log-likelihood can be written as an integral of
the marginal probability over the hidden variables:

EQ-TARGET;temp:intralink-;e028;63;325Lfθg ¼ logpðYjθÞ ¼ log

Z
pðX; YjθÞdX: (28)

Assuming the hidden variables follow a probability distribu-
tion, QðXÞ, a lower bound on the log-likelihood, FðQ; θÞ,
can be found using Jensen’s inequality:
EQ-TARGET;temp:intralink-;e029;63;249

Lfθg¼ logpðYjθÞ¼ log

Z
pðX;YjθÞdX;

¼ log

Z
QðXÞpðX;YjθÞ

QðXÞ dX;

≥
Z

QðXÞ logpðX;YjθÞ
QðXÞ dX;

¼
Z

QðXÞ logpðX;YjθÞdX−
Z

QðXÞ logQðXÞdX;

¼FðQ;θÞ:
(29)

The E-M algorithm alternates between maximizing this
lower bound with respect to the hidden variable distribution,

QðXÞ, and the model parameters, θ. Optimizing over the
distribution QðXÞ while fixing θ is called the expectation-step
(E-step), and optimizing over the model parameters θ while
fixing QðXÞ is called the maximization-step (M-step).

In the E-step, FðQ; θÞ is maximized when the inequality in
Eq. (29) becomes an equality, i.e., Lfθg ¼ FðQ; θÞ. Equality in
Eq. (29) holds if and only if pðX; YjθÞ∕QðXÞ is constant for any
possible X. The joint probability pðX; YjθÞ can be rewritten as
a conditional probability using Bayes’ rule:

EQ-TARGET;temp:intralink-;e030;326;653pðX; YjθÞ ¼ pðXjY; θÞpðYjθÞ; (30)

so FðQ; θÞ is maximized when QðXÞ ¼ pðXjY; θÞ, since
pðYjθÞ ¼ pðX; YjθÞ∕pðXjY; θÞ does not depend on X.

In the M-step, FðQ; θÞ is maximized when
∫ XQðXÞ log pðX; YjθÞdX ¼ EX½log pðX; YjθÞ�, the expectation
of the log likelihood is maximized. This is a stochastic MLE
problem of the model parameters, θ.

Theoretically, the model parameter estimation always con-
verges to a local minimum after enough iterations of the E-step
and the M-step. The number of iterations it takes depends on the
initial knowledge of the model parameters given to the algo-
rithm. In FPWC, the model computed based on the Fourier
optics can be used as the initial guess into the algorithm. Since
it is pretty close to the true value, the parameter estimation
converges within only one or two E-M iterations.

3.2 E-M Algorithm for FPWC System

The state-space model of the FPWC system defines a typical
input–output hidden Markov process, where the focal plane elec-
tric fields are the hidden variables and the Jacobian matrix as
well as the process and measurement noise covariance matrices
are the model parameters, so the E-M algorithm is suitable for the
this system. Moreover, since the dynamics of different pixels are
decoupled in the FPWC system under the linear assumption, we
can separately and in parallel identify the model parameters of
each pixel separately, which saves a lot of computation time.

Here, we copy the state transition and observation equations
defined by Eqs. (11) and (13):
EQ-TARGET;temp:intralink-;e031;326;317

xk;j ¼ xk−1;j þ Gjuk þ wk;j; wk;j ∼ Nð0; Qk;jÞ;
zk;j ¼ Hk;jxk;j þ nk;j; Hk;j ¼ 4upTk GT

j ; nk;j ∼ Nð0; Rk;jÞ;
(31)

where k ∈ f1; · · · ; Ndg is the index of the control iterations, j ∈
f1; · · · ; Npixg is the index of camera pixels, and Nd is the total
number of the control iterations. Based on Eq. (31), the model
parameters, hidden variables, and model inputs and observations
for the single-pixel E-M algorithms can be, respectively,
denoted as θj ¼ fGj;Q;1∶Ndj; R1∶Nd;jg, Xj ¼ fx0∶Nd;jg, and
Yj ¼ fu1∶Nd

; up1∶Nd
; z1∶Nd;jg. By assuming the process noise

wk;j ≅ ΔGjuk þ rk and the Jacobian errors from different actua-
tors are independent, as shown in Eq. (26), the process noise
covariance matrix is as follows:

EQ-TARGET;temp:intralink-;e032;326;139Qk;j ¼ uTk ukQj þ Sk;j ¼ uTk ukσ
2I2×2 þ δ2I2×2; (32)

where Sk;j, the covariance from the system instability term rk, is
assumed to be a constant scalar matrix, δ2I2×2, over iterations.
In our following simulation and experiment, since the instability
term is much smaller compared with the Jacobian bias, we
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neglect δ2 (assume δ2 ¼ 0) and only identify σ2 to determine
the process noise covariance. Without changing exposure time,
the observation noise covariance matrix is also a constant scalar
matrix over iterations:

EQ-TARGET;temp:intralink-;e033;63;708Rk;j ¼ Rj ¼ ν2In×n; (33)

where ν is the standard deviation of the observation noise and
n is the number of pairs of probes. As a result, the model param-
eters are simplified as θj ¼ fGj; σ2; ν2g in the current E-M
algorithm for the FPWC system.

The E-M equations for Xj, Yj, and θj can be derived follow-
ing the approach of Ghahramani and Hinton30 As shown in that
paper, for a linear Gaussian dynamical system like FPWC, the
E-step can be achieved by Kalman filtering and Rauch smooth-
ing and the M-step can be achieved by finding the analytical
solution of a quadratic optimization problem. However, since
the Jacobian matrix and observation matrix in FPWC have
shared parameters and our control variables are high-dimen-
sional, the model parameter update equations and the optimiza-
tion method are a little different from the standard approach. The
implementation details of the E-M algorithm for FPWC system
are explained in the next section. For notational simplicity, we
will omit the subscript j in the following derivations and discus-
sions, understanding that the E-step and the M-step are repeated
Npix times.

3.3 Actual Implementation

3.3.1 E-step

In what follows, we introduce notations x̂k1jk2 and Pk1jk2 , which
represent the estimated expectation and covariance of the hidden
states at control iteration k1 given observations up to and includ-
ing at control iteration k2. With these simplified notations, the
conditional probability in the E-step becomes

EQ-TARGET;temp:intralink-;e034;63;364QðXÞ ¼ pðXjY; θÞ ¼
YNd

k¼1

N ðx̂kjNd
; PkjNd

Þ; (34)

in our linear Gaussian FPWC system. This conditional proba-
bility can be derived from a combined approach using Kalman
filter and Rauch smoother.

The Kalman filter first forward propagates the states and esti-
mates the hidden states based only on the data up to the current
step. The Kalman filter optimization problem is defined in
Sec. 2.2. The solution to the optimization problem gives five
Kalman filter equations:

EQ-TARGET;temp:intralink-;e035;63;225x̂kjk−1 ¼ x̂k−1jk−1 þ Guk; (35)

EQ-TARGET;temp:intralink-;e036;63;194Pkjk−1 ¼ Pk−1jk−1 þQk; (36)

EQ-TARGET;temp:intralink-;e037;63;174Kk ¼ Pkjk−1HT
k ðHkPkjk−1HT

k þ RkÞ−1; (37)

EQ-TARGET;temp:intralink-;e038;63;147x̂kjk ¼ x̂kjk−1 þ Kkðzk −Hkx̂kjk−1Þ; (38)

EQ-TARGET;temp:intralink-;e039;63;121Pkjk ¼ ðI − KkHkÞPkjk−1; (39)

where x̂kjk−1 and Pkjk−1 are the a priori knowledge of the states
and covariance matrix from observations up to control iteration

k − 1, and x̂kjk and Pkjk are the a posteriori estimates updated by
the observations at step k.

Rauch smoother then propagates the states backward from
the last step to the starting step and further updates the estimates
based on the data of the future steps. Mathematically, Rauch
smoother is a Kalman filter using the next hidden state as the
observation. The Rauch smoothing equations are as follows:

EQ-TARGET;temp:intralink-;e040;326;675Lk ¼ PkjkP−1
kþ1jk; (40)

EQ-TARGET;temp:intralink-;e041;326;642x̂kjNd
¼ x̂kjk þ Lkðx̂kþ1jNd

− x̂kþ1jkÞ; (41)

EQ-TARGET;temp:intralink-;e042;326;616PkjNd
¼ Pkjk þ LkðPkþ1jNd

− Pkþ1jkÞLT
k ; (42)

where x̂kjNd
and PkjNd

are the estimated hidden state’s expect-
ation and covariance based on all the Nd steps of data,
Y ¼ fu1∶Nd

; up1∶Nd
; z1∶Nd;jg.

3.3.2 M-step

The M-step defines a stochastic MLE problem. Based on the
Markovian structure of Eq. (31), the log likelihood of the hidden
states, model inputs, and observations is as follows:

EQ-TARGET;temp:intralink-;e043;326;492

LðG;Q;RÞ¼ log
YNd

k¼1

pðzkjxk;Hk;RkÞ
YNd

k¼1

pðxkjxk−1;uk;G;QkÞ

¼−
1

2

XNd

k¼1

ðzk−HkxkÞTR−1
k ðzk−HkxkÞ

−
1

2

XNd

k¼1

log j2πRkj

−
1

2

XNd

k¼1

ðxk−xk−1−GukÞTQ−1
k ðxk−xk−1−GukÞ

−
1

2

XNd

k¼1

log j2πQkj; (43)

where

EQ-TARGET;temp:intralink-;e044;326;293Rk ¼ R;Qk ¼ uTk ukQ;Hk ¼ 4ðGupk ÞT: (44)

The expectation of this log-likelihood can be calculated
using the state estimates in the E-step. Therefore, we can esti-
mate the model parameters by taking the derivatives of the
log-likelihood with respect to each parameter and forcing the
resulting expectations to be zero:

EQ-TARGET;temp:intralink-;e045;326;211

∂hLðG;Q;RÞi
∂G

¼ 0;
∂hLðG;Q;RÞi

∂Q
¼ 0;

∂hLðG;Q;RÞi
∂R

¼ 0:

(45)

This gives the analytical update equations for the model
parameters:
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EQ-TARGET;temp:intralink-;e046;63;752G¼
�XNd

k¼1

1

uTk uk
ðx̂kjNd

− x̂k−1jNd
ÞuTkþ4Q

XNd

k¼1

½x̂kjNd
zTk

−4ðx̂kjNd
x̂TkjNd

þPkjNd
ÞGupk �R−1upTk

��XNd

k¼1

ukuTk
uTk uk

�−1

;

(46)

EQ-TARGET;temp:intralink-;e047;63;663Q ¼ 1

Nd

XNd

k¼1

1

uTk uk
½ðx̂kjNd

− x̂k−1jNd

− GukÞðx̂kjNd
− x̂k−1jNd

− GukÞT þ PkjNd
þ Pk−1jNd

�;
(47)

EQ-TARGET;temp:intralink-;e048;63;588

R ¼ 1

Nd

XNd

k¼1

½ðzk − 4ðGupk ÞTx̂kjNd
Þðzk − 4ðGupk ÞTx̂kjNd

ÞT

þ 16ðGupk ÞTPkjNd
Gupk �: (48)

Equation (46) is an implicit equation, so G needs to be found
recursively. From our earlier assumption, Q and R are forced to
be scaled identity matrices:

EQ-TARGET;temp:intralink-;e049;63;492Q←
TrðQÞ

2
I2×2; R←

TrðRÞ
2

I2×2; (49)

where we accordingly obtain as follows:

EQ-TARGET;temp:intralink-;e050;63;439σ2 ¼ TrðQÞ
2

; ν2 ¼ TrðRÞ
2

: (50)

The process covariance, σ2, can be used in the EFC algorithm
for computing the Tikhonov regularization parameter, as shown
in Eq. (27).

One shortcoming of this analytical solution is the large
matrix inversion in Eq. (46). To ensure the matrix is invertible,
we have to collect several thousand steps (greater than the num-
ber of actuators on DMs) of data before making an update,
which is unnecessarily time-consuming and also precludes on-
line system adapting. In order to update the model with a smaller
amount of data, we can use a stochastic gradient ascent algo-
rithm instead for updating the Jacobian matrix:

EQ-TARGET;temp:intralink-;e051;63;281G←Gþ η
∂hLðG;Q; RÞi

∂G
; (51)

where the tuning parameter η defines the learning rate of the
algorithm. However, this method may not be able to reach
exact optimal solutions.

These two subsections presented all of the E-M equations for
FPWC system. By repeating the iterative E-M approach on all
the pixels we can reconstruct the linear state-space model for
the entire system. While that is sufficient, it is helpful to
apply a final step, forcing the process and observation noise
matrices of all the pixels to be equal to their average. Since
all pixels in the dark hole share almost the same noise distribu-
tions, neglecting the small difference in photon noises, this step
enhances the robustness of the E-M algorithm.

The remainder of the paper will present two ways to apply
the E-M algorithm to the FPWC system, offline system identi-
fication, and online adaptive control. In Sec. 4, we identify the
system using precollected data and try to understand the sources

of aberrations in our system. In Sec. 5, we integrate the E-M
algorithm into the control loop and adapt the model parameters
and control policy in real time. Simulation and experimental
results are reported in both cases.

4 E-M Algorithm-Based System Identification
In this section, we numerically and experimentally investigate
the E-M algorithm-based system identification for FPWC.
Our goal for the system identification is to precisely characterize
the Jacobian errors. In addition, we will also take this chance to
understand important algorithmic details, for example, the influ-
ence of the hyperparameters (batch size and amount of data) on
the algorithm’s performance or how hard it is to characterize
different types of model errors.

The experiment is conducted in the Princeton’s HCIL and the
simulation uses the same setup. As shown in Fig. 2, the HCIL
testbed is a two-DM FPWC system with shaped pupil (SP)
coronagraph. It utilizes a ripple pupil plane mask to suppress
the contrast by changing the starlight PSF. In addition, a bowtie
shaped focal plane mask blocks the center part of the PSF to
avoid camera saturation, which also defines the dark hole
regions for the FPWC. Each DM in the HCIL has 952 actuators.
Without loss of generality, we only activate the first DM in sim-
ulation and experiment. The second DM is treated as a fold
mirror.

4.1 Numerical Verification

4.1.1 Data generation

In the numerical study, we simulated the DM commands and
resulting camera images under an imperfect lab condition.
Wavefront aberrations with 10-nm RMS were added to the
shaped pupil plane and two DM planes. The DM actuators’
gains were biased by 20% to account for the influence function
errors. (The influence function shape errors were neglected in
our simulation, however, the E-M algorithm is able to handle
this type of errors as proved in the experimental results.)
Shot noises and readout noises were added to the simulated cam-
era images, where the noises’ standard deviations were chosen
based on measurements in the HCIL. In the numerical model,
the masks are modeled as 0-1 binary matrices, the propagations
through the OAPs or lenses to their focuses are modeled as

Laser

1st Deformable 
Mirror

2nd Deformable 
Mirror

Collimating OAP

Fold Mirror

Shaped Pupil 
Mask (SP)

Imaging OAP

Focal Plane 
Mask (FPM)

Reimaging Optics
Camera

SP

FPM

Fig. 2 Layout of the HCIL testbed. Rippled shaped pupil and bowtie
shaped focal plane mask are applied to suppress the contrast in
the focal plane. Two Boston micromachines MEMS DMs are installed
for FPWC.
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Fourier transform, and all the free-space propagations between
devices are modeled as Fresnel propagations.

To sufficiently explore the controllable space of the DM,
we generated the data by applying random DM commands in
the system identification approach. In our simulation, in total
4000 random voltage commands (between −0.6 − 0.6 volts)
were applied to the DM and the resulting camera images
were simulated. A fixed exposure time of 0.1 s was used for
the camera images. For each random DM commands, we col-
lected two pairs of probing images, so we have in total 16,000
images (2 images∕pair × 2 pairs∕command × 4000 commands)
in our data set. The random commands between −0.6 and 0.6 V
typically result in contrast changes at a level of 1 × 10−6. In
order to make the DM influence significant enough for learning
so that the effect is larger than the background speckles, in our
simulation, we first ran wavefront control for four steps to reach
a contrast of roughly 3 × 10−6 and then applied the random DM
commands and generated the images. Same “probe” comands
were used for all 4000 data points. Although identical pair-
wise probes are not necessary for the E-M system identification,
as as will be discussed, it helps us build a metric to evaluate the
effectiveness of the identification.

4.1.2 Evaluation metrics of the identification accuracy

Three metrics were used to evaluate the model errors in our
analysis. The first is the percentage error of the E-M identified
Jacobian, GEM, compared with the true Jacobian including
optical aberrations and influence function biases, G:

EQ-TARGET;temp:intralink-;e052;63;436Jacobian Error ¼ kGEM − Gk22
kGk22

¼ kΔGEMk22
kGk22

: (52)

The second metric assumes we are blind to the true Jacobian
matrix (which is true in the experiment); we thus reserve part of
the data as a validation set. Theoretically, the difference between
two neighboring observations with the same probing commands
is a function of only the DM commands:

EQ-TARGET;temp:intralink-;e053;63;336Δzk ¼ zk − zk−1 ¼ 4ðGupÞTðxk − xk−1Þ ¼ 4ðGupÞTGuk.
(53)

So, we can define a percentage validation error of the identified
Jacobian matrix, via

EQ-TARGET;temp:intralink-;e054;63;269Validation Error ¼
PNv

k¼1 kΔzk − 4ðGEMupÞTGEMukk22PNv
k¼1 kΔzkk22

¼
PNv

k¼1 4kupTðGTG − GT
EMGEMÞukk22PNv

k¼1 4kupTGTGukk22
;

(54)

where Nv is the number of data steps in the validation set.
The scale of validation error could be a little different from
Jacobian error since it actually measures the difference between
GT

EMGEM and GTG instead of GEM and G, however, they should
have similar trends and are both good indicators of model
accuracy.

The third metric that indirectly reflects the accuracy of a
Jacobian matrix is the correction speed and the final achievable
contrast of the wavefront control using it. With a more accurate

Jacobian matrix, the wavefront control should achieve a higher
contrast with fewer control iterations.

4.1.3 System identification results

In this section, we applied the E-M algorithm-based system iden-
tification in various ways to the simulation data to test the algo-
rithm. The analytical method in Eqs. (46)–(48) and the gradient
ascent method in Eq. (51) were, repectively, tried to solve the
stochastic MLE problem. For the gradient ascent method, we
also examined the effect of using different batch sizes. The
batch size is a machine learning term referring to the number
of data points utilized in one E-M update. Theoretically, small
batch sizes enable timely model parameter updates and time-
efficient parallel computing, but sacrifice the accuracy of each
update because the hidden states estimation with small batch
sizes has relatively larger covariance. The algorithm was also
investigated with different numbers of data points. Our goal
for this section is mainly to validate the reasonability of the
evaluation metrics defined in the previous section, and to com-
pare the performance of the algorithm given different optimiza-
tion methods, batch sizes and amount of data using these metrics.

Figure 3 shows the change in the Jacobian errors and the
validation errors with respect to the number of data points.
We saved the last 500 steps of data for validation, so at most
3500 data points were used for system identification. Results
using the analytical method and the gradient ascent method
with the batch sizes of 2, 10, 100, and 500 are reported. As
shown in the figure, the validation error curves resemble the
Jacobian error curves, validating it a good metric of model accu-
racy in the experiment. The stochastic descent algorithm works
with a wide range of batch sizes all with similar validation
errors, though too small a batch size underperforms compared
with others. The analytical method does not work with fewer
than 1500 data points because of the ill-posed matrix inversion
in Eq. (46). However, it outperforms the gradient ascent once
given enough data. The identification accuracy primarily
depends on the number of data points used, no matter what
optimization methods or batch sizes we apply.

Figure 4 shows the simulated wavefront correction using the
original biased model (computed using Fourier optics with no
knowledge of the true aberrations), the true model (computed
using Fourier optics with full knowledge of the true aberrations),
and the best identified model (analytical solution using 3500
data points). EFC with a fixed regularization parameter and
batch process estimation with two pairs of probing commands
was used in this simulation. As can be seen, the identified model
beats the biased model in both the wavefront control speed and
the final contrast. The contrast gap between the true model and
the biased model is significantly reduced after the E-M system
identification.

4.2 Experimental Results

4.2.1 Data collection

The same sampling policy was used in experiment as in simu-
lation: we ran the wavefront correction to reach a relatively high
contrast (settling at around 3 × 10−6), applied 4000 random DM
commands (between −0.6 and 0.6 V), and collected the result-
ing difference images, saving the last 500 steps as the validation
set. Again, two pairs of DM probes were used for observation at
each step.
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4.2.2 Identification results

With the validation error proved to be a good metric, now we use
this metric to evaluate the identifcation results with the exper-
imental data. As shown in Fig. 5, the validation error curves of
various cases decrease with the same trends as in Fig. 3(b),
showing that the E-M algorithm also successfully detects and
corrects the Jacobian errors in the experiment.

Further analysis of the sources of Jacobian errors in experi-
ment can be found in Sec. 7. As shown by this regression analy-
sis of the identified Jacobian, DM actuator’s gain errors and

pupil plane wavefront phase aberrations explain around half
of the model errors in our experiment (Other errors may be
the influence function shape errors, the wavefront aberrations
on the plane of other devices and the system nonlinearities
beyond the algorithm’s identification ability.). Among these fac-
tors, the DM gain errors are easily corrected with only a few of
data, while the wavefront aberrations are corrected slower and
also varies over time.

We also compared the wavefront control results using the
identified model and the original/biased physics model. In
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Fig. 4 Contrast curves of simulated wavefront correction in HCIL.
Biased physics model, true model, and identified model using analyti-
cal method (3500 data points) are tested, respectively.
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Fig. 3 (a) Jacobian errors, (b) validation errors, and (c) their relations from a simulation over the number
of data points in the training set. Different methods, including analytical solutions and stochastic gradient
ascent solutions with the batch sizes of 2, 10, 100, and 500 data points are compared using the simulated
training data.
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Fig. 5 Validation errors in the experiment over the number of data
steps in the training set. Different methods, including analytical solu-
tions and stochastic gradient ascent solutions with the batch sizes
of 2, 10, 100, 500, are compared using the experimental data.
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the physics model, we had no knowledge of the wavefront aber-
rations and assumed the same gain and influence function shape
for all the actuators. Similarly, EFC and batch process estima-
titon were used in all the wavefront correction trials. Figures 6(a)
and 6(b), respectively, show the wavefront control curves (con-
trast versus control iteration) using the analytical Jacobian sol-
utions and the gradient ascent Jacobian solutions with different
amount of data. In both cases, the wavefront corrections with the
identified models are much faster than the biased physics model
in the early stage; they all reached a contrast better than 3 × 10−7

within only four to five control iterations. However, the analyti-
cal Jacobians did not perform better than the gradient ascent sol-
utions as expected. After reaching a high contrast, the analytical
Jacobians experienced some difficulties in correcting the small
residual aberrations, resulting in a final contrast slightly worse
than the physics model. We speculate that the analytical E-M
solutions are overfitted to the data noise. By contrast, the gra-
dient ascent solutions reached the same ultimate contrast as the
physics model. This is mainly because the achievable final con-
trast in the lab is currently limited by the scattered, incoherent
light. On conclusion from these results is that the gradient
method is better for experimental applications. In addition,
the wavefront correction speed did not improve much as the
number of data points increased. This may be because the
key factors that influence the wavefront correction speed, prob-
ably the DM actuator’s gain errors, as discussed in the appendix,
were detected and corrected with only tens of data points and/or
offline system identification did not handle the time-varying
data well.

5 E-M Algorithm Based Adaptive Control
The experimental results in Sec. 4 demonstrated the ability of
the E-M algorithm to improve the Jacobian accuracy, even
with only small amount of data. However, this system identifi-
cation workflow (data collection—identification—wavefront
correction) cannot keep up with some of the most important
time-varying errors, such as thermally induced phase aberra-
tions. In this section, we present an E-M algorithm based
real-time adaptive control framework, or more specifically,
a reinforcement learning control framework, to solve this
problem. This reinforcement learning control strategy is not
fundamentally different from the E-M algorithm based system
identification; we use the same algorithm developed in Sec. 3

but only directly feed the wavefront correction data instead
of the precollected data with random DM commands into the
E-M equation.

5.1 Reinforcement Learning for FPWC

Reinforcement learning control has attracted much attention
recently as an important branch of machine learning. In
reinforcement learning, the system, or agent, alternately runs
a control policy to explore the environment and an adaptation
step that varies the policy based on the information from the
control step. Since the agents directly learn from the control
attempts, it is more efficient for them to find the best control
policies and track the model variations in real time. This tech-
nique has been widely applied to training complex control sys-
tems, such as those playing the game of Go31 or video games,32

robot manipulation, motion planning, and locomotion.33

Figure 7 shows the block diagram of the proposed adaptive
FPWC system. It combines the wavefront estimation and con-
trol with the E-M system identification presented in Sec. 3. In
this scheme, we no longer use random DM commands for iden-
tification. Instead, the DM commands and resulting images
from the control loops are sent to the E-M algorithm to update
the model instantanesouly. The new adaptive FPWC system
now loops between running steps of wavefront estimation
and control and updating the model parameters (which also
means updating the control and estimation policy). In addition,
not only is the Jacobian matrix, G, identified in the adaptive/
reinforcement learning control step, so too are the process
noise, σ2, and observation noise, ν2, as demonstrated in
Eqs. (49) and (50). These are then used to tune the wavefront
estimator (the covariance matrices of process noises and obser-
vation noises in Kalman filter) and controller (Tikhonov regu-
larization matrix in EFC) based on Eqs. (27), (32), and (33). As
a result, the Kalman filter estimator better balances the weights
of the model predictions and observations, and the controller
better chooses the damping parameter in the wavefront correc-
tion. In our software implementation, we introduce a hyperpara-
meter, γ, to Eq. (27), which defines a modified regularization
matrix,W 0 ¼ γW ¼ 2γNpixσ

2I, because we found the controller
is usually able to be more aggressive than the theoretical
suggestion.
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Fig. 6 Measured contrast in the HCIL over the control iterations. (a) wavefront corrections using physics
model and analytical identified Jacobians with 1500, 2500, and 3500 data points. (b) wavefront correc-
tions using physics model and gradient ascent identified Jacobians (bath size of 500) with 500, 1500,
2500, and 3500 data points.
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5.2 Reinforcement Learning Simulation

Again using the imperfect lab conditions that result in phase
aberrations and actuator gain biases, as stated in Sec. 4.1.1,
we simulated the reinforcement learning control for 50 control
iterations. Two pairs of probing images were collected at each
iteration for wavefront estimation. In Sec. 4, we used same pair-
wise probes for the convenience of validation error calculation;
however, here, we allowed the DM probes to vary among differ-
ent control iterations in the reinforcement learning control
simulation. After every 10 control iterations, we supplied the
control commands (10 steps), the pairwise probes (2 pairs/
step × 10 steps), and the camera images (2 images/pair × 2
pairs/step × 10 steps) to the E-M algorithm to update the
Jacobian matrix and the tuning parameters in the estimator
and controller. For comparison, the wavefront control with
the true Jacobian model and the fixed biased Jacobian model
was also simulated. In both of these benchmark cases, the
Kalman filter and the EFC controller were tuned to the best
manually. Figure 8 shows the results of the three simulations.
As can be seen, the reinforcement learning control gradually

closed the contrast gap between the biased model and the
true model. The E-M adaptation at every 10 iterations can be
clearly seen on the correction curves.

5.3 Reinforcement Learning Experiment in HCIL

In this section, we present the results of using the reinforcement
learning adaptive control approach in the HCIL. Unfortunately,
because the ultimate contrast achievable in the HCIL is limited
to roughly 1.5 × 10−7 due to incoherent background light (as
seen in Figs. 6), it is not possible to reproduce the simulation
results from the previous section. There, the adaptation step
was run after each 10 iterations of the control. But as can be
seen in Fig. 8, the modeled system reaches a contrast better
than the lab limit of 10−7 in fewer than 10 steps, before the
first reinforcement learning step. Through trial and error,
it was found that the E-M algorithm cannot robustly identify
the system with fewer than 10 learning steps. Therefore, to
experimentally verify the algorithm, we limited each FPWC
run to 10 control iterations and updated the model parameters
using the E-M algorithm after each trial. The Jacobian and

Fig. 7 Block diagram of the E-M algorithm based adaptive FPWC system.
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Fig. 8 (a) Simulated FPWC reinforcement learning control and the benchmark wavefront control with the
true Jacobian matrix and the fixed biased Jacobian matrix. The model parameters are updated using the
E-M algorithm every ten iterations. (b) Zoomed-in figure of the box region in (a). The E-M identifications
occurred at the iterations marked by pointed arrows.
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tuning parameters were then used for the next trial of wavefront
correction.

As shown in Fig. 9(a), the rate of convergence of the wave-
front correction became faster after each learning trial. Note that
we ran the E-M identification after every learning iteration, how-
ever, to keep the figure clean, we only report a few of the typical
results (wavefront control with the initial biased model and after
1, 5, 10, 15, 19 learning trials). After only 19 learning trials,
the FPWC system was able to reach 1 × 10−6 in one control
step and below 2 × 10−7 contrast in three control steps, which
is faster than the results from the offline system identification.
This indicates the wavefront control provided more informative
data compared with random DM commands. One possible
explanation is that the controller in wavefront correction more
frequently moves the DM actuators not blocked by the corona-
graph masks, and the parameters of these actuators (correspond-
ing columns of the Jacobian matrix) are actually the key parts to
improve the wavefront correction. As a contrast, the random
command policy indistinguishably moves all the actuators,
which may not be efficient. The reinforcement learning frame-
work may also have captured some time-varying errors.
However, since our testbed is pretty stable over short time inter-
vals, this should not be the main reason that the reinforcement
learning control outperformed the system identification.

Figures 9(b)–9(d) show the changes in the estimates of
process noise and observation noise covariances and their ratio
at each learning trial. As shown in these figures, we underesti-
mated the noise levels at the beginning. The adaptive controller

quickly corrected these incorrect assumptions. Then, the adap-
tive controller gradually corrected the errors in the Jacobian
matrix, so that the process and observation noise covariance
estimates decreased with additional learning trials. More details
about the adaptive control experiment can be seen in the video
in Fig. 10.

By using this reinforcement learning approach, much effort
is saved, and accuracy gained, by not having to take testbed
layout measurements, perform phase retrieval and surface char-
acterization, or having to manually tune the controller and esti-
mator parameters. The reinforcement learning adaptive control
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Fig. 9 Change of (a) the wavefront correction speed, (b) the process noise, (c) the observation noise and
(d) the process and observation noise ratio with respect to the learning iterations. To compare the wave-
front correction speed, we present the measured contrast over 10 control iterations for the initial model
and identified model after 1, 5, 10, 15, and 19 learning iterations.
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Fig. 10 A still image from the video about the adaptive wavefront
correction in HCIL. (Video 1, MP4, 0.75 MB [URL: https://doi.org/
10.1117/1.JATIS.4.4.049006.1]).
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results also shows promise for enabling self-maintenance of
the FPWC during the mission.

6 Conclusion and Future Work
Efficient and successful focal plane wavefront control and esti-
mation in coronagraph instruments requires accurate modeling
of the optical system. In this work, we first proposed an E-M
algorithm to identify the optical system as a linear state-
space model. According to the simulation and experimental
results in the Princeton’s HCIL, the algorithm successfully cor-
rects model errors such as those produced from errors in the
DM gains and initial phase aberrations. Use of the identified
models significantly increases the rate at which the wavefront
correction converges. We also developed a model-based adap-
tive/reinforcement learning control scheme based on this E-M
algorithm. The adaptive controller alternates between the wave-
front correction and the model parameter self-adaptation, which
significantly improves the performance of both the estimator
and controller and requires only tens of learning iterations.
This approach is very promising for the automatic maintenance
of the FPWC system in future space missions.

Future work will focus on generalizing this framework with
more realistic assumptions. First, we plan to identify the full
matrix regularization suggested in Sec. 2.4 instead of the scalar
regularization. This will help us understand the interactuator
couplings that are neglected by EFC and SM, as well as improve
the performance of the wavefront correction. Second, we also
plan to drop the linearity assumption and use EKF and neural
networks to approximate the optical system as a nonlinear sys-
tem. The linear assumption does not hold when we need large
DM surface chages to correct the influences from telesocpe
struts and/or segmented apertures. By introducing system non-
linearities back into the model, we should be able to further
increase the speed and efficiency of the wavefront corrections,
gain a deeper contrast, and better extract the exoplanet signal.

7 Appendix A: Regression Analysis of the
Sources of Jacobian Errors

The Fourier optics analysis in Eq. (5) shows that the Jacobian
errors primarily come from errors in the pupil field, Eab, and the
influence functions, f1∶Nact

. Thus, we can analyze the sources
of the Jacobian errors by fitting Eab and f1∶Nact

to our identified
Jacobian matrix, GEM. After rearranging the real-valued

Jacobian matrix, GEM, back into the complex form, FEM,
based on Eq. (10), the fitting problem can be formulated as
follows:

EQ-TARGET;temp:intralink-;e055;326;719 min
Eab;f1∶Nact

kFðEab; f1∶Nact
Þ − FEMk2F: (55)

The pupil electric field and influence functions are, respec-
tively, parameterized as follows:
EQ-TARGET;temp:intralink-;e056;326;658

Eab ¼ expði
X

βmZmÞ ≈ 1þ i
X

βmZm;

fq ¼ ρqf; ∀ q ¼ 1; · · · ; Nact; (56)

where Zm and βm are the Zernike polynomials and their coef-
ficients, f is the shape of the influence function, and ρq are the
actuator gains. For simplicity, this parameterization neglects
amplitude wavefront aberrations and the difference of influence
function shapes among actuators. With this parameterization
and Taylor expansion in Eq. (56), the fitting problem in
Eq. (55) becomes a simple linear, least-square regression in
the parameters βm and pq.

Figure 11(a) compares the validation errors of an identified
model (gradient ascent solution with batch size of 500 in
Sec. 4.2) and its fitted model. The validation errors from
only fitting with the DM gains or Zernike phase aberrations
are also reported. As shown, the fitted model explains more
than half the model errors identified by the E-M algorithm,
which in part proves our guess about the major sources of
model errors. More interestingly, the DM gains are accurately
characterized with only the first 500 data points, so the corre-
sponding validation error curve (red) decreases rapidly at the
beginning, but changes little as the amount of data increases.
By contrast, the validation error from the phase aberrations
regression (blue) keeps decreasing as the amount of data
increases without reaching plateu. This indicates that the phase
aberrations are hard to to correct and may be slowly changing
while collecting the data, so the identification algorithm keeps
adjusting the Zernike coefficients as the data amount increases.
Actually, the curve slope becomes even sharper in the end,
because the data in the end may have more similar pupil aber-
rations as the validation data. The first five fitted Zernike coef-
ficients with respect to the number of data points are further
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Fig. 11 Regression analysis of the experimental data in Sec. 4.2. (a) Validation errors of the E-M
identified models and the corresponding fitted models. Validation errors of the fitted models that correct
only DM gain errors (red), only phase aberrations (blue) are also reported. (b) First five fitted Zernike
coefficients from the regression.
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reported in Fig. 11(b). The defocus and vertical astigmatism do
not change much, while the tip, tilt, and oblique astigmatism
vary over time, which satisfies our observation that the center
of the PSF shifted for one pixel horizontally and vertically,
respectively, in our experiment after collecting 4000 data points.
This explains why the marginal benefit of data decreases.
Moreover, this also justifies the advantage of adapting the sys-
tem in real time.
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