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Abstract. Active control algorithms for space telescopes are less mature than those for large ground telescopes
due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such
as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting
wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and deter-
mined in advance. To improve the control algorithms for these telescopes, we have developed a model that
calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wave-
front perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we
show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable
attitudes for an observation based on the observation duration and the mean telescope temperature. We also
describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from
exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model
error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wave-
front control based on known spacecraft attitude plans is a promising approach for JWST and other future active
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1 Introduction
Active control enables large telescopes by maintaining optical
performance in the presence of perturbations. Active control
algorithms have been optimized for large ground telescopes
and are commonly used to compensate for manufacturing errors,
gravitational and thermal distortions, and low-frequency errors
induced by wind.1–5 By comparison, active control algorithms
for space telescopes are less mature. The baseline control
scheme for the first large active optical/infrared space telescope,
the James Webb Space Telescope (JWST), is conceptually sim-
ple, consisting of measuring the wavefront error (WFE) every
2 days and using these measurements to apply corrections every
2 weeks as needed.6 This scheme satisfies the observatory’s
requirements; however, alternative control algorithms may fur-
ther improve the performance, providing lower and/or more
stable WFEs and enhancing science capabilities.

The difference in maturity between the control algorithms for
active space telescopes such as JWST and active ground tele-
scopes is due in part to differences in the wavefront control prob-
lems, which stem from differences in the observatory design
constraints and environment. For an active space telescope,
the control problem involves a trade between minimizing the
WFE deviations and minimizing the number of corrections.
Limited by the mass and volume constraints of a launch vehicle,
active space telescopes generally use the science instruments to
monitor the wavefront periodically.7–10 As a result, there is a
significant cost associated with each wavefront measurement;

since science observations and wavefront measurements cannot
be performed simultaneously, each wavefront measurement
reduces the observatory efficiency. This cost is amplified for
control schemes that require a postcorrection wavefront meas-
urement to verify the actuator motions, and it provides one
incentive to limit the number of corrections. Additional incen-
tives to avoid unnecessary control include the inability to repair
or replace actuators that have exceeded their design lifetimes
and, for cryogenic mirrors, the possibility of introducing heat
with each actuator move. In the specific case of JWST, the mir-
ror actuators are unpowered the vast majority of the time in order
to meet overall thermal requirements for the telescope.

In addition, high-speed continuous control is less necessary
for an active space telescope at L2 since the dominant wavefront
perturbations are driven by changes in the thermal environment,
with timescales on the order of hours to days. These changes are
caused by variations in the solar heating as the telescope attitude
changes from one observation to the next. Minimizing degrada-
tions from such medium-timescale perturbations is the key
challenge for active wavefront maintenance in space. Slower
perturbations, such as those due to gradual degradation of a sun-
shield or insulation or to annual orbital variations in the distance
to the sun, are readily corrected by a control scheme that oper-
ates on a timescale of days to weeks, and faster dynamical per-
turbations leading to pointing jitter can be partially controlled by
an active fine steering mirror2 up to some control-bandwidth-
limited frequency.

The control problem for an active space telescope thus con-
sists of weighing control costs against the benefits of correcting
WFE perturbations that are a predictable byproduct of the
observing schedule, which we determine and know in advance.
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This is a very different situation than the one faced by active
ground telescopes, where the rapid weather-dominated disturb-
ances require continual control, wavefront measurements and
science observations are performed concurrently using separate
dedicated hardware, and worn-out actuators can be replaced.

In this paper, we investigate several methods for improving
the control algorithms for active space telescopes at L2. We do
not discuss the details of how the wavefront measurements are to
be obtained nor how the desired controls are applied via space-
craft actuators; these topics have been discussed at length in
other papers.6,7,11 Our focus here is on the question of how
often sensing and control should take place and how multiple
sensing measurements may be combined in order to optimize
performance. Although our analysis is based on JWST specifi-
cally, the general approach taken is also applicable to other mis-
sions, such as the proposed Astrophysics Focused Telescope
Assets (AFTA) and Advanced Technology Large-Aperture
Space Telescope (ATLAST) mission concepts.12,13

Several of JWST’s driving science cases are exquisitely
sensitive to variations in point spread function properties, for
instance weak lensing studies of the early universe or corona-
graphic observations of nearby exoplanets, and would benefit
greatly from as stable a telescope as possible. Intrinsic wave-
front sensor noise and calibration systematics likely set a fun-
damental limit of a few nanometers RMS. How closely can we
approach that limit?

The overall optical performance of JWST depends on contri-
butions frommany other factors besides the thermal perturbations
we model here, including the telescope’s static WFE, the science
instruments’ internal WFE, and uncontrolled high-temporal-
frequency dynamical perturbations induced by the reaction
wheels, Mid-Infrared Instrument (MIRI) cryocooler, and fuel
slosh. Integrated modeling predicts a total telescope WFE in
the range of 90 to 110 nmRMS,14 so the time-variable component
(expected to be of order 60 nm) corresponds to a significant part
of JWST’s overall optical error budget. Although fluctuations
from transient dynamics occurring over timescales of hours
can be comparable to thermal changes occurring over several
days, the wavefront control architecture adopted for JWST sup-
ports wavefront control over relatively longer timescales and
does not attempt to compensate for the transient perturbations.
Rather, those are to be minimized through careful design of the
observatory, avoidance of reaction wheel resonant frequencies,
and tuning of the cryocooler settings. Our focus in this work
is to consider the relative merits of different approaches for wave-
front control at a cadence of days to weeks, so we acknowledge
the importance of the dynamical terms in setting the fundamental
performance limits but do not consider them further in this paper.

Since the dominant WFE perturbations over longer time-
scales are due to thermal fluctuations, we have developed a com-
bined thermal and wavefront model that tracks the temperature
evolution over a sample mission and calculates the correspond-
ing WFE (Sec. 2). A similar approach has been used success-
fully to track focus variations in the Hubble Space Telescope.15

Using this model, we first show that the WFE can be controlled
passively by introducing scheduling constraints that limit the
allowable sun angles for an upcoming observation based on the
mean telescope temperature (Sec. 3). We then turn to strategies
for active control: we describe the design and implementation of
a predictive hybrid controller (Sec. 4.2) and assess its perfor-
mance relative to simpler control strategies under a variety of
assumed conditions (Sec. 4.3). This algorithm is designed to

prevent the WFE from ever exceeding a desired limit instead
of simply reacting after the limit has been exceeded; it uses
an internal thermal model to predict when the WFE will exceed
the threshold and schedules corrections in advance. As a result,
the corrections are placed at more effective times, and the algo-
rithm achieves a lower WFE without requiring significantly
more corrections. We close (Sec. 5) with a summary of results
and a look ahead to future work and the feasibility of implemen-
tation for JWST.

2 Thermal and Wavefront Model
During the course of a mission, an active space telescope such as
JWST is rarely, if ever, in thermal equilibrium. The equilibrium
thermal state is affected by the amount of solar heating, which
depends on the attitude of the telescope relative to the sun. As a
result, the equilibrium state is different for each observation,
changing as the telescope slews from one science target to the
next. Since a typical observation lasts a few hours, there is insuf-
ficient time for a cryogenic shielded telescope to equilibrate
before the next slew; the thermal time constant for typical designs
is on the order of days.16–18 As a result, the thermal state of the
telescope is not a simple function of attitude, but rather a complex
function of attitude history. As the thermal state changes during a
mission, the thermally induced deformations in the observatory
structures also vary, causing perturbations in the WFE (Fig. 1).

To investigate how the WFE evolves in response to changes
in the thermal state, we have developed a combined temperature
and wavefront model. This model assumes that all of the impor-
tant dynamics can be determined to first order by tracking a
single temperature that corresponds to the dominant deforma-
tion. As an example, distortions of the primary mirror backplane
support structure are expected to dominate the WFE evolution
for JWST, and these distortions correspond to changes in the
average backplane temperature.17,19 The model also assumes
that the thermal changes are caused only by variations in the
spacecraft orientation with respect to the sun (hereafter “sun
angle”). Although changes due to roll or other sources could
be included in a more sophisticated model, these perturbations
are small by comparison. As an example, JWST has an allowed
pointing range of 85 to 135 deg between the telescope optical
axis and the sun, set by the geometry needed to keep the tele-
scope in the shade at all times (Fig. 2). Rotations azimuthally
around the optical axis are relatively minor since they are
restricted to a range of approximately þ4 to −4 deg, and rota-
tions around the JWST-to-sun axis, though unconstrained, do
not affect the amount of solar heating.20

Since the equilibrium thermal state can change with each
observation, the combined temperature and wavefront model
follows three basic steps for each observation: determining
the equilibrium temperature, calculating the temperature evolu-
tion, and relating the temperature to a WFE. In the equilibrium
temperature model, each sun angle ϕ is associated with the equi-
librium temperature Te the telescope would attain if left at that
attitude for infinitely long. This temperature can depend, for
example, on the projected area of the sunshield normal to the
sun, which varies cosinusoidally with the sun angle. More gener-
ally, this relationship can be parameterized to second order as

Te ¼ aϕ2 þ bϕþ c; (1)

where the constants a, b, and c are determined by fits to available
thermal models or on-orbit measurements. (It is important to note
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that we are not advocating approximating cosinusoidal behavior
using a quadratic model. The cosinusoidal variation is presented
as a conceptual example of how the temperature might depend on
the sun angle, but we have selected a more general quadratic
model since there are likely additional effects that influence the
specific temperature dependency.) In the case of JWST, detailed
finite element modeling19 has concentrated on the hottest and
coldest attitudes, so we fit a, b, and c by considering these
extreme cases. These attitudes determine the temperature range,
and they are affected by the sunshield geometry and the pointing
restrictions.

During an observation, the mean telescope temperature is
assumed to follow an exponential of the form

T ¼ ðT0 − TeÞe−kðt−t0Þ þ Te; (2)

where T0 is the temperature at the beginning of the observation,
t0 is the time the observation begins, and k is the thermal decay
constant. While different portions of the observatory and space-
craft structure can have distinct time constants, finite element
modeling results21 suggest that the simplifying assumption of
a single time constant provides a reasonable first-order approxi-
mation of the more complex underlying physics. In general, the
temperature at the start of observation j, T0ðjÞ, will depend on
the temperature at the end of observation j − 1, Tfðj − 1Þ,
and the slew duration. For the initial investigations in Sec. 4,
we consider the worst-case thermal changes by neglecting
slews and assuming that T0ðjÞ ¼ Tfðj − 1Þ.

After the temperature has been determined, the correspond-
ing WFE is calculated using a linear model. For these calcula-
tions, it is convenient to consider the change in the WFE with
respect to some nominal state, such as the long-term average
optical state or the observatory’s best-achieved starting align-
ment. We denote this by W:

W ¼ Wtotal −Wnominal: (3)

Since the temperature is bounded by Thot and Tcold, it is par-
ticularly convenient to calculate changes in the WFE relative to
the WFE at one of these limiting temperatures; we use Tcold. For
simplicity, the wavefront model assumes that each coefficient in
the expansion of the wavefront scales linearly with temperature;
in the absence of control, the relative WFE is

W ¼
�

T − Tcold

Thot − Tcold

�
2
66664

w1

w2

w3

..

.

wn

3
77775 ¼

�
T − Tcold

Thot − Tcold

�
w; (4)

where the wi are the first n Zernike coefficients specifying
the change in WFE at the hottest temperature. As an example,
the temperature and WFE trajectories for a hypothetical back-
and-forth slew pattern between two attitudes are shown in
Fig. 1.

For the simulations that follow, we consider an active space
telescope at L2 with thermal properties based on the require-
ments for JWST. The allowable sun angles are identical to
those for JWST,20 ranging from 85 to 135 deg. The hottest atti-
tude is 85 deg and the coldest is 135 deg, as shown in Fig. 2. The
thermal decay constant is assumed to be 0.2 days−1, based on
the JWST requirement that the WFE is sufficiently stable to
achieve <60 nm RMS over a 2-week period in the absence
of wavefront control,17 and the Zernike coefficients wi are sim-
ilarly chosen such that the RMSWFE changes by approximately
56 nm for the worst-case slew. These coefficients, along with the
remaining thermal model parameters such as the temperature
range, are loosely derived from the results of detailed finite-
element thermal modeling of the temperature evolution follow-
ing a worst-case cold-to-hot slew.19,21
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Fig. 1 Sample temperature and wavefront evolution for a repeated slew between two attitudes. Since an
active space telescope is rarely in thermal equilibrium, the mean telescope temperature is not a simple
function of attitude. During an observation, the temperature follows an exponential determined by the
temperature at the start of the observation, the observation duration, and the equilibrium temperature
associated with the sun angle. These parameters change with each observation, altering the temperature
trajectory. The change in the wavefront error (WFE) with respect to some nominal state is determined
from the temperature using a linear model. As an example, the temperature and RMSWFE evolution are
shown for a square wave pointing schedule.
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3 Limiting the WFE Using Schedule
Restrictions

Since the WFE perturbations are driven by changes in the sun
angle, they are a byproduct of the observing schedule, which we
know and determine in advance. As a result, we can control the
WFE evolution passively by introducing scheduling constraints
as part of the schedule generation process. This type of approach
has been studied for managing the spacecraft momentum,22

which also depends on the sun angle, and the same or similar
constraint mechanisms in the scheduling software could be
extended to consider the WFE. These constraints can in princi-
ple either limit the WFE change during an observation or ensure
that the total WFE change never exceeds a specified limit.
For the thermal model we consider, both approaches are suitable
for typical observations, allowing most if not all of the sky.
However, in practice limiting the total WFE change may be

too restrictive since the constraints limit the field of regard
for long observations.

Since changes in the WFE are directly related to changes in
the telescope temperature, the scheduling constraints are derived
from temperature restrictions; the basic principle is to generate
schedules that do not cause the telescope temperature to expe-
rience extreme swings or deviate from a specified range.
Limiting the WFE change during an observation, for example,
corresponds to defining a range of allowable final temperatures
based on the initial temperature and the observation duration.
Similarly, ensuring that the total WFE change remains below
a specified threshold corresponds to requiring that the temper-
ature remain at all times within a range determined by the refer-
ence temperature (for which there is no WFE). In each case, the
temperature limits determine the maximum and minimum equi-
librium temperatures, which correspond to the minimum and
maximum allowable sun angles, respectively, for the next space-
craft attitude in the schedule. As a result, the scheduling con-
straints are derived by relating the desired WFE condition to
restrictions on the final temperature, determining the limiting
equilibrium temperatures, and calculating the corresponding
sun angles.

As an example, to ensure that the WFE change during an
observation does not exceed a desired threshold τ, we require
that

jΔRMSj ¼
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðtfÞ · WðtfÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wðt0Þ · Wðt0Þ

p ���� ≤ τ; (5)

where t0 and tf are the times at which the observation begins and
ends, respectively. Using Eq. (4), we can rewrite this condition
as

−τ ≤
Tf − T0

Thot − Tcold

ffiffiffiffiffiffiffiffiffiffiffi
w · w

p
≤ τ; (6)

where Tf is the temperature at the end of the observation.
Solving for Tf, we find that Eq. (5) is satisfied if

Tf ∈ ½Tmin; Tmax�; (7)

where

Tmax ¼
τðThot − TcoldÞffiffiffiffiffiffiffiffiffiffiffi

w · w
p þ T0 (8)

and

Tmin ¼
−τðThot − TcoldÞffiffiffiffiffiffiffiffiffiffiffi

w · w
p þ T0: (9)

For an observation of duration tf − t0, these limiting values for
Tf correspond to equilibrium temperatures of

Te;max ¼ min

�
τðThot − TcoldÞ

½1 − e−kðtf−t0Þ� ffiffiffiffiffiffiffiffiffiffiffi
w · w

p þ T0; Thot

�
(10)

and

Te;min ¼ max

�
−τðThot − TcoldÞ

½1 − e−kðtf−t0Þ� ffiffiffiffiffiffiffiffiffiffiffi
w · w

p þ T0; Tcold

�
; (11)

respectively, where the additional restrictions ensure that the
temperature remains within the range ½Tcold; Thot�. Substituting

Sun

Sun

Sun

(a)

(b)

(c)

Fig. 2 Attitude range. For the simulations, we assume that the space-
craft attitude range is identical to that of JWST20 (a). The hottest atti-
tude corresponds to a sun angle of 85 deg (b), and the coldest attitude
corresponds to a sun angle of 135 deg (c). Since thermal changes are
predominately due to changes in the sun angle ϕ, we concentrate
here on the effects of ϕ alone.
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these equilibrium temperatures into Eq. (1), we find that the
maximum and minimum sun angles are

ϕmax ¼
−b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4aðc − Te;minÞ

q
2a

; (12)

ϕmin ¼
−b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4aðc − Te;maxÞ

q
2a

: (13)

As a result, Eq. (5) is satisfied if ϕ ∈ ½ϕmin;ϕmax�. For instance,
supposewewish to keep theWFE change below 10 nm for obser-
vations up to 2 days in length. Then, for T0 ¼ 50.05 K, obser-
vations are allowed at sun angles between 85 and 131 deg, using
our thermal model. In general, the allowed sun angles vary
depending on the initial temperature and observation duration,
as shown in Fig. 3.

Similarly, to keep the RMS WFE below τ at all times, we
require that the temperature remain within the bounds that
correspond to the maximum allowable WFE. Since we have
selected Tcold as the reference temperature, we know that
Tmin ¼ Tcold, so ϕmax ¼ 135 deg. In this case, we only need
to find ϕmin. Using Eq. (4), we can write the WFE requirement
as

Tf − Tcold

Thot − Tcold

ffiffiffiffiffiffiffiffiffiffiffi
w · w

p
≤ τ: (14)

Solving for Tf, we find that the temperature requirement is

Tf ∈ ½Tmin; Tmax�; (15)

where

Tmax ¼
τðThot − TcoldÞffiffiffiffiffiffiffiffiffiffiffi

w · w
p þ Tcold: (16)

For an observation of duration tf − t0, Tmax corresponds to an
equilibrium temperature of

Te ¼ min

�
Tmax − T0e

−kðtf−t0Þ

1 − e−kðtf−t0Þ
; Thot

�
(17)

and a minimum sun angle of

ϕmin ¼
−b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4aðc − TeÞ

p
2a

: (18)

Although short-duration observations are allowed under
either set of angle restrictions using our thermal model and
τ ¼ 10 nm, the different approaches exclude different regions
of the sky as the observation duration increases. For the first
approach, restricting the WFE change during an observation,
the range of allowable sun angles depends on the equilibrium
sun angle ϕeq associated with the initial temperature, with
excluded sun angles corresponding to large slews from ϕeq

as shown in Fig. 3. (The actual slew size required to reach
one of the allowable sun angles may vary: the sun angle during
the previous observation is not necessarily near ϕeq since the
telescope is rarely in thermal equilibrium.) As the observation
duration increases, the difference between the initial and limit-
ing temperatures must decrease in order to satisfy the temper-
ature requirement, so the angle boundaries approach ϕeq. As a
result, any part of the sky remains accessible regardless of the
observation duration, provided that the initial temperature is
consistent with the restrictions. These angle restrictions also
allow more of the sky at hotter attitudes due to the quadratic
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Fig. 3 Restricting the WFE change during an observation. Since the WFE perturbations are driven by
changes in the sun angle ϕ, we can control the WFE passively by introducing scheduling constraints. To
limit the WFE change during an observation, we require that ϕ ∈ ½ϕmin;ϕmax�, where ϕmin and ϕmax
depend on the equilibrium angle ϕeq associated with the temperature at the start of the observation,
T 0. These restrictions limit the size of slews from ϕeq, with the excluded sun angles requiring larger
slews. Since the angle boundaries approach ϕeq as the observation duration increases, the entire
field of regard remains accessible regardless of the observation duration, provided that T 0 is consistent
with the restrictions. Conversely, for an arbitrary starting temperature T 0, the entire field of regard can be
observed if the observation duration is sufficiently brief. As an example, the plotted constraints ensure
that the WFE changes by no more than 10 nm during an observation.
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model for Te [Eq. (1)]; since Te changes less rapidly near the
hottest attitude, larger slews from ϕeq can be tolerated. By com-
parison, the second restriction approach preferentially excludes
attitudes that are further from the reference attitude. Although
the entire sky is accessible for typical short observations in our
example, the scheduling constraints restrict the field of regard
as the observation duration increases, which can decrease the
scheduling efficiency and potentially preclude some observa-
tions. As a result, it may be more practical to use the restrictions
derived from limiting the WFE change during an observation.

Although incorporating sun angle restrictions in the observ-
ing schedule is a promising technique for passively controlling
the WFE, in practice this method would be complicated to
implement given the many other constraints that must be con-
sidered as part of scheduling.23 Detailed simulations of mission
scheduling are beyond the scope of this paper, but any potential
implementation of this method would need to carefully assess
the efficiency impacts from the additional constraints.

4 Limiting the WFE Using Optical Control
Although the active control algorithms for ground telescopes are
typically variations on classical control laws,4,24–27 the control
problem for an active space telescope is more naturally
expressed as a hybrid control problem. Hybrid systems consist
of both continuous and discrete subsystems that interact, and
they come in many forms.28–33 As an example, the interaction
between the temperature in a room and a thermostat constitutes
a hybrid system: the continuous temperature dynamics are
affected by the discrete dynamics of the thermostat, which
turns on and off depending on the temperature.28 Other hybrid
control applications include manufacturing processes,34 aircraft
collision avoidance,35 automated highway systems,36 automo-
tive engine control,37 life support systems for manned space
exploration,38 and allocating water based on seasonal snowmelt
cycles.39

In the case of an active space telescope, the continuous WFE
evolution is affected by both discrete and continuous dynamics
even in the absence of optical control. In the uncontrolled case,
the WFE is directly proportional to the temperature [Eq. (4)],
and the continuous temperature dynamics are affected by the
start of a new observation; changes in the sun angle alter
the exponential. When optical control is added, the WFE is
the sum of the temperature-induced error WðTÞ and the control
vector u:

W ¼ WðTÞ þ u: (19)

This control vector is updated at discrete times rather than con-
tinuously, with the corrections uc determined by the specific
control algorithm:

uðjÞ ¼ uðj − 1Þ þ uc: (20)

Although the wavefront control process could be fully auto-
mated in theory, we will consider the case where ground inter-
vention is required because this adds the complication of time
delays and is the case for JWST.40 In this scenario, wavefront
measurements are sent from the spacecraft to a ground station
for analysis, after which a new set of commands, including any
wavefront corrections, is sent to the spacecraft. Two time delays
account for the total amount of time that elapses during this
process (Fig. 4). The first delay, tmeas, accounts for the time
required for wavefront measurements to be sent from the

spacecraft and processed on the ground. The second delay,
tcont, accounts for the time required for a set of commands to
be sent to the spacecraft. It is assumed that no new measure-
ments are taken until after both delays have passed.

In addition to time delays, the wavefront control process can
also be complicated by the presence of noise. Due to the hybrid
nature of the control problem and the relative infrequency of the
wavefront measurements, this noise is not readily handled by
applying classical approaches such as a Kalman filter; this is
a case where the model itself changes faster than the measure-
ments are taken. At the start of each observation, the change in
sun angle alters the equilibrium temperature, which in turn alters
the temperature and wavefront trajectories. Since wavefront
measurements are taken every few days, while typical observa-
tions last a few hours, the wavefront trajectory can switch many
times between measurements. As a result, it is not trivial to esti-
mate the true wavefront evolution using a sequence of noisy
measurements.

To investigate the optical performance that can be achieved
with infrequent wavefront control, we have evaluated three
control algorithms according to two competing metrics: the
number of actuator moves and the amount of time spent over
the correction threshold. Two of these algorithms are variations
on the baseline control scheme for JWST, and the third is our
predictive controller that uses an internal temperature and
wavefront model to determine in advance when corrections
will be needed (Sec. 4.2). Using multiple observing schedules
(Sec. 4.1), we compare these algorithms under a variety of
assumed conditions, including cases with noise and model
error (Sec. 4.3). These comparisons show that while all three
algorithms successfully maintain the wavefront even with sub-
stantial measurement noise, the predictive controller generally
provides the best performance.

4.1 Mission Schedules

To assess the strengths and weaknesses of wavefront control
algorithms, it is useful to consider two types of schedules: sim-
ple schedules that are easily understood and more realistic
schedules that approximate the types of observations expected
on orbit. In the simulations that follow, we will use square
wave schedules as well as schedules based on the Science
Operations Design Reference Mission (SODRM) 2012 sched-
ules for JWST.23 The square wave schedules represent repeated

Time Event

Measurement taken

Next downlink

Measurement arrives at ground station

Measurement processed

New commands generated

Next uplink

New commands arrive at spacecraft

t1
t2
t3
t4
t5
t6
t7

tmeas

tcont

Fig. 4 Time delay definitions. In the wavefront control process, new
measurements are sent to the ground for analysis, after which
updated commands, including revised wavefront corrections, are sent
to the spacecraft. Two time delays account for the total amount of
time that elapses during this process: tmeas accounts for the time
required for wavefront measurements to be sent to the ground and
processed, and tcont accounts for the time required for a set of com-
mands to be sent to the spacecraft.
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worst-case slews, with the observatory oscillating between
the hottest and coldest attitudes with a period of 1 to 56 days
[Fig. 5(a)]. Since we assume that the attitude changes occur
instantaneously, these schedules consider the worst-case thermal
changes for each period. In contrast, the SODRM-based sched-
ules simulate more realistic hypothetical mission scenarios
based on a detailed population of candidate observations. We
consider 15 realizations of the sample mission schedules, which
represent different orderings of the same underlying pool of
observations; an example is shown in Fig. 5(b).

4.2 Control Schemes

For an active space telescope, the WFE evolution depends on
the control scheme in addition to schedule parameters such as
the sun angle changes and the observation durations. Control
schemes that use a sequence of wavefront measurements to
correct excursions at regular intervals, for example, perform
differently than schemes that preemptively correct the wavefront
before the error exceeds a desired limit. To investigate the effec-
tiveness of each approach, we have developed three control
algorithms: baseline and averaging algorithms that correct every
2 weeks as needed, and a predictive algorithm that uses an
internal model to determine in advance when corrections will
be needed.

4.2.1 Baseline and averaging algorithms

For the baseline and averaging algorithms, we use a control
scheme that is similar to the baseline scheme for JWST.6 The
WFE is measured every 2 days, and the measurements taken
during the last 2-week period are used to determine if a correc-
tion is needed. For the baseline algorithm, only the most recent
measurement Wm7 is used. At the end of each control period,
the RMS WFE from Wm7 is compared against the correction
threshold τ, and if the error exceeds τ, a correction is sent to

the spacecraft [Fig. 6(a)]. This correction consists of the additive
inverse of Wm7:

uc ¼
�
−Wm7 if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wm7 · Wm7

p
≥ τ;

0 otherwise:
(21)

This algorithm is analogous to the classical feedback control
laws that are typically used to actively control large ground
telescopes;24–27 it is similar to a proportional controller with a
logic-driven gain operating on a 2-week timescale rather than
continuously. It may seem inefficient or overly simplistic to sim-
ply discard six out of seven measurements. However, given
the time-variable wavefront evolution as noted above, it is
not straightforward to combine measurements from different
times, and how to do so for JWST has not yet been specified.
This scenario intentionally represents a simplest possible
algorithm against which we can compare more sophisticated
approaches.

The averaging algorithm, on the other hand, uses all of the
wavefront measurements taken during the last control period.
These measurements are used to construct a vector of the
average wavefront coefficients during the last 2 weeks, Wavg,
and a correction is issued if the corresponding RMS WFE
exceeds τ [Fig. 6(b)]. This correction consists of the additive
inverse of Wavg:

Wavg ¼

2
6664
meanðWm11

;Wm21
;Wm31

; : : : ;Wm71
Þ

meanðWm12
;Wm22

;Wm32
; : : : ;Wm72

Þ
..
.

meanðWm1n
;Wm2n

;Wm3n
; : : : ;Wm7n

Þ

3
7775; (22)

uc ¼
�
−Wavg if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wavg · Wavg

p
≥ τ;

0 otherwise:
(23)
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Fig. 5 Mission schedules. To evaluate the performance of the wavefront control algorithms, we consider
two types of schedules: square wave schedules that represent repeated worst-case slews between the
hottest and coldest attitudes (a), and hypothetical mission schedules based on the SODRM schedules for
JWST23 (b). Fifteen such SODRM schedules were provided to us by the JWST planning and scheduling
system developers.
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Fig. 6 The wavefront control algorithms. To investigate the effectiveness of various wavefront control
approaches, we have developed three control algorithms: baseline (a) and averaging (b) algorithms that
are variations on the baseline control scheme for JWST,6 and a predictive control algorithm (c) that uses
an internal thermal model and knowledge of the observing schedule.
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Since the baseline and averaging algorithms use a sequence
of measurements to determine if a correction is required, there is
an implicit assumption that the WFE during the previous cor-
rection period is representative of the WFE during the upcoming
period. As a result, these algorithms are expected to perform
best in situations where the WFE variation is low relative to τ.
It is also worth noting that these algorithms issue corrections
only after the RMS WFE has exceeded τ, and these corrections
are delayed by tmeas þ tcont.

4.2.2 Predictive algorithm

Since the wavefront perturbations are a byproduct of the observ-
ing schedule, it is possible to predict when the WFE will exceed
the correction threshold and to schedule an appropriate correc-
tion in advance. Due to the hybrid nature of the system model,
we have developed a hybrid predictive controller rather than
using a classical predictive control algorithm.41 Our algorithm
uses knowledge of the observing schedule and an internal
thermal model to predict the WFE at the end of each observa-
tion, and it schedules a correction whenever the prediction
exceeds the threshold. The algorithm also has the option of
updating its internal model as wavefront and/or temperature

measurements are taken in order to improve the accuracy of
its predictions.

In practice, the predictive control algorithm would likely
reside at a ground station, where it would be used to generate
a set of predictions up through a preset time rather than in real
time. For instance, predictions could be generated for the next
2 weeks as part of the preparation of short-term schedules.
As new measurements became available, the algorithm would
update its internal model and generate a set of revised predic-
tions. Since any new instructions arrive at the spacecraft after
a total delay of tmeas þ tcont, it would be particularly convenient
to generate a set of predictions from t ¼ tm1 þ tmeas þ tcont to
t ¼ tm2 þ tmeas þ tcont, where tm1 and tm2 are the times at
which the most recent measurement and the next scheduled
measurement are taken, respectively [Fig. 6(c)].

For simulations, the repeated calculations associated with
model updates are unnecessarily inefficient, and it is advanta-
geous to structure the predictive control algorithm differently.
Due to the time delays, a measurement can be available for
use on the ground, on the spacecraft, or neither. As a result,
there are three possible information availability states s if only
one measurement type is used for model updates,

s ∈ S ¼ funavailable; available on ground; available on ground and spacecraftg;

and nine possible states if both temperature and wavefront mea-
surements are used,

s ∈ Stemp × SWFE:

For control purposes, only the information available to the
spacecraft matters—while new predictions can be generated
on the ground as soon as a measurement is received, this updated
model cannot be used to alter the wavefront for observations
occurring between times tm þ tmeas and tm þ tmeas þ tcont. To
track the flow of information throughout the system, our imple-
mentation of the predictive controller contains nine submodels,
each containing the information available to the ground station
and the spacecraft for one of the information states. A logic
framework tracks the information state of the system and iden-
tifies the appropriate submodel to use; this framework also
updates the submodels appropriately as the various delays
pass. We emphasize that this approach is a computational
convenience to speed simulations by considering all cases in
parallel, not a required architecture.

At the beginning of an observation, the predictive controller
uses the information available to the spacecraft to predict the tem-
perature and WFE at the end of the observation. The prediction
model has the same basic structure as the physical model
presented in Sec. 2, although it is more convenient to write
the prediction for the thermally induced wavefront coefficients,
WpredðTpredÞ, in slope-intercept form to allow for model updates:

Tpred ¼ ðT0;pred − TeÞe−kpredðtf−t0Þ þ Te; (24)

Wpred¼WpredðTpredÞþu¼Tpredmpredþopredþu; (25)

wherempred and opred are the slopes and offsets, respectively, for
the lines relating the temperature to the wavefront coefficients.

It is important to note that the model parameters, such as the
equilibrium temperatures and the thermal time constant, that
are used in the predictive controller’s model will not in general
be exactly equal to the true values representing the behavior of
the spacecraft. We investigate in Sec. 4.3.5 cases of substantial
error in the model parameters.

If the WFE prediction exceeds the correction threshold τ,
a correction is determined and applied. (In our simulation
framework, there is no need to wait for a delay to pass since
all delays have been incorporated in the model structure.)
The wavefront correction can take several forms, including the
additive inverse of the predicted wavefront coefficients at the
start, end, or midpoint of the observation. We use the predicted
wavefront coefficientsWpred at the time half of the WFE change
during the observation has occurred, tmidW:

uc ¼
�
−WpredðtmidWÞ if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WpredðtfÞ · WpredðtfÞ

p
≥ τ;

0 otherwise:

(26)

To allow for independent temperature and wavefront model
updates, our implementation of the predictive controller is struc-
tured such that the temperature model updates as temperature
measurements become available, and mpred and opred update
as wavefront measurements become available. For a temperature
update, Tpred is reset to match either the last measurement or the
output of a state estimator. For a wavefront update, the last N
wavefront measurements and the corresponding temperature
predictions are used to calculate the best-fit line for each wave-
front coefficient; mpred and opred are then reset to match the
slopes and offsets for these lines. In this paper, we concentrate on
using wavefront measurements only since that is the case relevant
to JWST,40 although in general, temperature measurements could
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also be incorporated if the temperature sensors on the spacecraft
and telescope were sufficiently precise.

4.3 Comparisons of Algorithm Performance

The performance of a wavefront control algorithm depends on
the input schedule; control parameters, such as the sensing
frequency and the correction threshold; and sources of error,
including wavefront sensing noise and model error. To investi-
gate the impact of each of these factors and assess the relative
strengths of the control algorithms, we compare the performance
of each algorithm under a variety of conditions, using a baseline
correction threshold of 20 nm, which corresponds to approxi-
mately one third of the allowed wavefront variability in the
absence of control for JWST.42 As we will show, each algorithm
can control the wavefront successfully, with the predictive con-
troller generally providing the best optical performance, even in
the presence of substantial noise and model error.

In the following sections, we first define the criteria used to
assess the performance of each algorithm (Sec. 4.3.1). Then, we
use highly simplified schedules to illustrate how the perfor-
mance depends on the observation duration and the correction
threshold (Sec. 4.3.2). Finally, we use more realistic schedules
to investigate the effects of varying the mission schedule
(Sec. 4.3.3), wavefront sensing noise (Sec. 4.3.4), and predictive
model error (Sec. 4.3.5).

4.3.1 Performance metrics

To evaluate the optical performance, we consider two main met-
rics: the amount of time the RMS WFE exceeds the correction
threshold and the total number of corrections commanded.
When considered together, these metrics describe how success-
fully an algorithm achieves the competing goals of minimizing
the RMSWFE and minimizing the number of wavefront correc-
tions. We remind readers that corrections take nonzero time to
apply (on the order of 100 min for JWST including mirror move
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Fig. 7 The effects of observation duration. In the absence of optical control, the RMS WFE for a square
wave schedule oscillates around the RMS WFE associated with the mean temperature (a), with longer
observation durations corresponding to larger WFE changes (b). For durations less than 2 weeks, the
WFE variation is small enough that the RMSWFE remains below a correction threshold of 20 nm 100%of
the time without optical control (d). As a result, none of the control algorithms issue corrections for these
periods (c). [Note that the mean RMSWFE has been subtracted for the uncontrolled case in (d) since it is
well known.] For periods longer than 2 weeks, the effectiveness of the baseline and averaging algorithms
depends on the wave period, and it is possible to find cases where the algorithms lead to worse per-
formance than the uncontrolled case. Of the three algorithms, the predictive controller performs the best,
holding the RMS WFE below τ 100% of the time for each period without requiring significantly more
corrections than the other algorithms.
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time and postmove additional wavefront sensing for validation)
and thus minimizing the number of corrections helps maximize
the overall mission efficiency. (Note that while we consider both
the RMSWFE and the number of corrections, we do not define a
single metric that weights them together.) To neglect any tran-
sient effects associated with the simulation’s initial conditions
and the first corrections, these metrics are calculated for the
steady-state response, which is defined as starting on Day 35
for the SODRM-based schedules; by this time, the temperature
dynamics are no longer affected by the initial conditions, and
the algorithms have had at least two opportunities to issue
corrections.

For each simulation, we construct a time history of the RMS
WFE, W. [We remind readers that W is the differential WFE
measured with respect to the nominal alignment state as
shown in Eq. (3), not the total WFE.] To gain additional insight
into the wavefront response without plotting each time history,
we calculate two quantities: the mean of all the RMS WFE data
points in steady state, and the corresponding standard deviation.
Taken together, these quantities describe the overall magnitude
of the RMS WFE and the amount of variation during the
simulation.

4.3.2 Effects of observation duration and
correction threshold

In the absence of noise, the observation duration and the correc-
tion threshold τ determine how aggressively an algorithm
must correct in order to keep the RMS WFE below τ. Longer
observations create larger wavefront changes, increasing the
likelihood that the RMS WFE will exceed τ by the end of
the observation, and lower thresholds allow less leeway for
wavefront variations before a correction is needed. As a result,
the number of corrections and the amount of time spent over the
correction threshold both depend on the observation frequency
and τ.

To investigate how the performance is affected by the obser-
vation frequency, we consider square wave schedules with peri-
ods ranging from 1 to 56 days. In the absence of optical control,
the RMS WFE for this type of schedule oscillates around the
RMS WFE associated with the mean temperature [Figs. 5(a)
and 7(a)]:

mean
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W · W
p 	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðTmeanÞ · WðTmeanÞ

p
; (27)
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Fig. 8 Selecting a correction threshold. For the predictive controller, the choice of correction threshold for
a sample mission is limited only by the number of corrections; this algorithm holds the RMSWFE below τ
at least 99.8% of the time for thresholds as low as 5 nm but requires an increasing number of corrections
for τ < 15 nm. For the baseline and averaging algorithms, the choice of correction threshold is limited by
the correction period, which is fixed at 2 weeks; for τ < 10 nm, these algorithms cannot correct aggres-
sively enough to keep the RMS WFE below τ at times when the wavefront changes rapidly.
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where

Tmean ¼
Thot þ Tcold

2
: (28)

As the observation duration increases, there is more time for the
wavefront to evolve, leading to larger changes; this behavior is
reflected in the standard deviation, which increases with wave
period [Fig. 7(b)]. For periods less than 14 days, the standard
deviation is less than 10 nm, which is half the correction thresh-
old. As a result, the RMSWFE passively remains below τ 100%
of the time, and none of the control algorithms issue corrections
in steady state [Figs. 7(c) and 7(d)].

Since the baseline and averaging algorithms determine if a
correction is needed at regular intervals, the optical performance
for these algorithms depends on the relationship between the
wave and control periods. The baseline algorithm is particularly
sensitive to the timing since it uses only one measurement.
When the wave and control periods are the same and in
phase, for example, the baseline algorithm may issue no correc-
tions even though the RMS WFE exceeds τ 41.6% of the time
[Figs. 7(c) and 7(d)]. It is also possible to find cases where the
optical performance is worse with these algorithms than without
any control, although these pathological scenarios are not
expected on orbit. As an example, for a square wave schedule
with a 28-day period (twice the control period) and the same
phase as the control cycle, the algorithms more than double
the amount of time that the RMSWFE exceeds τ despite issuing
corrections at every opportunity: the RMS WFE exceeds τ 79%
of the time for the averaging algorithm and 94% of the time for
the baseline algorithm, compared to 36% of the time if uncon-
trolled. Even when the baseline and averaging algorithms
improve the optical performance relative to the uncontrolled
case, the time spent over the correction threshold is limited
to approximately 37% at best for the periods considered.

By comparison, the predictive algorithm consistently
improves the optical performance, holding the RMS WFE
below τ 100% of the time without requiring significantly more
corrections than the other algorithms. The predictive algorithm
achieves this performance by placing the corrections at more
effective times, scheduling them for points in the observing
cycle where the RMS WFE changes rapidly and is about to
exceed τ. For wave periods longer than 2 weeks, this scheduling
actually leads to a lower mean RMS WFE than the averaging
algorithm (Fig. 7).

Similarly, during the course of a sample mission, the predic-
tive algorithm provides the best optical performance, holding
the RMS WFE below τ at least 99.8% of the time on average.
If we reduce τ below approximately 15 nm, the number of
corrections required to maintain this performance increases sig-
nificantly, from an average of 6.7 corrections at 15 nm to 53
corrections at 5 nm (Fig. 8). As a result, the performance of
the noiseless, error-free predictive algorithm is limited only
by the number of corrections that are permissible. By compari-
son, the performance of the averaging and baseline algorithms is
limited by the 2-week correction period; for thresholds less than
10 nm, these algorithms cannot correct aggressively enough to
keep the RMSWFE below τ during periods where the wavefront
changes rapidly, such as during long observations following
large slews. Consequently, the time over the correction threshold
increases as τ decreases, while the number of corrections
does not change significantly for the baseline and averaging
algorithms.

4.3.3 Effects of mission schedule

To investigate how the optical performance varies with different
mission schedules, we compare the results for the 15 SODRM-
based sample mission scenarios. As shown in Table 1, for τ ¼
20 nm the predictive algorithm consistently holds the RMS
WFE below τ 100% of the time, requiring 0 to 5 corrections
depending on the schedule. This consistency is to be expected
since the predictive algorithm is designed to correct the wave-
front before the RMS WFE exceeds τ; it may, however, require
a different number of corrections to achieve this performance
depending on the specific schedule.

The performance of the baseline and averaging algorithms,
by comparison, can vary considerably with schedule since these
algorithms rely on a sequence of measurements to determine
when a correction is required. The wavefront measurements taken
during a 2-week period are not always representative of the wave-
front during the next 2-week period, and the WFE can at times
temporarily exceed τ in between measurements without affecting
the correction schedule. The baseline algorithm is particularly
sensitive to the measurement timing since it uses only a single
measurement, and it generally provides the worst performance.
For the 15 schedules considered, the baseline and averaging algo-
rithms hold the RMSWFE below τ 75.4% to 93.0% and 78.1% to
100% of the time, respectively (Table 1).

Although the baseline and averaging algorithms are sensitive
to the choice of mission schedule, it is not straightforward to

Table 1 Baseline, averaging, and predictive algorithm performance
for the sample mission scenarios.

Number of corrections Time over τ (%)

Baseline Averaging Predictive Baseline Averaging Predictive

2 0 5 12.4 4.9 0

3 0 4 16.4 0.7 0

5 0 0 24.6 0 0

3 1 0 13.2 21.9 0

5 0 0 21.9 0 0

4 0 3 9.4 2.1 0

1 0 0 12.0 0 0

3 0 2 11.8 3.1 0

0 0 0 7.0 0.1 0

1 0 2 7.2 3.1 0

2 2 4 7.6 15.8 0

3 0 1 15.1 0 0

3 0 2 21.7 0.5 0

3 2 4 14.2 9.3 0

5 2 2 19.3 16.7 0

Average 2.9 0.5 1.9 14.3 5.2 0
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predict whether a given schedule will prove challenging. As an
example, for the schedules considered, the averaging algorithm
in the best case holds the RMS WFE below τ 100% of the time
without issuing any corrections in steady state. However, at least
one of these “best” schedules contains larger wavefront changes
than the schedule with the worst performance [Fig. 9(a)].
Similarly, the best schedule for the baseline algorithm contains
larger wavefront changes than the worst schedule [Fig. 9(b)]. In
general, it appears that the measurement timing is particularly
important for the baseline and averaging algorithms. Adjusting
this timing based on knowledge of the observing schedule may
improve the performance, but the resulting algorithm would
begin to resemble the predictive algorithm. To some extent,
these behaviors just reflect the relatively simple definitions of
the baseline and averaging algorithms, and point toward the
need for a more nuanced approach like the predictive algorithm.

4.3.4 Effects of wavefront sensing noise

Although wavefront sensing noise can introduce errors in the
correction process, the three control algorithms are not explicitly
designed for noise rejection. To investigate whether these algo-
rithms are sensitive to noise as a result, we add zero-mean
Gaussian noise to each measurement taken during the sample
mission scenarios. This noise is randomly distributed across
all of the Zernike coefficients and has a standard deviation of
1, 5, or 10 nm. Twenty-five trials are conducted for each
noise case and averaged together to obtain the final result.

When the performance is averaged over all of the sample
schedules, all of the algorithms successfully hold the RMS
WFE below τ ¼ 20 nm at least 80% of the time, even when
the noise level is equal to half the correction threshold
(Fig. 10). Of the three algorithms, the baseline algorithm typi-
cally provides the worst performance, holding the RMS WFE
below τ 87% of the time at best, compared to 95% of the
time for the averaging algorithm and 92% to 100% for the pre-
dictive algorithm. The averaging algorithm is least affected by
the noise, spending approximately the same amount of time over
the correction threshold and issuing the same number of correc-
tions in each case. This behavior is to be expected since the
mean RMS WFE during a correction period is relatively unaf-
fected by zero-mean noise. The predictive algorithm, by com-
parison, generally provides the best optical performance,
holding the RMS WFE below τ over 98% of the time even
with measurement noise levels as high as 5 nm.

If the noise level is increased to 10 nm, the relative perfor-
mance of the predictive and averaging algorithms depends on
the specific mission scenario. The predictive algorithm achieves
a lower time over the correction threshold for 33% of the sce-
narios we considered. As an example, for the schedule shown in
Fig. 5(b), the predictive algorithm holds the RMS WFE below τ
100% of the time in the absence of noise, but drops to 91% as
10 nm noise is added (Fig. 11). In this case, the predictive con-
troller even with noise performs much better than the averaging
controller with zero noise, which achieves only 83% of the time
under the threshold.

0 50 100 150 200 250
0

10

20

30

40

50

60

Time (Days)

R
M

S
 W

F
E

 (
nm

)

 

 Uncontrolled (Best)
Uncontrolled (Worst)
Averaging (Best)
Averaging (Worst)
Correction Threshold
Correction Periods

0 50 100 150 200 250
0

10

20

30

40

50

60

Time (Days)

R
M

S
 W

F
E

 (
nm

)

 

 
Uncontrolled (Best)
Uncontrolled (Worst)
Baseline (Best)
Baseline (Worst)
Measurements
Correction Threshold

(b)

(a)

Mean (nm)
Standard Dev. (nm)
# Corrections
Time over τ (%)

Best
12.2
  5.7
0 
7 

Worst
12.4
  8.8
5 

24.6

Mean (nm)
Standard Dev. (nm)
# Corrections
Time over τ (%)

Best
11.1
  5.3
0 
0 

Worst
12.6
  7.3
1 

21.9

Fig. 9 Sensitivity to the mission schedule. Since the baseline and averaging algorithms use a sequence
of wavefront measurements to determine when a correction is required, they are sensitive to the meas-
urement timing, and their performance can vary considerably for different mission schedules. For the 15
schedules considered, the averaging and baseline algorithms hold the RMSWFE below τ 78.1% to 100%
and 75.4% to 93.0% of the time, respectively. It is not straightforward to predict whether a given schedule
will prove challenging. One of the best schedules for the averaging algorithm contains larger changes
than the worst schedule (a), and the same is true for the baseline algorithm (b).
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While the averaging algorithm is sensitive to schedule and
insensitive to noise, the reverse is true for the predictive algo-
rithm. As the noise level increases, the predictive controller
works harder to maintain the wavefront, issuing significantly
more corrections [Figs. 10(c) and 11(c)]. The aggressive correc-
tion schedule also leads to higher variation in the RMS WFE
[Figs. 10(b) and 11(b)]. Our implementation of the predictive
controller is sensitive to noise since it uses all of the lastN wave-
front measurements to update its internal temperature-to-wave-
front model; one particularly noisy measurement can affect the
accuracy of subsequent WFE predictions (Sec. 4.2.2). More
sophisticated model update schemes, which discard outlying
measurements or incorporate an estimate of the noise statistics,
for example, or adding a gain to Eq. (26) may lessen the pre-
dictive algorithm’s sensitivity to noise, but that is beyond the
scope of this paper.

4.3.5 Effects of predictive model error

Since the predictive controller relies on an internal model to
determine when corrections will be needed, the corrections

issued and their timing can be affected by errors in model
parameters such as the thermal decay constant k. The physical
effect of an error in the model’s k depends on its sign: for pos-
itive errors, the model predicts more rapid temperature changes
than actually take place, while for negative errors, the model
predicts more gradual changes. This difference can affect the
optical performance, depending on the implementation of the
predictive controller.

For a purely predictive controller that has the correct temper-
ature-to-wavefront model [Eq. (25)] and does not use any mea-
surements to update its internal thermal and wavefront model,
the different signs affect the optical performance asymmetri-
cally. For positive errors, the more rapid changes in the predicted
temperature correspond directly to more rapid changes in the
predicted WFE, so the controller issues corrections more aggres-
sively than strictly necessary. In this case, the controller issues
corrections somewhat before τ is exceeded and overcorrects. For
negative errors, the slower changes in the predicted temperature
mean that the predicted wavefront changes too slowly, so the
RMS WFE may exceed the correction threshold. As a result,
the optical performance is less sensitive to positive errors; the
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Fig. 10 Sensitivity to noise (averaged over all schedules). Although the three control algorithms are not
explicitly designed for noise rejection, they all successfully hold the RMSWFE below τ at least 80% of the
time on average, even when the noise level equals half the correction threshold. The averaging algorithm
is the least sensitive to noise, performing comparably in each scenario, while the predictive algorithm
generally provides the best optical performance. However, the predictive algorithm is sensitive to noise,
requiring significantly more corrections as the noise level increases. For 10 nm noise, the relative per-
formance of the predictive and averaging algorithms depends on the specific schedule.
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penalty for positive errors is a more aggressive correction sched-
ule, while the penalty for negative errors is more time spent over
the correction threshold. Therefore, in the situation where the
observatory’s true thermal decay constant is not measured
precisely, but the relationship between the temperature and
the WFE is relatively well known, it may provide better perfor-
mance to assume a decay constant near the upper end of the
uncertainty range.

For a predictive controller that uses wavefront measure-
ments to update its internal temperature-to-wavefront
model, the effects of positive and negative k errors can be
more symmetric. In our implementation of the predictive con-
troller, the wavefront measurements are used to adjust the
slopes and offsets for the lines relating the predicted temper-
ature to the wavefront coefficients, as described in Sec. 4.2.2.
As a result, the controller attempts to compensate for the k
error by adjusting its linear temperature-to-wavefront model.
Typically, these adjustments lead to higher-magnitude slopes
and lower-magnitude offsets for negative errors, and the
reverse for positive errors. Consequently, for each error type,
there are temperatures for which the predictive controller
overestimates the wavefront change as well as temperatures
for which the predictive controller underestimates the wave-
front change, and these temperatures change with each model

update. As a result, there is no clear preference for positive or
negative errors when the optical performance is averaged over
multiple mission schedules, as shown in Fig. 12. It is expected
that the predictive controller would similarly attempt to com-
pensate for other model errors, such as incorrect equilibrium
temperatures, although these cases have not been investigated
in detail yet.

It is clearly advantageous for a predictive controller to have
an internal model of the observatory that is as accurate as pos-
sible, yet the results in Fig. 12 also show that the predictive con-
troller can tolerate significant discrepancies between the model
and the as-built performance while still delivering superior
wavefront control. For the sample mission scenarios, the predic-
tive controller successfully functions with k errors as high as
25%, which corresponds to a modeled time constant 1 day
shorter than the actual time constant, and as low as −25%.
The k error mostly affects the amount of time that the RMS
WFE exceeds the correction threshold, and the effects are more
pronounced at lower thresholds since there is less room for the
RMSWFE to vary before exceeding τ. For τ ¼ 20 nm, the error
has little effect on the optical performance: the 25% error, −25%
error, and error-free controllers issue approximately the same
number of corrections and spend approximately the same
amount of time over τ. If we decrease τ to 5 nm, the controllers
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Fig. 11 Sensitivity to noise (sample schedule). Although the predictive algorithm is sensitive to noise, it
can outperform the averaging algorithm even with substantial measurement noise. For the schedule
shown in Fig. 5(b), the predictive algorithm with 10 nm noise holds the RMS WFE below τ 91% of
the time, while the averaging algorithm achieves only about 85% at best.
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still issue approximately the same number of corrections, but
the amount of time over τ increases with the magnitude of
the k error. However, even in this case, the predictive control-
lers all spend less than 7% of the time over τ, compared to
more than 50% for the baseline and averaging algorithms
(Fig. 8).

5 Conclusion
The wavefront control problem for an active space telescope at
L2 requires a trade between minimizing the WFE and minimiz-
ing the number of corrections (actuator moves). Mirror state
updates thus happen occasionally rather than continuously, a
key difference from typical ground-based active optics systems.
Furthermore, since the dominant wavefront perturbations are
due to thermal changes caused by variations in the spacecraft
attitude with respect to the sun, they are byproducts of the
observing schedule, which is known and determined in advance.
We have investigated two approaches for improving the effec-
tiveness of wavefront control under these conditions.

First, these wavefront perturbations can be controlled pas-
sively by introducing scheduling constraints that prevent
large temperature swings by limiting the allowable sun angles
for each observation in the schedule based on the observation
duration and the predicted mean telescope temperature at the
start of the observation. Such constraints would need to be
weighed against the many other criteria used in scheduling,
such as the observatory efficiency and momentum management.
Given the need to balance the sun angle restrictions with these
other factors, it seems implausible that schedule constraints
alone could entirely eliminate the need for periodic active cor-
rections; however, there may be some cases worth pursuing as
part of a broader strategy. In particular, since the longest obser-
vation blocks most readily lead to large swings in the telescope
temperature, attention paid to scheduling those observations
could result in more benign schedules without imposing any
strict restriction in general. In the case of deep fields or large
mosaics, it would be advantageous from a wavefront mainte-
nance perspective to split those observations into multiple
noncontiguous blocks provided that doing so is consistent
with achieving the science goals of those programs.
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Fig. 12 Sensitivity to model error. Our implementation of the predictive controller can tolerate significant
errors in the modeled thermal decay constant k while still providing superior wavefront control. The k
error mostly affects the amount of time that the RMS WFE exceeds the correction threshold τ, and
the effects are more pronounced at lower τ since there is less room for the RMS WFE to vary before
exceeding τ. For the hypothetical mission scenarios, the predictive controller successfully maintains
the wavefront despite k errors as high as 25% (corresponding to a modeled time constant 1 day shorter
than the actual time constant) and as low as −25%, spending less than 7% of the time over τ for τ as low
as 5 nm.
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Alternatively, given any observing schedule, it is possible to
predict when the WFE will exceed some correction threshold
and to schedule wavefront corrections in advance. In this
case, the control problem is naturally expressed as a hybrid con-
trol problem since the wavefront evolution is affected by discrete
events, such as the start of a new observation or the implemen-
tation of a new wavefront correction, as well as continuous
dynamics, such as the telescope’s temperature evolution.
Using this approach, we have developed a hybrid predictive con-
troller designed to prevent the time-variable component of the
RMSWFE from exceeding a desired correction threshold τ, and
compared it to two variants of the baseline control strategy
for JWST.

During hypothetical mission scenarios, all three algorithms
successfully hold the RMS WFE below τ at least 80% of the
time on average, even with wavefront sensor noise levels up
to half the correction threshold. The predictive controller gen-
erally performs slightly better, holding the RMSWFE below τ at
least 91% of the time on average and approaching 100% for
sufficiently low sensing noise. It also has superior performance
on our metrics for the mean and temporal deviation of the RMS
WFE for most test cases. In addition, the predictive controller
can be used with more aggressive τ than the other algorithms;
limited by their fixed correction period, the baseline and aver-
aging algorithms cannot correct aggressively enough to hold the
RMS WFE below τ during times when the wavefront changes
rapidly, and the performance flattens out for τ < 10 nm.

The performance of the predictive controller is limited pri-
marily by the allowable number of corrections; the algorithm
issues substantially more corrections for lower τ or higher
noise levels. Our implementation of the predictive controller
can tolerate significant errors in the modeled thermal decay con-
stant k. These errors mostly affect the amount of time that the
RMS WFE exceeds the correction threshold, and the effects are
more pronounced at lower τ since there is less room for the
RMS WFE to vary before exceeding τ. For the sample mission
scenarios, the predictive controller successfully maintains the
wavefront despite k errors as high as 25% and as low as −25%,
with the RMS WFE exceeding a correction threshold of 5 nm
less than 7% of the time on average.

Since we used thermal model parameters derived from the
requirements for JWST, these quantitative results depend on
JWST meeting its design requirements for thermal stability,
but more generally they confirm the potential to improve the
optical performance of an active space telescope by using more
sophisticated control laws. Although the assumed model param-
eters will differ from the exact numbers in flight, the general
behavior and benefits of the predictive controller should hold
over a wide range of parameter space for active space telescopes
that are perturbed based on predictable external stimuli.

The predictive controller is promising in its current form, but
additional enhancements are worth considering in future mod-
eling efforts. For example, using temperature measurements to
update the temperature model may allow for less frequent wave-
front measurements, increasing the observatory efficiency in
addition to improving the overall predictions. Combining pre-
dictive control with scheduling restrictions for long observations
may reduce the number of corrections needed during a mission.
Modifications to the predictive controller, such as adding a con-
trol gain or incorporating an estimate of the noise statistics in the
model update process, may decrease its sensitivity to noise and
help to reduce the number of corrections required to maintain

the optical performance. Incorporating additional perturbation
sources, such as roll around the telescope optical axis, also
remains future work, although it is expected that the current
algorithms will naturally compensate for slow perturbations
such as gradual sunshield degradation or variations in the orbital
distance to the sun.

The practical details of a hypothetical implementation for
JWSTare beyond the scope of this paper. However, the presence
of the wavefront control software system and its associated
trending system on the ground at the Science and Operations
center rather than on the spacecraft computer provides more
flexibility for future enhancements. Validating thermal and opti-
cal models against the as-built performance of the telescope is
already planned as part of the ongoing integration and test pro-
gram. Looking beyond JWST, active optical control is expected
to be an essential technology for other future large space tele-
scopes such as the proposed AFTA and ATLAST mission con-
cepts. Active and adaptive control of terrestrial telescopes has
matured into a sophisticated field with many specialized algo-
rithms adapted to different conditions. Similarly, we should
expect that active telescopes in space will benefit from a variety
of control algorithms developed by taking into account the
unique circumstances and environment of each mission.
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