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��� Three dimensional (3D) FLASH Laser Radar (LADAR) sensors are unique due to
the ability to rapidly acquire a series of two dimensional remote scene data (i.e. range images).
Principal causes of 3D FLASH LADAR range estimation error include spatial blur, detector
blurring, noise, timing jitter, and inter-sample targets. Unlike previous research, this paper ac-
counts for pixel coupling by defining the range image mathematical model as a 2D convolution
between the system spatial impulse response and the object (target or remote scene) at a partic-
ular point in time. Using this model, improved range estimation is possible by object restoration
from the data observations. Object estimation is performed by deriving a blind deconvolution
Generalized Expectation Maximization (GEM) algorithm with the range determined from the
estimated object by a normalized correlation method. Theoretical derivations and simulation
results are verified with experimental data of a bar target taken from a 3D FLASH LADAR
system in a laboratory environment. Simulation examples show that the GEM improves range
estimation over the unprocessed data and a Wiener filter method by 75% and 26% respectively.
In the laboratory experiment, the GEM improves range estimation by 34% and 18% over the
unprocessed data and Wiener filter method respectively.

��"#����$ 3D FLASH LADAR, laser radar, range estimation, blind deconvolution, object
restoration, waveform processing, generalized expectation maximization

% &'��()*!�&('
A three-dimensional (3D) FLASH laser radar (LADAR) is a pulsed radar system this is both
an imaging and ranging sensor. Referring to Fig. 1, a 3D FLASH LADAR produces a time
sequence of two-dimensional (2D) images due to a fast range gate resulting in a 3D data cube
of spatial and range scene data with excellent range resolution [1], [2]. FLASH technology
principally differs from scanning LADAR by being able to form a 3D representation of a re-
mote scene in one laser pulse rather than rastering a 3D scene together using many pulses.
This capability results in faster scene collection times with lighter weight, lower power, and
reduced mechanical complexity as compared to the scanning systems. Practical applications of
3D FLASH LADAR include intelligence, surveillance, and reconnaissance (ISR), rendezvous
and capture (air and space), collision avoidance (COLA) for manned and unmanned air/ground
vehicles, and weapon targeting.
Typically, a 3D FLASH LADAR operates in one of two modes. The first mode is called

“HIT mode” where each pixel element (pixel) is independently triggered when its intensity
reaches a preset threshold. This mode is advantageous when searching for a target where the
range is not already known. However, truncated waveforms can occur leading to range estima-
tion errors. The second mode is called “SULAR mode” where the pixels are triggered to start
recording data together based on a preset range. Benefits of this mode include being able to suc-
cessively capture fine details of the target and background. Drawbacks are that the target range
must be known a priori and waveforms are truncated for targets near the end of the collect.
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(a)

(b)
Fig. 1. (a) 3D view of LADAR system model in Cartesian coordinates with each data cube having
dimensions of pixel × pixel × time sample. The variable d(tk) corresponds to the kth receiver detected
range image with k ∈ [1, N ]. (b) Another view of the 3D FLASH LADAR operation. Each range image’s
full field of view (FOV) is 128 × 128 pixels with a range gate near 2 nanoseconds corresponding to the
3D FLASH LADAR system used for experimental collects.
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A method to model the 3D FLASH LADAR data operating in SULAR mode is that the
2D range images are formed via a convolution between the object at a particular time and
the spatial impulse response. In Fig. 1(a), a range image d(tk) is one of the 2D slices of the
data cube. Considering the laser illuminating a target, one collect from a 3D FLASH LADAR
sensor results in a data cube consisting of a series of range images (N from Fig. 1) representing
detected photons.
Attempts at 3D FLASH LADAR range estimation of a remote scene can result in errors due

to several factors including the optical spatial impulse response, detector blurring, photon noise,
timing jitter, and readout noise. These factors either cause the scenes intensity to spread across
pixels or add unwanted and disruptive noise effects. The intensity spreading and noise corrupts
the correct pixel intensities by mixing intensities with neighboring pixels thereby providing
false intensity values and therefore incorrect photon counts to the range estimator. Without blur
and noise compensation, the range estimates would be inaccurate to a degree depending on the
blur and noise severity.
The motivation behind this paper is to provide a means of improving range estimation by

object recovery (i.e. spatially deblurring data) from 3D FLASH LADAR observations. Refer-
ring to Fig. 1(a), the idea is to process the data in the spatial dimensions (x, y) while improving
ranging performance in the time dimension (z).
The theoretical development of the range estimator algorithm is covered first and then ver-

ified using simulation and experimental results. The algorithm is a variation on the Expecta-
tion Maximization (EM) algorithm called Generalized Expectation Maximization (GEM) and
is desirable due to its iterative likelihood maximization, convergence properties, and ability to
decouple terms [3]. The GEM algorithm is powerful in that it can perform blind deconvolu-
tion in situations with severe defocus or other aberrations including atmospheric turbulence.
To account for different scenarios, two versions of the GEM algorithm are derived that either
recover the pulse-shape or the object. The primary difference between the two involves data re-
quired and accuracy. Pulse-shape estimation requires less data, but is less accurate than object
estimation. Additional details of the differences are presented in Sections 2.3 and 2.4.
In addition to the GEM algorithms, a Wiener filter method is used to attempt range estima-

tion improvement via object recovery from 3D FLASH LADAR observations [4], [5]. Requir-
ing spatial impulse response knowledge a priori, this method can only perform deconvolution
unlike the blind deconvolution ability of the GEM. The purpose for adding this other method is
to show that the GEM outperforms a competing algorithm that already knows part of the answer
(spatial impulse response).

+ ��,(�,�&!��
This section discusses incoherent imaging and the application to 3D FLASH LADAR, presents
the data model, and develops the GEM algorithms that perform object recovery leading to im-
proved range estimation. Even though the laser light is partially coherent, the argument is made
that the detected light is able to be modeled as fully incoherent. Consequently, this allows
for the returns to be a result of a linear, spatially invariant (LSI) system involving an intensity
convolution (instead of amplitude convolution) between the intensity point spread function and
the remote scene. Linearity is a consequence of electromagnetic wave propagation theory, and
spatial invariance results from remaining with the isoplanatic angle [6]. Utilizing this LSI con-
volution model, two GEM blind deconvolution algorithms are developed that enable improved
range estimation.

+�% &
������
� �	
��
�
Both the negative binomial and Poisson distributions can be used to capture the non-negative,
discrete nature of the laser light. The negative binomial distribution would be the most optimal
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in describing the illuminating partially coherent laser light, but blind deconvolutionmethods are
cumbersome [7]. Whereas, blind deconvolutionmethods with the Poisson distribution (incoher-
ent imaging) are more tractable and, thus, utilized in this research. Even if the speckle is severe,
the benefit of modeling the speckle does not outweigh the cost of implementing a partially co-
herent blind deconvolution model for the 3D FLASH LADAR system. Previous research using
the incoherent data model for a 3D FLASH LADAR has also experienced success [8], [9].
To gain more insight into this assumption, a simple approach is to estimate the amount of

coherence contained within the 3D FLASH LADAR data by estimating the speckle parameter
of the negative binomial distribution directly from the data [7]. Capturing both temporal and
spatial coherence, if the speckle parameter estimate is high enough, the negative binomial dis-
tribution will look Poisson-like allowing the data observations to be modeled as arising from an
intensity convolution (incoherent imaging). Including speckle and photon noise effects, the neg-
ative binomial probability mass function (PMF) describes the photon distribution of a partially
coherent imaging system for a single pixel or [7]

P (K) =
Γ (K +M)

Γ (K + 1)Γ (M)

[
1 +

M
K̄

]−K[
1 +

K̄

M
]−M

(1)

whereM is the speckle parameter and K̄ is the pixel’s average photon count. Changing the
distribution for a 3D FLASH LADAR, the illuminating laser light statistics for a particular
volume element (voxel) (x, y, k remain constant) across many data cubes is

P (Djk (x, y) = djk (x, y)∀j ∈ (1, 2, ..., J)) =
J∏

j=1

Γ (djk (x, y) +M)

Γ (djk (x, y) + 1) Γ (M)

[
1 +

M
K̄

]−djk(x,y)[
1 +

K̄

M
]−M

(2)

where j represents the data cubes, k is the range image (i.e. time variable) within a data cube,
(x, y) are the coordinates in the image plane, and djk (x, y) is the data observation. The voxels
are assumed statistically independent from each other because of the discrete nature of pho-
tons and the detected photons do not affect future detected photons. The maximum likelihood
solution for the average voxel intensity is determined by

K̄ =
1

J

J∑
j=1

djk (x, y). (3)

Taking the natural log of Equation (2) yields

ln [P (Djk (x, y) = djk (x, y)∀j ∈ (1, 2, ..., J))] =
J∑

j=1

ln

[
Γ (djk (x, y) +M)

Γ (djk (x, y) + 1) Γ (M)

]
−djk (x, y) ln

[
1 +

M
K̄

]
−M ln

[
1 +

K̄

M
]
(4)

where graphical methods are employed to find the speckle parameter that maximizes this log-
likelihood. Using the same experimental data as in the range estimation efforts, a collection
of voxels with the strongest laser light are chosen to estimate the speckle parameter. Figure 2
shows the similarities between the negative binomial and Poisson distribution using an average
of the estimated speckle parameter.
Even without considering speckle parameter estimation results, the argument can be made

for incoherent imaging due to the Poisson distribution’s ability to model the non-negativity and
discrete nature of light [8], [9]. This argument is solidified by the speckle parameter estimation
results indicating that the speckle noise appears low enough for the incoherent imaging model
to be used with confidence.
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Fig. 2. This plot shows the negative binomial (NB) using an estimated average speckle parameter ver-
sus the Poisson distribution with the same mean. While not identical, the negative binomial distribution
compares well enough to the Poisson distribution to assume incoherent imaging.

+�+ )
�
 	����
Considering a 3D FLASH LADAR sensor with statistically independent samples, the PMF of
the observed photons, djk (x, y), incorporating all cubes (j ∈ [1, J ]), range samples (k ∈
[1, K]), and detector pixels (x ∈ [1, X ] , y ∈ [1, Y ]) is

P [Djk (x, y) = djk (x, y) ; ∀j, k, x, y] =∏
j,k,x,y

[ijk (x, y) +B (x, y)]djk(x,y) exp {− [ijk (x, y) +B (x, y)]}
djk (x, y)!

(5)

where the data observations are defined by

djk (x, y) = ijk (x, y) +B (x, y) + njk (x, y) (6)

with ijk (x, y) as the blurry, non-noisy data, B (x, y) as the pixel bias, and njk (x, y) as a
general noise term accounting for all noise sources (i.e. photon noise, thermal noise, readout
noise, etc.). The (x, y) and k variables correspond to a pixel in the detector array and to the
returned signal time of arrival respectively. The time of arrival is computed based on the time
from laser pulse transmission to photon detection. The blurry, non-noisy data is

ijk (x, y) =

M∑
m=1

N∑
n=1

ok (m, n)hj (x−m, y − n) (7)

where the object ok (m, n) is defined at the object plane with coordinates (m ∈ [1, M ] , n ∈
[1, N ]) and changes within a single cube, but is considered constant across all cubes. This
assumption requires the ability to perform cube registration due to the possibility of moving
targets, moving sensor platform, or inter-cube timing errors. Incorporating contributions from
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Fig. 3. 3D FLASH LADAR data block diagram. For an arbitrary cube (j notation ignored), the observed
data is an addition

⊕
of the pixel bias, the noise, and the blurry, non-noisy image (convolution, depicted

by
⊗
, between object and PSF).

light propagation, optical abberations, and atmospheric blurring, the intensity point spread func-
tion (PSF) hj (x, y) is constant within a single cube while changing across cubes. In this re-
search, the PSF is considered constant within a single cube since collection times spans under
forty nanoseconds and any time-dependent effects would be essentially frozen. In addition, the
pixel bias B (x, y) is constant between cubes as well as within a single cube due to the pixel’s
unchanging physical material and response to incident light.
Every pixel in the detector array records a time-delayed and attenuated version of the trans-

mitted pulse. The physical outgoing pulse shape of a 3D FLASH LADAR is either Gaussian,
negative parabolic, or some hybrid of the two. The object can be defined by an amplitude term
and a pulse shape or

ok (m, n) = A (m, n) pk (m, n) . (8)

Assuming a Gaussian transmitted pulse, the object is

ok (m, n) =
A (m, n)√
2πσw

exp

{
− (tk − 2R (m, n)/c)2

2σ2
w

}
(9)

where A (m, n) is the object amplitude, σw is the waveform standard deviation, tk is the time
variable, c is the speed of light, and R (m, n) is the range to the target. For military targeting
or navigation, range to target (located in the object term) is the desired unknown variable. For a
negative parabolic waveform shape, the object is defined by

ok (m, n) = A (m, n)

[
1− (2R (m, n)− tkc)2

(cpw)2

]
rect

(
2R (m, n)− tkc

2cpw

)
(10)

where 2pw is the pulse width and rect is the rectangle function defined by

rect (x) =

⎧⎪⎨
⎪⎩
0, if |x| > 1/2

1/2, if |x| = 1/2

1, if |x| < 1/2.

(11)

In attempting to perform range estimation, a range term is not explicitly in the model, but it is
buried within the object, ok (m, n), term given by Equations (9) and (10). If the object were
known, the target range could be then extracted from the object by peak detection methods.
Therefore, the goal in this paper is to accurately estimate the object and recover the range
by using a modified version of peak detection that permits sub-sample ranging. Sub-sample
ranging is done to account for targets that are between adjacent recorded samples.
The unknown parameters in this estimation scenario are the object (target amplitude and

target range), PSF, and pixel bias. The variable of interest in this paper is the range term resid-
ing in Equation (9) or (10). Direct estimation of the range term is problematic because of its
location either in an exponential or in a squared term. Therefore, the approach to range estima-
tion is to retrieve the range from the estimated pulse-shape or object. This methodology relies
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on the knowledge that the target produces the waveform peak in the detected returns. Con-
cerning the PSF, blind deconvolution techniques must be employed since the PSF is unknown.
Blind deconvolution has a rich heritage in astronomical imaging providing a bevy of literature
attempting blind deconvolution. Although, blind deconvolution in astronomical cases consists
of trying to recover one object and one PSF (or many PSFs if using multiple frames). In trying
to recover the target range from one 3D FLASH LADAR data collect, this problem consists of
many objects with one PSF. There are many objects due to the transmitted waveform causing
each range slice to contain different intensities corresponding to where the waveform is incident
on the object. Therefore, these incident points become distinct objects in the blind deconvolu-
tion framework. If multiple cubes are necessary, the atmosphere is changing with each cube
resulting in multiple PSFs that must be estimated resulting in a “multi-frame” or “multi-cube”
scenario. If no atmospheric turbulence exists or is non-volatile, the PSF is consistent throughout
the cubes and the j subscript can be dropped.
Traditional linear maximum likelihood efforts do not suffice to estimate target range given

the unknowns in the statistical model depicted by Equation (5). More powerful object estima-
tion methods like the EM algorithm must be employed due to the coupled unknowns which
will be covered in the next section. However, a closed form solution for the EM algorithm’s
maximization step is intractable. Consequently, the GEM algorithm goal is to modify the EM
structure such that the likelihood is incrementally increased rather than globally maximized as
in the EM algorithm. This incremental increase in the likelihood simplifies the maximization
step allowing unknown, non-random parameter estimation. In summary, the GEM algorithm is
written as

Q
(
Ψ

(v+1);Ψ(v)
)
≥ Q
(
Ψ

(v);Ψ(v)
)

(12)

where Ψ is the vector of unknown variables, v is the iteration, and Q is the expected value of
the complete data log-likelihood or

Q
(
Ψ;Ψ(v)

)
= EΨ(v) {lnLCD (Ψ|y)} (13)

with LCD as the complete data likelihood and y as the incomplete data. Complete data can be
viewed as the unobserved variables (fabricated or not) used to simplify the problem. Incomplete
data is usually the observed data. If Equation (12) holds, it has been shown that the likelihood
is increased with every iteration or [3]

L
(
Ψ

(k+1)
)
≥ L
(
Ψ

(k)
)

(14)

and, if bounded, the GEM sequence converges to a local maximum due to the monotonicity of
the algorithm.
With the target range extracted from the estimated object, object recovery is accomplished

using two approaches concerning the pulse-shape and object variables from Equation (9). The
pulse-shape estimation is very powerful in that the estimator only needs one data cube (one-
shot, one-kill). However, if the best accuracy is required and the 3D data cubes are properly
registered, the multi-cube object estimation provides lower error.

+�- �

�� ����	
���
 ���
�  �������
 � �������" ��
 ��� .,� 
�������	
Considering pulse-shape recovery with only one cube required for processing (ignoring j, since
j = 1), the problem is reformed by calling the original data, dk(x, y), the incomplete data and
specifying

dk (x, y) =

M∑
m=1

N∑
n=1

d̃k (x, y|m, n) + q̃k (x, y) (15)

Journal of Applied Remote Sensing, Vol. 4, 043517 (2010)                                                                                                                                    Page 7



where two new variables, d̃k(x, y|m, n) and q̃k (x, y), are called complete data. This formula-
tion provides two sets of complete data that account for the photon noise/image formation and
pixel bias respectively. The formation of the complete data highlights the powerful nature of
the EM algorithm. In this application, complete data can also be called unobserved data and
carries no explicit physical meaning. It is used to directly benefit the EM algorithm. Consistent
with [10], careful definition of the complete data allows decoupling of unknown variables while
preserving physical meaning in the expected value of the incomplete data.
The expected value of the complete data sets is given by

E
[
d̃k (x, y|m, n)

]
= A (m, n) pk (m, n)h (x−m, y − n) . (16)

and
E [q̃k (x, y)] = B (x, y) (17)

where B (x, y) is the constant pixel bias. The expected value of the incomplete data is thus

E [dk (x, y)] = ik (x, y) + B (x, y) (18)

which is consistent with the data observations depicted in Fig. 3. Adding the pixel bias to the
model covers non-modeled noise effects and pixel-to-pixel impulse response variations. The
pixel bias is assumed to be governed by the Poisson distribution due to the discrete random
nature of dark current and electron noise. Physically, the pixel bias is added to the photons
incident upon the detector and is part of the detected photon counts. The PMF for the photon
noise is

P
(
d̃k (x, y|m, n)

)
=

[A (m, n) pk (m, n) h (x−m, y − n)]
d̃k(x,y) e−[A(m,n)pk(m,n)h(x−m,y−n)]

d̃k (x, y)!
(19)

while the PMF for the pixel bias is

P (q̃k (x, y)) =
B(x, y)q̃k(x,y)e−B(x,y)

q̃k (x, y)!
. (20)

Assuming statistical independence between all the pixels and between the photon noise and
pixel bias noise, the complete data log-likelihood function considering all random variables is

LCD (pk, A, h, B) = ln

⎡
⎣ ∏

k,x,y,m,n

P
(
d̃k (x, y|m, n)

)
P (q̃k (x, y))

⎤
⎦ (21)

or (NOTE: summations wrap around unless otherwise stated)

LCD (pk, A, h, B) =
∑

k,x,y,m,n

d̃k (x, y|m, n) ln [A (m, n) pk (m, n)h (x−m, y − n)]

− [A (m, n) pk (m, n)h (x−m, y − n)] + q̃k (x, y) ln [B (x, y)]−B (x, y) . (22)

Referring to Equation (13), the Q function then becomes

Q (pk, A, h, B) = E
[
LCD (pk, A, h, B) |dk (x, y) , pold

k , Aold, hold, Bold
]

(23)
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where the estimates for the amplitude, pulse-shape, PSF, and bias are considered maximum-
likelihood estimates. Taking the conditional expectation of Equation (23) results in

Q (pk, A, h, B) =∑
k,x,y,m,n

μold

d̃

(
m, n;Aold, pold

k , hold
)
ln [A (m, n) pk (m, n)h (x−m, y − n)]

− [A (m, n) pk (m, n)h (x−m, y − n)] + μold
q̃

(
x, y;Bold

)
ln [B (x, y)]

−B (x, y) (24)

where

μold

d̃

(
m, n; pold

k , Aold, hold
)
= E
[
d̃k (x, y|m, n) |dk (x, y) , pold

k , Aold, hold
]

(25)

and
μold

q̃

(
x, y;Bold

)
= E
[
q̃k (x, y) |dk (x, y) , Bold

]
. (26)

Equations (25) and (26) represent the expected value of one set of complete data given the
incomplete data. For Poisson random variables, these expectations turn out to be ratio of the
data times one expected value of the complete data divided by the all sets of expected values of
the complete data [11]. For the first set of complete data, d̃k (x, y), the conditional expectation
is

μold

d̃

(
m, n; pold

k , Aold, hold
)
=

dk (x, y)Aold (m, n) pold
k (m, n)hold (x−m, y − n)

iold
k (x, y) +Bold (x, y)

. (27)

while the second set of complete data concerning the pixel bias q̃k (x, y), has a conditional
expectation equal to

μold
q̃

(
x, y;Bold

)
=

dk (x, y)Bold (x, y)

iold
k (x, y) +Bold (x, y)

. (28)

The maximization of the Q function for all parameter unknowns (target amplitude, target pulse
shape, PSF, and pixel bias) is theoretically intractable due to coupling. It is required to break
apart the Q function into separate components such that

Q = Qp +Qh +QA +QB (29)

where each component of the Q function can be maximized independently. Thus, the GEM
algorithm becomes

Qp

(
pnew

k |pold
k , Aold, hold

) ≥ Qp

(
pold

k |pold
k , Aold, hold

)
QA

(
Anew|pold

k , Aold, hold
) ≥ QA

(
Aold|pold

k , Aold, hold
)

Qh

(
hnew|pold

k , Aold, hold
) ≥ Qh

(
hold|pold

k , Aold, hold
)

QB

(
Bnew|Bold

) ≥ QB

(
Bold|Bold

)
(30)

which, if these conditions are met, ensures that the likelihood is increased with each iteration [3]

L (pnew
k , Anew, hnew, Bnew) ≥ L

(
pold

k , Aold, hold, Bold
)

(31)

resulting in a GEM sequence converging to a local minimum.
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Beginning the estimation process of the separate Q functions starts with the target pulse
shape, Qp which is

Qp =
∑

kx,y,m,n

μold

d̃

(
m, n; pold

k , Aold, hold
)
ln [pk (m, n)]− λ (m, n)

[
K∑

k=1

pk (m, n)− 1

]

(32)
where a pixel-dependent Lagrange multiplier, λ (m, n), is introduced to force the pulse shape
to add to one for each pixel. This constraint is necessary to decouple the pulse shape from the
target amplitude and PSF. Taking the derivative of Equation (32) with respect to a particular
object plane point and range sample, setting the result equal to zero, ∂Qp/∂pko

(mo, no) = 0,
and solving for the pulse shape, results in

pnew
ko

(mo, no) = pold
ko

(mo, no)

(
Aold (mo, no)

λ (mo, no)

) X∑
x=1

Y∑
y=1

dko
(x, y)hold (x−mo, y − no)

iold
ko

(x, y) +Bold (x, y)

(33)
where

λ (mo, no) = Aold (mo, no)

K∑
k=1

pold
k (mo, no)

X∑
x=1

Y∑
y=1

dk (x, y)hold (x−mo, y − no)

iold
k (x, y) +Bold (x, y)

(34)

and

iold
ko

(x, y) =
M∑

m=1

N∑
n=1

Aold (m, n) pold
ko

(m, n)hold (x−m, y − n). (35)

Equation (33) is the iterative solution for the pulse shape per range sample. Next, theQ function
is partitioned into its target amplitude components

QA =
∑

k,x,y,m,n

{
μold

d̃

(
m, n; pold

k , Aold, hold
)
ln [A (m, n)]

}− M∑
m=1

N∑
n=1

A (m, n) (36)

where
X∑

x=1

Y∑
y=1

h (x, y) = 1 (37)

K∑
k=1

pk (m, n) = 1 (38)

have been utilized to decouple the pulse shape and PSF terms from the target amplitude. Max-
imizing Equation (36) by ∂QA/∂A (mo, no) = 0 and solving for the amplitude term results in
the iterative solution for the target amplitude term

Anew (mo, no) = Aold (mo, no)

K∑
k=1

pold
k (mo, no)

X∑
x=1

Y∑
y=1

dk (x, y)hold (x−mo, y − no)

iold
k (x, y) +Bold (x, y)

.

(39)
The PSF is the final unknown parameter that uses the first set of complete data, d̃k (x, y). The
Q function for the PSF is

Qh = ∑
k,x,y,m,n

μold

d̃

(
m, n; pold

k , Aold, hold
)
ln [h (x−m, y − n)]

− [A (m, n) pk (m, n) h (x−m, y − n)] , (40)

Journal of Applied Remote Sensing, Vol. 4, 043517 (2010)                                                                                                                                    Page 10



which still has the target amplitude and pulse shape terms. Similar to [10], a change of variables
is required to remove the dependence on the pulse shape and to allow for easier differentiation.
Utilizing

∑K
k=1 pk (m, n) = 1 and settingm′ = x−m and n′ = y − n, Qh then becomes

Qh = ∑
k,x,y,m′,n′

{
μold

d̃

(
x−m′, y − n′; pold

k , Aold, hold
)
ln [h (m′, n′)]

}
−
∑

x,y,m′,n′

A (x−m′, y − n′)h (m′, n′). (41)

Setting ∂Qh/∂h (m′
o, n

′
o) = 0 and solving for the PSF produces the iterative solution

hnew (m′
o, n

′
o) = hold (m′

o, n
′
o)
∑
k,x,y

dk (x, y)A (x−m′
o, y − n′o) p

old
k (x−m′

o, y − n′o)(
iold
k (x, y) +Bold (x, y)

) X∑
x=1

Y∑
y=1

A (x−m′
o, y − n′o)

.

(42)
Usually, the target amplitude term in the denominator would be an issue because it is consid-
ered the new estimate. However, Equation (39) is the new estimate and can replace the target
amplitude in the denominator resulting in a consistent solution for the PSF. Finally, the pixel
bias must be estimated. In order to estimate the pixel bias, the second set of complete data,
q̃k (x, y), is utilized. TheQ function for the pixel bias is

QB =

K∑
k=1

X∑
x=1

Y∑
y=1

dk (x, y)Bold (x, y)

iold
k (x, y) +Bold (x, y)

ln (B (x, y))−B (x, y). (43)

Setting ∂QB/∂B (xo, yo) = 0 and solving for the pixel bias results in an iterative solution

Bnew (xo, yo) = Bold (xo, yo)

K∑
k=1

dk (xo, yo)(
iold
k (xo, yo) +Bold (xo, yo)

) (44)

corresponding to the pixel bias solution.
After a pre-determined number of iterations on Equations (33), (39), (42), and (44), range

estimate updates for each pixel are generated by using a normalized correlation method between
a reference waveform at sub-sample ranges and the the GEM estimate for the pulse shape, pnew

k .
The range-dependent reference waveform that results in the highest correlation is chosen and
the corresponding range is the new range estimate for that pixel. The new range estimate is fed
back into the pulse-shape to generate a new pold

k followed by another set of GEM iterations. The
process (GEM iterations followed by range updates) repeats with the new range estimates used
in calculating pold

k using Equation (33) and ceases when the mean square error (MSE) between
the data and non-noisy range images reaches the stopping criteria. All previous amplitude,
PSF, and pixel bias estimates carry over from one range update to the next. More specifically,
iterations cease when the MSE is lower than the average data variance or

K∑
k=1

X∑
x=1

Y∑
y=1

(
djk (x, y)− Iest

k (x, y)−Bnew (x, y)
)2

<

K∑
k=1

X∑
x=1

Y∑
y=1

Vk (x, y) (45)

with

Iest
k (x, y) =

M∑
m=1

N∑
n=1

Anew (m, n) pnew
k (m, n)hnew (x−m, y − n) (46)
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and

Vk (x, y) =

J∑
j=1

⎛
⎜⎜⎜⎝djk (x, y)−

J∑
j2=1

dj2k (x, y)

J

⎞
⎟⎟⎟⎠

2

(47)

where the extents of j2 are the same as j and Vk is an average variance for the volume elements
(voxels) across many data cubes. In the experimental data, a specific distribution for the variance
is not chosen in order to account for all noise sources. For the simulation data, the data variance
is replaced by the average variance of the Poisson distribution due to it being a known and
controlled noise source.
Once the GEM estimates the pulse-shape, the range for each pixel must be extracted. If

simple peak detection is used, targets between the samples would have the wrong range es-
timate. In order to mitigate inter-sample targets, scaling, and waveform truncation issues,
sub-sample ranging is performed on the pulse-shape by using a normalized correlation method
based on the Pearson product-moment correlation coefficient. Using this coefficient forces each
pixel’s waveform to be zero mean and unit standard deviation. The normalized cross-correlation
method is constructed as follows: The range vector of samples within a cubeR (t) is represented
by

R (t) =

K−1∑
t=0

(zmin+zinc (t)) (48)

whereK is total number of samples, zmin is the range of the first sample, and zinc is the range
increment per sample. Another range vector, Kr (t

′) is constructed with the same maximum
and minimum extents as R (t), but with a smaller range increment per sample or

Kr (t) =

K′−1∑
t=0

(zmin+zf (t)) (49)

where K ′ is the number of samples in Kr and zf is the range increment. Since the extents of
Kr match R (p), K ′ > K and zf < zinc. A 2D reference Gaussian waveform matrix is used
with the Kr vector as the reference target location or

rk (p) = exp

{
−(tk − 2Kr (p) /c)2

2σ2
w

}
(50)

where tk is the time vector and k ∈ [1, K]. The zero mean and unit variance version of rk is

S2 (p) =
rk (p)− r̄k (p)

σ2
r (p)

(51)

where σ2
r and r̄k are the variance and average of rk in the time dimension. Considering the

range estimate for the (m, n)th pixel, the zero mean and unit variance version of the estimated
pulse-shape, pk (m, n) is

S1 (m, n) =
pk (m, n)−

K∑
k=1

pk(m,n)

K′

σ2
p (m, n)

(52)

where σ2
p is the variance of pk (m, n) in the time dimension. With S1 and S2 determined, the

normalized cross correlation denoted by � is performed by

CKr
(p) =

S2 � S1

K ′
(53)
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and finding the range estimate is accomplished by peak detection on CKr
or

R̂ (m, n) = argmax
zf (p)

CKr
(p) (54)

In summary, the pulse-shape estimation algorithm steps are:

1. Initialize PSF, amplitude, and pixel bias

2. Determine initial ranges and input into pulse-shape

3. Perform GEM iterations using Equations (33), (39), (42), and (44)

4. Use normalized cross-correlation to find new range estimates with Equation (54)

5. Generate new pulse-shapes based on new ranges

6. Determine MSE and compare to stopping criteria

7. Repeat Steps 3 through 6 until stopping criteria violated

8. Range estimates taken from last execution of Step 4

+�/ �

�� ����	
���
 ���
� ��0��� �������" ��
 ��� .,� 
�������	
When multiple cubes are available and properly registered spatially and temporally, another
method to perform range estimation is to relax the constraint on the pulse-shape and assume
just an object in the data model. This change mitigates the issue in the hardware data where the
pulse-shape is vaguely known. Therefore, estimation is performed on ok rather than on pk from
Equation (8). The problem setup is similar to the pulse-shape estimation (now with more than
one cube) by calling the original data, djk(x, y), the incomplete data and specifying

djk (x, y) =

M∑
m=1

N∑
n=1

d̃jk (x, y|m, n) + q̃jk (x, y) (55)

where two new variables, d̃jk(x, y|m, n) and q̃jk (x, y), are defined and called complete data.
This formulation provides two sets of complete data that account for the image formation and
pixel bias respectively. The same PSF can be assumed for adjacent collections due to a typical
data collection scenario where environments shouldn’t be changing rapidly (ignore j). Thus,
the expected values of the complete data sets are given by

E
[
d̃jk (x, y|m, n)

]
= ok (m, n)h (x−m, y − n) (56)

and
E [q̃jk (x, y)] = B (x, y) (57)

where B (x, y) is the constant pixel bias. The expected value of the incomplete data is thus

E [djk (x, y)] = ik (x, y) +B (x, y) . (58)

The PMF for the photon noise is

P
(
d̃k (x, y|m, n)

)
=

[ok (m, n)h (x−m, y − n)]d̃jk(x,y|m,n) exp {−ok (m, n)h (x−m, y − n)}
d̃jk (x, y|m, n)!

(59)
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while the pixel bias PMF is

P (q̃jk (x, y)) =
B(x, y)q̃jk(x,y)e−B(x,y)

q̃jk (x, y)!
. (60)

Assuming statistical independence between all the pixels and between the photon noise and
pixel bias noise, the complete data log-likelihood is then

LCD (ok, h, B) = ln

⎡
⎣ ∏

j,k,x,y,m,n

P
(
d̃jk (x, y|m, n)

)
P (q̃jk (x, y))

⎤
⎦ (61)

or

LCD (ok, h, B) =
∑

j,k,x,y,m,n

d̃jk (x, y|m, n) ln [ok (m, n)h (x−m, y − n)]

− [ok (m, n)h (x−m, y − n)] + q̃jk (x, y) ln [B (x, y)]−B (x, y) . (62)

Referring to [3], theQ function becomes the expected value of the complete data log-likelihood
function with respect to the incomplete data and old parameter estimates

Q (ok, h, B) = E
[
LCD (ok, h, B) |djk (x, y) , oold

k , hold, Bold
]
. (63)

Taking the conditional expectation from Equation (63) results in

Q (ok, h, B) =
∑

j,k,x,y,m,n

μold

d̃

(
m, n; oold

k , hold
)
ln [ok (m, n) h (x−m, y − n)]

− [ok (m, n)h (x−m, y − n)] + μold
q̃

(
x, y;Bold

)
ln [B (x, y)]−B (x, y) (64)

where

μold

d̃

(
m, n; oold

k , hold
)

= E
[
d̃jk (x, y|m, n) |djk (x, y) , oold

k , hold
]

=
djk (x, y) oold

k (m, n)hold (x−m, y − n)

iold
k (x, y) +Bold (x, y)

(65)

and

μold
q̃

(
x, y;Bold

)
= E

[
q̃jk (x, y) |djk (x, y) , Bold

]
=

djk (x, y)Bold (x, y)

iold
k (x, y) +Bold (x, y)

. (66)

Similar to the pulse-shape estimation, the maximization of the Q function for all parameter
unknowns (object, PSF, and pixel bias) is theoretically intractable due to coupling. It is required
to break apart the Q function into separate components such that

Q = Qo +Qh +QB (67)

where each component of the Q function can be maximized independently. Thus, the GEM
algorithm becomes

Qo

(
onew

k |oold
k , hold

) ≥ Qo

(
oold

k |oold
k , hold

)
Qh

(
hnew|oold

k , hold
) ≥ Qh

(
hold|oold

k , hold
)

QB

(
Bnew|Bold

) ≥ QB

(
Bold|Bold

)
(68)
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ensuring that the likelihood is increased with each iteration [3]

L (onew
k , hnew, Bnew) ≥ L

(
oold

k , hold, Bold
)

(69)

resulting in a GEM sequence converging to a local minimum. The procedure to find the maxima
of the Q functions is the same as in pulse-shape estimation. First, the object solution is found
by specifying

Qo =
∑

j,k,x,y,m,n

μold

d̃

(
m, n; oold

k , hold
)
ln [ok (m, n)]− ok (m, n)h (x−m, y − n) . (70)

In order to maximize Qo, the derivative of Equation (70) with respect to a particular object
plane point and range sample is set equal to zero, ∂Qp/∂oko

(mo, no) = 0. Solving for the
object results in

onew
ko

(mo, no) =
oold

ko
(mo, no)

J

J∑
j=1

X∑
x=1

Y∑
y=1

djko
(x, y) hold (x−mo, y − no)

iold
ko

(x, y) +Bold (x, y)
(71)

with J as the number of cubes and utilizing
X∑

x=1

Y∑
y=1

h (x, y) = 1 (72)

and where

iold
k (x, y) =

M∑
m=1

N∑
n=1

oold
k (m, n)hold (x−m, y − n). (73)

Equation (71) is the iterative solution for the pulse shape per range sample. The PSF is the other
unknown parameter that uses the first set of complete data, d̃jk (x, y). The Q function for the
PSF is

Qh =
∑

j,k,x,y,m,n

μold

d̃

(
m, n; oold

k , hold
)
ln [h (x−m, y − n)]− ok (m, n)h (x−m, y − n).

(74)
Similar to [10], a change of variables is required to remove the dependence on the pulse shape
and to allow for easier differentiation. Settingm′ = x−m and n′ = y − n, Qh then becomes

Qh =
∑

j,k,x,y,m′,n′

μold

d̃

(
x−m′, y − n′; oold

k , hold
)
ln [h (m′, n′)]−ok (x−m′, y − n′)h (m′, n′)

(75)
Setting ∂Qh/∂h (m′

o, n
′
o) = 0 and solving for the PSF produces the solution

hnew (m′
o, n

′
o) =

hold (m′
o, n

′
o)

J

[ ∑
k,x,y

ok (x−m′
o, y − n′o)

] ∑
j,k,x,y

djk (x, y) oold
k (x−m′

o, y − n′o)

iold
k (x, y) +Bold (x, y)

(76)
The object term in the denominator is the new estimate from Equation (71). Since, there are
phase abberations across the aperture and the PSF needs to be constrained, phase retrieval is
performed on Equation (76) by the Gerchberg-Saxton algorithm [12]. In the pulse-shape es-
timation, it was the object (i.e. pulse-shape) that was constrained making the phase retrieval
unnecessary. Finally, the pixel bias must be estimated. In order to estimate the pixel bias, the
second set of complete data, q̃k (x, y), is utilized. The Q function for the pixel bias is

QB =

K∑
k=1

X∑
x=1

Y∑
y=1

djk (x, y)Bold (x, y)

iold
k (x, y) +Bold (x, y)

ln (B (x, y))−B (x, y). (77)
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Table 1. 3D FLASH LADAR parameters
Parameter Value

Detector Array 128 × 128
Aperture Diameter (D) 2 mm
Mean Wavelength 1.55 μm
Focal Length 0.30 m
Target Range 5.21 m
Transmit Energy 10 mJ

Pulse Standard Deviation (σw) 3 ns
Beam Divergence 0.009 radians
Detector Size 10 μm
Detector Spacing 100 μm

Detector Array Fill Factor 100%
Detector Bandwidth 0.5 μm
Target Reflectivity 10%
Detector Array Size 30 × 30 pixels
Solar Irradiance 10Watts/m2/μm

D/ro Seeing Condition 1.43
Frame Rate 30 Hz

Time Samples (per collect) 20
Sample Period (within a collect) 1.876 ns

Setting ∂QB/∂B (xo, yo) = 0 and solving for the pixel bias results in

Bnew (xo, yo) =
Bold (xo, yo)

JK

J∑
j=1

K∑
k=1

(
djk (xo, yo)

iold
k (xo, yo) +Bold (xo, yo)

)
. (78)

GEM iterations continue and cease when the mean-square error (MSE) violates the stopping
criteria. Once the stopping criteria is reached, range estimates are determined by using the
normalized cross-correlation method on the object estimate as described in the previous section.
In summary, the object estimation steps are:

1. Initialize object, PSF, and pixel bias

2. Perform one GEM iteration using Equations (71), (76), and (78)

3. Determine MSE and compare to stopping criteria

4. Repeat Steps 2 and 3 until stopping criteria reached

5. Use normalized cross-correlation to find new range estimates with Equation (54)

- �&�*���&('
In order to verify the theory, a simulation scenario was developed whereby targets are interro-
gated by a 3D FLASH LADAR defined by the parameters from Table 1. The goal is to perform
range estimation given the noisy, blurry data observations. Results show range estimation im-
provement by performing object recovery either via a Wiener filter method or GEM algorithms
as outlined in Sections 2.3 and 2.4. Our previous research has taken the approach to use a
Wiener filter on each individual range slice and then use a pixel-based ranging method on the
resulting “deblurred” data cube [5]. Performance will illustrate that the GEM algorithms pro-
vide increased error performance over the Wiener filter while, at the same time, being more
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Fig. 4. True ranges for simulation targets: (a) three bars, (b) Many bars, (c) Various blocks, (d) Cylinder,
(e) Slanted boards, and (f) Connected blocks. The target names in this caption correspond to the targets in
Table 2. The three bar target is also the experimental data target. Other targets illustrate the robustness of
the estimation algorithms.
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Table 2. Range estimation results for simulation data
Data set Metric OD WF GEMp GEMo

Three bars RMSE (m) 0.402 0.346 0.163 0.100
Corr 0.767 0.830 0.963 0.984

Many bars RMSE (m) 0.596 0.561 0.346 0.365
Corr 0.687 0.664 0.786 0.794

Slanted boards RMSE (m) 0.225 0.171 0.161 0.131
Corr 0.945 0.971 0.967 0.983

Cylinder RMSE (m) 0.184 0.153 0.160 0.153
Corr 0.877 0.925 0.945 0.962

Various blocks RMSE (m) 0.473 0.209 0.344 0.175
Corr 0.595 0.931 0.725 0.955

Connected blocks RMSE (m) 0.208 0.133 0.158 0.112
Corr 0.853 0.955 0.918 0.970

robust. Again, the GEM algorithms are more robust in that they do not need to know the point
spread function, unlike the Wiener filter technique.
Using a Gaussian transmitted pulse, a 3D FLASH LADAR imaging scenario is developed

in simulation using various geometrical shapes as targets shown in Fig. 4(a)-(f). One important
clarification on the receiver optics is that the detector array has an effective fill factor of 100%
by placing a micro-lens array in front of the pixels to focus the light onto the pixel. Also, the
data includes effects from an average atmospheric turbulence to enable blind deconvolution.
Range estimates are also determined without processing to enable further comparison between
no processing and object recovery attempts. Results for all the targets and methods with error
metrics are summarized in Table 2.
Table 2 clarifications: “RMSE” is root mean square error (RMSE) in meters between the

true ranges and estimated ranges, “Corr” is an image quality metric referring to the correlation
between the true range image and estimated range image signifying linear relationship strength
(not to be confused with the normalized correlation ranging method), “OD” refers to the orig-
inal data (OD) with no deblurring and ranges estimated by the normalized cross-correlation
method, “WF” relates to range estimation using a Wiener Filter technique with normalized
cross-correlation [5], “GEMp” is the pulse-shape estimation GEM algorithm, and “GEMo” is
the object estimation GEM algorithm.
The targets of primary interest are the three bar target and the multiple bar target because

the three bar target is also the experimental target and the multiple bar target is most sensitive
to spatial blurring of all the targets. The bar targets are constructed in simulation consisting of
two flat, perpendicular optically rough surfaces at different ranges. Referring to Figs. 4(a) and
(b), the first surface in range has rectangular cut-out shapes while the second surface contains
no cutouts. This type of target was chosen to highlight not only the coupling/blurring effects
of the pixels along the edges of the rectangles, but also the decoupling and ranging capability
of the GEM algorithm. The other targets are built in similar manner. Bar target shapes were
used because the distances and shape dimensions can be physically measured in a laboratory
environment to show range estimation improvement.
Table 2 and the range images from Figs. 4 and 5 show the negative effects of the blurring

on range estimation juxtaposed with the positive effects from attempting recover the original
object through Wiener filtering or the GEM algorithms. Implicit in the results is the ability
to accurately estimate the pixel bias. Without it, the object model falls apart and range error
becomes extremely large. Through simulation, the model and object recovery attempts have
been verified. The final step is to use experimental data to validate simulation results.
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Fig. 5. Estimated ranges for simulation targets: (a) No processing - three bars, (b) GEMo processing -
three bars, (c) No processing - Many bars, and (d) GEMo processing - Many bars. Utilizing the GEMo

algorithm, simulation results show the image quality improvement and improved range estimation ( RMSE
improves 75% for 3 bar target).
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Fig. 6. (a) Using the data from Fig. 5(c)-(d), investigating pixel (8,23) shows the estimated waveform
(object plus pixel bias) closely matching the true waveform while the detected waveform does not. The
estimated range is 6.73 m while the true range is 6.7 m. The algorithm also implicitly estimates the pixel
bias term accurately. (b) Again, using the data from Fig. 5(c)-(d), investigating pixel (16,17) shows the
estimated waveform improving upon the detected waveform, but not able to match the true waveform as
well as the previous pixel. The estimated range is 6.11 m while the true range is 6.7 m. Incorrect range
estimation after the GEMo algorithm relates to blurring severity (edges of cut-outs in first surface) and/or
a particularly noisy realization from the Poisson distribution.
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With the simulation giving credence to the theory, experimental results are presented to fully
validate the data model and the claim of improved range estimation in 3D FLASH LADAR
via object recovery. Using the 3 bar target template, a laboratory experiment was conducted
using 3D FLASH LADAR hardware from AFRL consistent with parameters in Table 1. As in
simulation, experimental results show range estimation improvement after applying the object
recovery techniques. However, several modifications to the camera and raw data were necessary
to enable a proper experiment.

/�% � 
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��
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Due to limits in current detector technology requiring a large footprint for the electronics behind
each pixel, the receiver optics are spatially under-sampled which needs to be mitigated in order
for the received data to be unaliased. This determination comes from Nyquist sampling theory
in which the sampling rate must be at least twice the highest frequency content in the signal.
The optics are a natural low-pass filter with the highest frequency called the cut-off frequency.
For incoherent imaging, the cut-off frequency is [6]

fo =
D

λzi

(79)

where D is the aperture (exit pupil) diameter, λ is the light wavelength, and zi is the image
distance. Therefore, the focal plane must sample at twice this spatial frequency or 2D/λzi.
The typical apertures for this camera are in the centimeters. For example, an aperture of 10 cm
would equate to a spatial frequency sampling requirement at 4.3x105 cycles per meter. At 100
μm spacing, the detector array does not meet this requirement. If the aperture is reduced to 2
mm, then the spatial frequency sampling requirement is now at 8.6x103 cycles per meter which
the detector array can meet. However, the aperture reduction comes at the expense of reduced
light gathering and shortened range in which the LADAR can be operated. Thus, the target
range is placed at 5.21 meters (near the minimum ranging distance of the sensor) to obtain high
enough signal to noise ratio (SNR) in the collected data.

/�+ )
�
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The data observations from the 3D FLASH LADAR hardware need pre-processing steps to be
suitable for insertion into the Wiener filter and GEM algorithms. In simulation, the noisy and
blurry data is well-controlled and therefore, well-behaved. While the experimental 3D FLASH
LADAR data exhibits expected pixel waveform shapes (i.e. Gaussian-like) and spatial blur, the
data is ill-behaved to a degree due to inherent features of the hardware performance.
Referring to [13] and [14], the experimental hardware experiences a gain phenomenon

whereby a pixel’s gain drops when laser energy is incident upon a large area of another part
of the detector array. With the 3 bar target, the laser energy is incident front surface first which
causes second surface pixels to experience a gain drop. Figure 7(b) shows the gain drop for a
second surface pixel. The method for correcting the gain is to calculate an average gain profile
by looking at background pixels (i.e. returned laser energy not incident on these pixels).
Assuming the system noise follows the Poisson distribution and the gain is constant between

pixels, the data model for an arbitrary pixel is

d (t) = G (t) [IS (t) + IB (t)] (80)

where G (t) is the unitless, time-varying gain, IS (t) is the laser signal in units of photons, and
IB (t) is the background signal. A new variable d̂ (t) is determined by

d̂ (t) =
d (t)

īB (t)
(81)
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Fig. 7. (a) Gain profile correction resulting from executing Equation (84). By looking at background
pixels, the hardware gain dip is clearly evident at the first surface (near range sample five) and the second
surface (near range sample nine). The first surface gain drop is larger than the second surface gain drop
due to the larger number of pixels illuminated (i.e. larger surface area). Amount of gain drop is propor-
tional to received intensity level and quantity of pixels illuminated. (b) Investigating Pixel(19,32) from
experimental three bar target, the pixel waveform benefits from the gain variation correction by removing
the gain drop near range sample four. After correction, the pixel waveform looks more like the intended
pulse model, but with unwanted noise artifacts.
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where īB (t) = G (t) ĪB (t) and is a known average background signal. It is separately calcu-
lated in the laboratory by averaging the detected background signal for selected voxels across
many data cubes. Looking at the background pixels only, d̂ (t) is

d̂ (t) =
G (t) IB (t)

īB (t)
=

G (t) IB (t)

G (t) ĪB (t)
=

IB (t)

ĪB (t)
. (82)

Taking the statistical variance results in

var
(
d̂ (t)
)

= E

[(
IB (t)

ĪB (t)
− ĪB (t)

ĪB (t)

)2
]
=

1

Ī2
B (t)

E
[(

IB (t)− ĪB (t)
)2]

=
1

Ī2
B (t)

var (IB (t)) =
ĪB (t)

Ī2
B (t)

=
1

ĪB (t)
. (83)

Applying this result and using a sample variance of d̂ in place of the statistical variance (s2 →
var
(
d̂ (t)
)
), the gain is determined by

G (t) =
īB (t)

ĪB (t)
= īB (t) s2. (84)

and can be seen in Fig. 7(a). This gain profile is used on each of the pixels waveforms to correct
for the hardware deficiencies and to more closely match the model. For example, Fig. 7(b)
shows the benefits of the gain correction for one second surface pixel. Also observed in the
previous work, a side benefit of gain correction in both first and surface pixels is the waveform
becomes more symmetrical. The emitted laser pulse shape is a hybrid of a Gaussian or negative
parabolic shape with some asymmetry. Gain correction takes out some of the asymmetry.
The 3D FLASH LADAR is also not a photon-countingdevice where one digital count equals

one photon. The receiver optics use Avalanche Photo Diodes (APD) where one photon equals
many detected counts. Consequently, intensity scaling must be performed to condition the data
to be consistent with the Poisson distribution. The conditioning is performed by using the
statistics of the light and the detected mean and variance of the data. The detected mean of the
data is qK̄ where q is a scaling factor with units of photons per detected counts and K̄ is the true
mean in units of photons. Since incoherent imaging is assumed, the detected variance becomes

q2σ2 = q2K̄ (85)

noting that the mean and variance of the Poisson distribution are the same. The data is scaled
by solving for q and then converting the detected counts to photons by

dph =
ddc

q
(86)

where dph is the data in units of photons and ddc is the data in units of detected counts.

/�- ,3 ���	�
�
� 2��
The Wiener filter is used to provide a comparison to the GEM algorithm [5]. In order to imple-
ment the Wiener filter, the PSF must be known. Since the derivative of a system step response is
the system impulse response, the PSF is determined by taking the derivative of a experimental
step target. Figure 8(a) shows a range image of the step target collected with the same hardware
as the bar target data. Although, the entire range image does not meet the requirements of being
a step target due to the non-uniform intensity on the left-hand-side (LHS). Therefore, a sym-
metric impulse response was assumed and the right-hand-side (RHS) of the impulse response
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Fig. 8. (a) One range image of the step target data cube. Although the board edge is clearly visible, the
variable intensity across it causes an issue with the impulse response calculation. The step response defi-
nition requires a constant amplitude at all spatial positions. The target board portion of the step response
does not meet this requirement, but the non-target area (right-hand-side) does exhibit a constant ampli-
tude. The portion of the step response function where it turns off is this non-target area. Performing the
step response derivative only on this non-target area solves the problem of variable target board amplitude.
(b) 1D cut-out of the resulting PSF. Assuming circular symmetry, an outer product operation is used to
find the corresponding 2D PSF function. (c) Optical transfer function (OTF). The OTF is found by taking
Fourier Transform of the experimental PSF [6]. (d) 1D cut-out (zero spatial frequency) of the OTF. The
profile shows nearly diffraction-limited optics with a cut-off frequency at 4050 cycles per meter.

was copied and flipped over to use as the LHS. Figure 8(b) exhibits the resulting profile with an
outer product operation producing the two-dimensional PSF. Phase retrieval is then performed
via the Gerchberg-Saxton algorithm to arrive at the PSF used by the Wiener filter [12]. This
requirement to know the PSF is a shortcoming of the Wiener filter algorithm. Figures 8(c)-(d)
show the optical transfer function (OTF) where the optics exhibit a nearly diffraction-limited
performance.

/�/ �������
Table 3 and Fig. 9 illustrate the range estimation benefits of object retrieval. The pulse-shape
and object estimation give an RMSE improvement of 25% and 34% respectively over the orig-
inal data. Additionally, the pulse-shape and object estimation give an RMSE improvement of
7% and 18% respectively over the Wiener filter algorithm. Figure 9(c) shows the image quality
improvement over the original data range image in Fig. 9(b). Pixel waveforms provide addi-
tional information on the object recovery abilities. Figure 9(d) demonstrates this ability on a
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Table 3. Range estimation results for experimental data
Data set Metric OD WF GEMp GEMo

3 bars RMSE 0.301 0.243 0.226 0.198
Corr 0.818 0.883 0.900 0.924
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Fig. 9. Experimental target: (a) True ranges with first surface at 5.21 m and second surface at 6.43 m with
1.22 m of separation in between surfaces. (b) Ranges using normalized cross-correlation without using
estimation. (c) Estimated ranges using GEMo algorithm followed by normalized cross-correlation. (d)
Considering pixel (32,18), its estimated waveform (object plus pixel bias) shows similar results from the
simulated data. The estimated waveform more closely resembles the true waveform with the range close
to range sample 9. Also, the algorithm correctly estimates the pixel bias confirming that the bias must
arise from a noise source following the Poisson distribution (i.e. dark current).

second surface pixel, (32,18), where the raw waveform results in an incorrect range determina-
tion. In contrast, the object recovery algorithm (GEMo) yields an improved range estimate by
sufficiently estimating the true waveform.

4 !('!�*�&('�
Utilizing waveform sampling capability, the positive effects of object recovery in 3D FLASH
LADAR range estimation is clearly evident. The innovative 3D FLASH LADAR sensor pro-
vides both an imaging and ranging ability enabling established theory to be applied to a novel
manner. Given simulation and experimental results, it is clear the chosen model and noise
sources are an appropriate choice for 3D FLASH LADAR data operating under certain con-
ditions (SULAR mode meeting spatial sampling requirements). The raw data coming off the
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sensor does not fit the model, but straight-forward pre-processing steps convert the data to an
acceptable form for the algorithms.
In mild spatial blurring conditions, simulation results predict that the GEM algorithms in-

crease range estimation performance substantially over no-processing and the Wiener filter
method. Again, the Wiener filter even has an unfair advantage because it is provided with
the exact PSF function used in generating the data while the GEM algorithms have to estimate
the PSF. Considering the experimental data, its performance is nearly diffraction-limited as ev-
idenced by the experimental PSF and OTF. However, the GEM algorithms still increase range
estimation performance over the Wiener filter. Supported by simulation results, it is appropriate
to say that the GEM algorithm would show even better range estimation performance versus the
Wiener filter in severe isoplanatic atmospheric blurring conditions or with sub-optimal optics.
A trade-off exists for Wiener filter and object recovery algorithms between computation

cost and range accuracy. The Wiener filter is the least computationally taxing object recovery
algorithm, but is the least accurate and requires a priori knowledge of the PSF. The GEM algo-
rithms are computationally expensive, but provides the best range performance and can perform
blind deconvolution. Considering the GEM algorithms, the pulse-shape estimator is extremely
valuable in that it can perform range estimation on single cube thereby removing potential for
any registration or timing errors. If multiple cubes are available and properly registered, object
estimation is undoubtedly the best algorithm to use. Although, none of the algorithms were
able to match the success found in simulation. Any residual error in the experimental results
can be attributed to system noise, the detected light containing residual laser speckle, residual
gain error, and detector blurring.
There are prospective avenues for continued investigation and improvement. The pulse-

shape estimation is very dependent on the selected waveform model. Improvements in the
range estimation would be realized if a true waveformmodel for the transmitted laser pulse was
derived or calculated experimentally. Errors in the experimental data result from assuming a
generalized shape that is corrupted by distorting effects (spatial blur, pixel blur, and noise). In
addition, the variable of interest (range term) would ideally be directly estimated. Themaximum
likelihood solution for the range term could be achieved if another model was discovered. The
algorithm in this paper extracts the range from the maximum likelihood solution for the pulse-
shape. Also, even after the pre-processing steps, the experimental data exhibits noisy behavior.
A more thorough characterization of the 3D FLASH LADAR noise sources would augment or
verify the chosen noise sources. Finally, isoplanatic imaging is valid for the experimental set-
up in the laboratory. However, object recovery from 3D FLASH LADAR observations subject
to heavy anisoplanatic turbulence would provide an ability to improve range estimation in a
variety of field or operational situations.
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