
R
w
n
t

M
T
D
1
S
T

M
N
G
D
3
J
T

1

I
t
�
u
c
i
l
t
b
v
c
s
s
e
t
A
i
p

d
d
c
A

A
G
n
8

Journal of Biomedical Optics 15�1�, 016014 �January/February 2010�

J

apid convergence to the inverse solution regularized
ith Lorentzian distributed function for
ear-infrared continuous wave diffuse optical
omography

in-Cheng Pan
ungnan University
epartment of Electronic Engineering
52 Section 3 Peishen Road
henkeng Taipei, 22202
aiwan

in-Chun Pan
ational Central University
raduate Institute of Biomedical Engineering
epartment of Mechanical Engineering
00 Jhongda Road
hongli City, 320
aiwan

Abstract. A promising method to achieve rapid convergence for im-
age reconstruction is introduced for the continuous-wave near-
infrared �NIR� diffuse optical tomography �DOT�. Tomographic tech-
niques are usually implemented off line and are time consuming to
realize image reconstruction, especially for NIR DOT. Therefore, it is
essential to both speed up reconstruction and achieve stable and con-
vergent solutions. We propose an approach using a constraint based
on a Lorentzian distributed function incorporated into Tikhonov regu-
larization, thereby rapidly converging a stable solution. It is found in
the study that using the proposed method with around five or six
iterations leads to a stable solution. The result is compared to the
primary method usually converging in �25 iterations. Our algorithm
rapidly converges to stable solution in the case of noisy ��20 dB�
detected intensities. © 2010 Society of Photo-Optical Instrumentation Engineers.
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Introduction

nterest has been growing rapidly in various imaging modali-
ies of optical tomography �OT� since computed tomography
CT� apparatus was first introduced in the 1970s. OT systems
sing nonradioactive sources can be built at relatively low
ost. Diffuse optical tomography �DOT� providing functional
nformation related to tissues has drawn great attention for the
ast two decades.1–6 Developed techniques include mainly es-
imating in the near-infrared ��NIR�, 650–950 nm� the distri-
ution of optical properties and their changes within a tissue
olume, and then relating to spatial variations of physiologi-
al parameters, such as hemoglobin concentration and oxygen
aturation. A wide range of applications has been explored,
uch as brain, breast, forearm, and hand joint, etc.7–14 How-
ver, the NIR DOT imaging techniques suffer from low spa-
ial resolution owing to the diffusive nature of scattered light.
dditionally, optical property image reconstruction through

nverse problems is computed off line through an iterative
rocess that is usually computationally expensive.

To date, various reconstruction algorithms15–19 have been
eveloped and evaluated by using considerable experimental
ata acquired from different hardware technology, including
ontinuous wave �cw�, frequency domain, and time domain.
lthough a large number of algorithms have been developed,

ddress all correspondence to: Min-Chun Pan, National Central University,
raduate Institute of Biomedical Engineering, Department of Mechanical Engi-
eering, 300 Jhongda Road, Jhongli City, 320, Taiwan. Tel: 886-3-4267312; Fax:
86-3-4254501; E-mail: pan_minc@cc.ncu.edu.tw.
ournal of Biomedical Optics 016014-
a keen need to explore and improve optical imaging perfor-
mance still remains. Thus, further studies are being conducted
by employing a priori information from other modalities or
implementing an inverse solution regularized with spatial or
spectral constraints.

With the use of a priori information, a reconstructed opti-
cal property image can be improved. Some studies20–22 used
gradient-based iterative image reconstruction schemes con-
sisting of the minimization of an appropriately defined objec-
tive function separated into both least squares of errors and
additional penalty terms containing a priori information. This
gradient-based iterative image reconstruction method uses the
gradient of the objective function in a line-minimization
scheme to provide subsequent guesses of the spatial distribu-
tion of the optical properties for the forward model, and the
reconstruction of these properties is completed once a mini-
mum of this objective function is found. With the regions of
interest �ROI� a priori known, a model-based iterative recon-
struction procedure23 was used to reconstruct the optical prop-
erties of the region. Also, we find that the reconstruction of a
priori specified ROI converged faster than without prior in-
formation. Furthermore, one potential method24 improved res-
olution and contrast consisting in the application of a spatially
variant regularization parameter during the NIR DOT image
reconstruction. Other approaches proposed a regularization
parameter ��� selection method, such as using the generalized
cross-validation or the quasi-optimality criterion,25 the f slope

1083-3668/2010/15�1�/016014/11/$25.00 © 2010 SPIE
January/February 2010 � Vol. 15�1�1



p
fi
n
i
r
p
m
v
q

s
c
i
m
l
L
t
s
o
w
p

d
s
i
c
i
o
e
e
t
m
p
c

p
p
i
s
i
i
t
p
r
l
c
s
i
o
p
c
t
v
p

2
I
v
o
f

Pan and Pan: Rapid convergence to the inverse solution regularized with Lorentzian distributed function…

J

lotted in the curve of the solution norm versus ln�1 /��,26 and
xed noise figures defined as the ratio between the signal-to-
oise ratios �SNRs� in measurements, and the SNRs in the
mage or the blur radius defined as a measure of the
esolution.27 The value-preserved images with adopting high-
ass filtering were performed by the derivation of the Poisson
aximum a posteriori superresolution algorithm;28 that pre-

ious work enhancing image resolution was evaluated with
uantitative measures for all tested cases.

Besides incorporating a priori information into the inverse
olution, a common way to implement regularization in opti-
al tomography is using Tikhonov regularization. Then, the
nverse problem is formulated as a minimization of the mis-

atch of the measurements against the model and the regu-
arization function. Usually, differential operators, such as the
aplacian- or Gaussian-type are used as regularization func-

ions, leading to smooth solutions.29–31 Assuming the breast is
egmented into distinct glandular and adipose regions, the
verall chromophore concentrations and the inhomogeneities
ere estimated using the Gauss-Newton optimization ap-
roach and a linear perturbation algorithm, respectively.32

Recently, there have been significant breakthroughs in the
evelopment of algorithms that incorporate multispectral con-
traints into the image-reconstruction process.33–36 These stud-
es have demonstrated the potential benefits of this spectrally
onstrained inverse resolution method. The advantages of us-
ng direct spectral reconstruction include distinct estimations
f oxygen saturation, water fraction, and scattering param-
ters. Spectral priors generated superior quantification of all
stimated NIR optical parameters compared to only using spa-
ial priors.37 A general framework for incorporating a single or

ultiple priors in diffuse OT was studied as well.38 This was
erformed by both utilizing spatial and spectral priors in the
ontext of imaging breast cancer.

As mentioned before, the reconstruction of optical-
roperty images with an iteration procedure is usually com-
uted off line and computationally expensive. The above stud-
es, however, focused mainly on improving the spatial and
patial-frequency resolutions of reconstructed optical-property
mages with the introduction of the regularization term or var-
ed priors in the procedure. If real-time resolution is required,
hen dedicated reconstruction hardwares or specialized com-
uters are mandatory. Moreover, fast reconstruction algo-
ithms should also be considered to reduce the computation
oad. It is worth emphasizing that our method can reduce
omputation time with the regularization term, which is de-
igned on the viewpoint of the update characteristics in the
teration procedure but not utilizing any spatial/spectral a pri-
ri knowledge or constraints; some results can be found in the
revious work.39 In this paper, we show how to speed up the
omputation to find an inverse solution by using regulariza-
ion with an iteration domain technique; additionally, the con-
ergence rate of proposed soft priors superior to that of the
rimary method is illustrated.

Theory
mage-reconstruction tasks contain forward modeling and in-
erse problem resolution. The forward computation consists
f obtaining the intensity out of a subject under investigation
or a given source, and the initial guess �or iterated result� on
ournal of Biomedical Optics 016014-
scattering and absorption coefficients. The inverse computa-
tion is to compute the scattering and absorption coefficients
for a known light source and measured intensities in an itera-
tive manner. The modeling described here is using light
propagation through diffusive media via the diffusion ap-
proximation to the Boltzmann equation. The image recon-
struction is sought from boundary value measurements based
on the diffusion equation and the finite element method.

Because we utilize cw light illumination or dc data, the
physical process of NIR light illuminating through a highly
scattering medium can be approximated by the steady state
diffusion equation,

� · D�r� � ��r� − �a�r���r� = − S�r� , �1�

where S�r� and ��r� denote the source and the intensity, re-
spectively, as well as �a�r�, c, and D�r� are the absorption
coefficient and the diffusion coefficient, respectively. For
solving Eq. �1�, the boundary condition, −D�� · n̂=Flux
=�� and finite element method are employed. Thus, the fol-
lowing discrete equations can be obtained:15

A� = C , �2�

where A and C are matrices dependent on the optical proper-
ties and the source-detection locations, respectively. The for-
ward solution, �, can be explicitly evaluated by Eq. �2�. Par-
tially differentiating Eq. �2� with � /�D and � /�� respectively
yields

�� = − A−1A�� + A−1C�. �3�

With an approximation to applying the Newton-Raphson
method and ignoring higher order terms, we obtain

J�� = �� , �4�

where the Jacobian matrix J denotes the matrix consisting of
��b /�Dk and ��b /��l, �� is the vector composed of �Dk
and ��l, and �� is the vector with differences between cal-
culated intensities ��cal� and measured intensities ��meas�.
Also, Dk for k=1,2 , . . . ,K and �l for l=1,2 , . . . , l are the
reconstruction parameters for the optical-property profile. The
optical-property image reconstruction is actually a process of
successively updating the distribution of optical coefficients
so as to minimize the difference between measured intensities
and computed ones from the forward process. More details
can be found in Ref. 15, where the Levenberg-Marquardt pro-
cedure was adopted to update the diffusion and absorption
coefficients iteratively.

It is known that to solve Eq. �4� is an ill-posed problem.
Tikhonov regularization is a method stabilizing the inverse
problem through incorporating a priori assumptions to con-
strain the desired solution. It is able to convert an ill-posed
problem into a well-posed one and, further, to improve an
ill-conditioned problem. The regularization term �penalty
term� introduced in the process regularizes the problem and
makes the update stable. It also strengthens the robustness of
algorithm to noisy data with the adequate design of the regu-
larization term. Generally, Tikhonov regularization is to opti-
mize this ill-conditioned problem as
January/February 2010 � Vol. 15�1�2
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min
��

�J�� − ���2 subject to ����� 	 E , �5�

here ����� is a constraint on the estimate �� and E is a
uantity confining the constraint to be an energy bound. Ap-
lying Lagrange optimization technique, we seek a solution to
he constrained objective function

O = �J�� − ���2 − �� �6�

ith the condition

min
��

�O� = min
��

��J�� − ���2 − ��� , �7�

here � is referred to as the regularization parameter. A so-
ution to Eq. �7� is given by

2JT�J�� − ��� − �
��

���
= 0, �8�

nd equivalently

	JTJ�� −
�

2

��

���

 = JT�� , �9�

here Eq. �9� is a constrained estimate of �� but becomes an
nconstrained one when � equals to zero.

Following the general derivation above, further discussion
s divided into Sections 2.1 and 2.2. Most usual concerns for
he constraints on the spatial domain are described in Section
.1; subsequently, the novel viewpoint concerning the con-
traint on the iteration domain is delivered in Section 2.2.

.1 Constraints on the Spatial Domain
constraint on the spatial domain can generally be expressed

s

����� = �L���2, �10�

here L can be the identity matrix �I� or the discrete Laplac-
an matrix.24,31 If L is the identity matrix �I�, a solution to Eq.
9� is given by

�� = �JTJ − �I�−1JT�� . �11�

n the other hand, if L is the discrete Laplacian matrix, sub-
tituting Eq. �10� into �9�, the corresponding solution is

�� = �JTJ − �LTL�−1JT�� . �12�

quation �11� is usually a primary inverse solution to optical-
roperty image reconstruction, which is also Levenberg’s con-
ribution to the inverse problem, and Eq. �12� is a constrained
nverse solution implemented to improve the quality of the
econstructed NIR DOT images, which is identical to Mar-
uardt’s work.

.2 Constraints on the Iteration Domain
n NIR DOT, it is also crucial to accelerate the computation.
ut, to date, speeding up the computation in the iteration do-
ain has not yet been explored. Here, we consider this issue

hrough the use of a Lorentzian distributed function taking a
atural logarithm computation as a constraint, i.e.,
ournal of Biomedical Optics 016014-
����� = �
p=1

K+L

ln

/�

����p
2 + 
2 , �13�

where p is the calculated nodes in the subject under investi-
gation and 
 is a user-defined positive parameter. As can be
seen, �����	�p ln�1 /�
�, ∀��, meets the requirement of
Eq. �5�. Performing the differentiation indicated in Eq. �9�, we
can obtain the solution in an iterative formality

����n = 	JTJ +
�I

����n−1
2 + 
n

2I

−1

JT�� , �14�

and some parameters are chosen as

� = 0.75 max�JTJ�, ����0
2 = I, 
n = � or 2.5e−2n,

where the subscript n is the n’th iteration, “max” means the
maximum value, and the superscript T denotes a transposition
operation. One way to improve the convergence rate is using

n=� as the type 1 soft prior and using 
n=2.5e−2n, an ex-
ponentially decreasing form, as the type 2 soft prior, where
Type 1 is a parameter related to the system function �Jacobian
matrix� and Type 2 is a user-defined parameter. Both values of

n have been respectively employed to seek an inverse solu-
tion for comparison. It is noted that the minus sign in Eq. �6�,
the objective function, corresponds to the regularization term
proposed here, because the term is constrained to an energy
bound. For further inspection in Eqs. �13� and �14�, as known,
�a and D are generally searched in a range of
�10−3 mm−1–10−1 mm� and thus, �� is much smaller than a
unit. It can be proven that even the use of the natural loga-
rithm in the constraint ����� still makes it a positive and
finite value. The other reason to use “ln” is because the regu-
larization term in Eq. �14� still remains in a form of the
Lorentzian distributed function derived from the constraint
associated with the Lorentzian distributed function in Eq.
�13�.

The Lorentzian distributed function, as depicted in Fig. 1,
is employed here owing to its following two characteristics:

Lorentzian Distributed Function

∆χ

H
i s
to
gr
am

small γ
big γ

Fig. 1 Charts of the Lorentzian distributed functions ��
 /�� / ����2

+
2� at various 
. As can be seen, it has a smooth distribution for a big

 and a sharp distribution as 
 is small.
January/February 2010 � Vol. 15�1�3
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1. Lorentzian distributed function has a sharp peak with a
ong tail, describing the histogram distribution of ��, many of
� ��0� at its peak and a small rest of �� distributing along

ts long tail.
2. Its histogram distribution can be further tuned with the

arameter �
� as iteration increasing. Related to the consider-
tion in convergence, the updated quantity, ��, decreases,
anging from the peak to the tail, as the iteration increases;
hereas it has a smooth distribution in the beginning stage of

teration.
dditionally, as the shape of the histogram would be affected,

t is smooth with a big value of 
 and sharp with a small value
f 
. Thus, Lorentzian distributed function can characterize
he nature of �� in the iterative process as the distribution
rom a smooth to a sharp distribution to be used as a con-
traint for the purpose of speeding up computation.

Results and Discussion
o validate the efficiency and effectiveness of the proposed
ethod, numerical simulation was performed under the con-

ition of measured intensity with or without noise. A wide
ange of phantoms was tested to investigate the convergence
ate. The test phantoms include a circular background �D
100 mm in diam� associated with varied numbers, sizes, and

ocations of inclusions, where the homogeneous background
�a=0.025 m−1, �s�=2 mm−1� as a normal tissue was in-
erted with inclusions as “tumors” ��a=0.1 mm−1, �s�
8mm−1�. Of the various test examples, two are chosen to be

s representative as possible, where the phantoms containing
wo small and three big inclusions are demonstrated in Fig. 2.
hese two examples have totally unlike features, resulting in
ifferent response to noise. The homogeneous background
as adopted as an initial guess during the computation. The

ollowing results using the proposed and primary �obtained
hrough Eq. �11�� methods are shown by using 6 and 30 itera-
ions, respectively, to justify the scheme on rapid conver-
ence. It should be noted that no significant differences using
ore than 6 iterations of computation through the soft priors,

nd more than 30 iterations through the primary. To compare
he results in details, as shown in Fig. 2 we use 1-D circular
ransections passing through the centers of inclusions from

to 360 deg.

d=30mm
(25,90o)
(25,180o)
(25,270o)

D=100mm
(0,0)

d=15mm

(a)

(35,135o)
(35,180o)

D=100mm

(b)

(0,0)

ig. 2 Schematic diagram of test phantoms: �a� Phantom with two
mall inclusions �15 mm diam� centered at �35,135 deg� and
35,180 deg� and �b� phantom with three big inclusions �30 mm
iam� centered at �25,90 deg�, �25,180 deg� and �25,270 deg�,
here the phantom �100 mm diam� is centered at �0,0�. The dashed-

ine circles indicate 1-D circular transections for comparison among
aried methods.
ournal of Biomedical Optics 016014-
To justify the proposed method robust to noisy data, the
measured intensity signals through the forward process were
added with Gaussian white noise, which is defined by a zero
mean and a variance ��2�. Here, the measured �or detected�
SNR is specified by

SNR = 10 log10	 �1/N��i
N��meas,i − �meas�2

�2 
 �dB� ,

�15�

where �meas,i is the measured intensity at the i’th detector
with all N detections, and �meas denotes the mean of N de-
tections.

Figure 3 demonstrates the example of image reconstruction
performed on a phantom with two inclusions, where the re-
constructed absorption images were obtained respectively
from the primary inverse solution �Eq. �11��, as shown in
Figs. 3�a�–3�c� and the constrained inverse solutions, Eq. �14�,
with types 1 and 2 soft priors, as shown in Figs. 3�d�–3�i�,
respectively. It is noted that there are a few differences among
these reconstructed images through visual perception, where
more fluctuations exist in the reconstructed absorption images
in Figs. 3�a�–3�c�.

As shown in Fig. 4, the 1-D circular transection profile of
each optical-property image is plotted for the inspection in
detail. Obviously, the reconstructed 1-D circular transection
profiles �Figs. 4�d�–4�i��, using the constrained inverse solu-
tions have better qualities showing two reconstructed peaks
with higher contrast than those �Fig. 4�a�–4�c��, using the pri-
mary inverse solution. As to further inspect the influence of
noise on the reconstructed, the cases with Gaussian white
noise �30- and 25-dB SNRs�, Figs. 4�b� and 4�c� shows dis-
torted reconstruction values using the primary method,
whereas Figs. 4�e�, 4�f�, 4�h�, and 4�i� still show good recon-
struction values using the constrained inverse solutions.

Concerning on the phantom with three big inclusions, as
shown in Fig. 5 there are few differences among these recon-
structed absorption images through visual perception, whether
they were obtained either from the primary inverse solution or
from the constrained inverse solutions. But, numerical figures
via 1-D circular transection profiles help highlight their dif-
ferences. Likewise, Fig. 6 depicts the 1-D circular transection
profiles corresponding to Fig. 5. On the basis of these charts,
it is apparently noted that the profiles using the constrained
inverse solution �Figs. 6�d�–6�i�� exhibit better reconstruction
�three reconstructed peaks with higher contrast� than those
�Figs. 6�a�–6�c�� using the primary inverse solution. It is
worth noting that we can see the primary inverse solution
remain a good reconstructed profile, and not be distorted in
the case of three big inclusions, with even noise added. It can
be explained that the same level of noise in boundary values
has different effects on the phantoms with respectively two
small or three big inclusions. Noise in the measured intensity
affects more seriously on the reconstruction task for a phan-
tom with small inclusions than that for a phantom with big
inclusions.

As what has been described above, ten cases at least were
actually tested in our simulation. All the reconstructed images
using the proposed schemes have a good convergence when
maintaining a good quality as using the primary method. With
January/February 2010 � Vol. 15�1�4
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ig. 3 Reconstructed absorption images for the phantom with two small inclusions, using �a–c� the primary inverse solution, �d–f� the constrained
nverse solution �type 1 soft prior�, and �g–i� the constrained inverse solution �type 2 soft prior�. Further, left column is noise free, and middle and
ight columns are with Gaussian white noise �30- and 25-dB SNRs, respectively�.
noise free 30-dB 25-dB

0 360
0

0.05

0.1

0 360
0

0.05

0.1

0 360
0

0.05

0.1

0 360
0

0.05

0.1

0.15

0 360
0

0.05

0.1

0.15

0 360
0

0.05

0.1

0.15

0 360
0

0.05

0.1

0.15

0 360
0

0.05

0.1

0.15

0 360
0

0.05

0.1

0.15

(a)

(h)(g)

(f)(e)(d)

(c)(b)

(i)

primary

soft prior 1

soft prior 2

Fig. 4 1-D circular transection profiles corresponding to Fig. 3, where dotted lines are the original and solid lines are the reconstructed.
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Fig. 5 Same as in Fig. 3 except for the phantom with three big inclusions.
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Fig. 6 Same as in Fig. 4 except for it being obtained from Fig. 5.
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he above discussion, it is concluded that the inverse solution
egularized with the Lorentzian distributed function can be
ore robust to the noise in measured boundary intensities.
As described previously, the reconstructed images using

he constrained inverse solution have superior qualities to
hose using the primary inverse solution. Furthermore, the
roposed method can reconstruct optical-property images bet-
er than the primary method in the cases of noisy data, as
hown in Figs. 4 and 6 �1D circular transection profiles�. This
ection is to investigate the convergence rate as well as the
erformance measure associated with the above evaluated re-
ults. A computation scheme having a rapid convergence rate
eans that it can accelerate an implementation and reduce

valuation time. This feature is rather important for an NIR
OT imaging system to seek an inverse solution during the

mage reconstruction.
For the purpose of objectively evaluating the performance

f image reconstruction on the convergence rate, a relative
ean-square error �MSE� on the calculated intensity is

dopted for the performance measure, given by the expression
s

MSE =
�i��n+1

cal,i − �n
cal,i�2

�i��n
cal,i�2 
 100%, �16�

here �n
cal,i denotes the i’th detection of calculated intensity

uring the n’th iteration.
Figures 7 and 8 show the convergence rates for both ex-

mples discussed above, phantoms with two small inclusions
nd three big inclusions, where the cases with noise free, 30-,
nd 25-dB SNRs are depicted. In each figure, the dotted line
haracterizes the result obtained from the primary inverse so-
ution and the solid lines show the constrained inverse solu-
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ig. 7 Convergence rates of the phantom with two small inclusions at
nd �c� 25-dB SNR.
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tions with types 1 and 2 soft priors. To zoom in the MSE
versus iterations, only MSEs ranging between 0 and 0.01%
are charted. As will be seen, the convergence rate reaches a
considerably small value of �10−3% �10−5�.

For a phantom with two small inclusions, Fig. 7 explicitly
demonstrates rapid convergence rates as using the constrained
inverse solution to the cases of noise and noise free, whereas
a slow convergence rate is obtained by using the primary
inverse solution only for the noise-free case. In this example,
the constrained inverse solutions with types 1 and 2 soft priors
obtain similar convergence rates. For the noisy-data case,
however, when using the primary inverse solution the conver-
gence performance is less competitive, especially for a low
value of SNR. This is predictable but unwanted as it may lead
to a false result during minimizing the errors of calculated
data against measurements.

For the phantom with three big inclusions, Fig. 8 illustrates
rapid convergence rates for the constrained inverse solution to
all the cases of noise and noise free, whereas a slow conver-
gence rate is obtained in the primary inverse solution. In this
example, the constrained inverse solutions with soft priors
reach similar convergences. Additionally, the primary inverse
solution can also achieve a slow convergence for the noisy-
data case.

As shown in Figs. 7 and 8, it is found that only five itera-
tions are required for a good convergence as using the con-
strained inverse solution, whereas the primary inverse solu-
tion takes 25 iterations or so to converge. Comparing Fig. 7
with Fig. 8, it is noted that noisy data affect the optical-
property reconstruction of a phantom with small inclusions
more severely than that of a phantom with big ones. For fur-
ther observation in each panel within Figs. 7 and 8, con-
strained inverse solutions proposed in the study have similarly
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apid convergence rates, implying that the choice of 
 is flex-
ble. This shows the robustness of the proposed scheme in
oisy-data cases and various inclusion conditions.

To further study the performance of prior constraints, two
ore noisy-data cases with 20- and 15-dB SNRs are con-

ucted to examine the robustness of the scheme. In Eq. �14�,
et

�I

����n−1
2 + 
n

2I
� ��I , �17�

here 
n=� �type 1 soft prior�, and then set in each iteration

�� →
��

2.5e−2n . �18�

ere, we call it a hard prior, guiding the whole regularization
rocess in a forced way. We attempted to solve a severe-noise
ase with a hard prior instead of the original regularization
erm. The following discussions show the noisy-data cases
ith the SNRs of 20- and 15-dB in Figs. 9 and 10, respec-

ively.
Figure 9 illustrates the comparisons between constrained

olutions using soft priors �types 1 and 2� and a hard prior,
here the left, middle, and right columns are the constrained

nverse solutions with soft prior 1, soft prior 2, and hard prior,
espectively. Figures 9�a�–9�f� show the 2-D reconstructions
f phantoms with two and three inclusions, where slight dis-
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Fig. 10 Same as in F
ournal of Biomedical Optics 016014-
crepancy can be observed. Figures 9�g�–9�l� depict their cor-
responding 1-D circular transection profiles to reveal notice-
able differences. Basically, there is a better separation
resolution but a lower intensity owing to a highly suppressed
signal by a hard prior rather than a soft prior. Additionally,
Figs. 9�m�–9�o� exhibit good convergences obtained by using
both soft and hard priors.

Figure 10 evidently supports our thought that a hard prior
to obtain a constrained inverse solution can be immune to
more noisy �15 dB� data than a soft prior is. In Fig. 10, first
two columns obtained through soft-prior reconstructions,
show a few distortions and fluctuations although a conver-
gence remains reached; whereas the right column obtained by
using a hard prior is more robust to noise, but traded off with
contrast.

As has been shown, a hard prior can be immune to noise
better than soft priors. But, according to our experience it is
rather case sensitive to choose an adequate hard prior. To
choose an appropriate hard prior is worthy of further study.

In addition to the investigation of convergence rates, glo-
bal reconstruction qualities by the MSEs versus different
noise levels are demonstrated in Fig. 11. Figures 11�a� and
11�b� show the evaluation corresponding to Figs. 3 and 5,
respectively, where the image reconstruction using priors
with smaller MSEs means better results than that without a
prior; whereas Figs. 11�c� and 11�d� show the evaluation
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orresponding to Figs. 9 and 10, where the reconstruction
sing a hard prior even has the smallest MSEs at different
oise levels.

Conclusions
n this study, we have developed and realized the schemes for
xpediting NIR DOT image reconstruction through the in-
erse solution regularized with the constraint of a Lorentzian
istributed function. Substantial improvements in reconstruc-
ion have been achieved without incurring additional hard-
are cost. It is valuable for the evaluation of NIR DOT being
sed as a medical imaging modality since promising results
ave revealed this probability.

With the introduction of constraints having a form of the
orentzian distributed function, rapid convergence can be
chieved owing to the fact that decreasing �� results in the
ncrease of �� as the iteration process proceeds and vice versa.
t behaves like a criterion in the sense of a rapid convergence
hat the optimal iteration number is founded when seeking an
nverse solution regularized with the Lorentzian distributed
unction. In the study, five or six iterations are recommended
or the use of finding a constrained inverse solution �Eq. �14��.
esides, both the soft priors and a hard prior are introduced.
he constrained inverse solution through soft priors can ap-
roach an expected value in a self-convergent manner based
n expected decreasing updates ����. The solution through a
ard prior, especially feasible for the case of severe noise,
eaches the value in a compulsorily convergent manner.
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ig. 11 Evaluation of the global reconstruction quality by the MSEs
arious priors corresponding to Fig. 3, �b� reconstruction for three inc
wo inclusions through various priors corresponding to Figs. 9 and 1
ponding to Figs. 9 and 10.
ournal of Biomedical Optics 016014-1
We believe that the proposed method can be generalized as
constraints in the regularization algorithm to lead to rapid
convergence. There are, however, tremendous probabilities
for further development in NIR DOT imaging systems, many
of which have become current research topics such as the
improvement in the iteration domain, the spatial, or spatial
frequency domain with a refined mesh, structural, or spectral
priors. Our further studies will explore these by means of
either hardware design or algorithm exploitation.
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