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Abstract. We attempt to develop a systematic scheme through adopt-
ing high-pass filtering �HPF� to well resolve value-preserved images
such as medical images. Our approach is derived from the Poisson
maximum a posteriori superresolution algorithm employing the HP
filters, where four filters are considered such as two low-pass-filter-
combination based filters, wavelet filter, and negative-oriented La-
placian HP filter. The proposed approach is incorporated into the pro-
cedure of finite-element-method �FEM�-based image reconstruction
for diffuse optical tomography in the direct current domain, posterior
to each iteration without altering the original FEM modeling. This
approach is justified with various HPF for different cases that breast-
like phantoms embedded with two or three inclusions that imitate
tumors are employed to examine the resolution performances under
certain extreme conditions. The proposed approach to enhancing im-
age resolution is evaluated for all tested cases. A qualitative investiga-
tion of reconstruction performance for each case is presented. Follow-
ing this, we define a set of measures on the quantitative evaluation for
a range of resolutions including separation, size, contrast, and loca-
tion, thereby providing a comparable evaluation to the visual quality.
The most satisfactory result is obtained by using the wavelet HP filter,
and it successfully justifies our proposed scheme. © 2008 Society of Photo-
Optical Instrumentation Engineers. �DOI: 10.1117/1.2907344�

Keywords: high-pass filtering; Poisson maximum a posteriori; superresolution
algorithm; finite element method; image reconstruction; diffuse optical tomography;
quantitative evaluation.
Paper 07288R received Jul. 31, 2007; revised manuscript received Nov. 21, 2007;
accepted for publication Nov. 28, 2007; published online Apr. 21, 2008.
Introduction

ver the last several decades, there has been great enthusiasm
n developing medical imaging techniques to assist physicians
n detecting and diagnosing tumors and diseases. Today, the
fforts drive toward developing imaging systems employing
oninvasive, nonradioactive, and relatively low cost instru-
entations. Near-infrared �NIR� diffuse optical tomography

DOT� imaging is such an imaging modality that NIR light is
sed to probe biological tissues and it is promising to continu-
usly monitor the status of tissues using NIR imaging. There-
ore, the realization of NIR DOT as a viable clinical imaging
odality would be a beneficial advancement in medical diag-

osis. Basically, both the absorption and scattering tomogra-
hic images are evaluated in an NIR imaging system, thereby
elating absorption properties to the oxygen saturation of he-
oglobin content and water content, as well as scattering

roperties to the scatter size and density or the mitochondrial
ompartment and blood glucose concentration.1–5

ddress all correspondence to Min-Chun Pan, Department of Mechanical Engi-
eering, National Central University, No. 300, Jhongda Rd.-Jhongli City, 320
aiwan; Tel: 886-3-4267312; Fax: 886-3-4254501; E-mail:
an�minc@cc.ncu.edu.tw
ournal of Biomedical Optics 024022-
An NIR spectral window exists from about
650 to 1000 nm wherein the absorption is relatively small,
which enables transillumination of NIR radiance through bio-
logical tissues. With a difficulty arising from strongly scatter-
ing effects in human tissues, the contrast and resolution of
optical images are severely reduced. Compared with conven-
tional x-ray mammography, magnetic resonance imaging
�MRI�, and ultrasound imaging all with acceptable resolutions
��100 mm�, but low intrinsic contrast ��10−1�, NIR imaging
possesses exceptionally high intrinsic contrast ��101–2�, but
exhibits inferior spatial resolutions ��101 mm� as a result of
highly scattering nature of biological tissues.4,6 Many efforts
have been made to improve NIR optical tomographic image
resolution through different ways.7–34 Hebden and Deply7 pro-
posed a method using the least-squares fit between the
temporal-distribution measures of transmitted light and a
model of the diffusion equation to enhance time-resolved im-
aging. Moon and Reintjes8 applied the Markov-chain tech-
nique to enhance optical image resolution. Jiang and Paulsen9

and Jiang et al.10–12 improved diffuse optical images in the
direct current �dc� domain using the scheme with total varia-
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ion minimization, dual mesh, and low-pass spatial filtering to
chieve a satisfactory result. Recently researchers have
dopted hybrid modalities to attain high-resolution NIR to-
ographic images by the use of a priori structural informa-

ion available from MRI �Refs. 13–18� or ultrasonic
maging.19–21 Especially, the structure information acquired
rom MRI was incorporated with a Laplacian-type regulariza-
ion integrated in the inversion-computation process.22,23 Ad-
itionally, the spectral priors acquired from various source
avelengths were combined with the reconstruction process,
alidating improvement over spatial priors.24

For the enhancement of image reconstruction, Kanmani
nd Vasus25 used a nonlinear approximation of the perturba-
ion equation through adding the second term involving the
essian in the Taylor expansion instead of a linear perturba-

ion model that adopts only the first order derivatives �the
acobian�, which is solved by using conjugate gradient search.
urthermore, Jiang26 reconstructed optical images using the

hird-order diffusion equation, providing more stable inverse
olutions. Pogue et al.27 improved diffuse optical images with
patially variant regularization in the radial orientation,
hereby minimizing high-frequency noise and producing con-
tant image resolution and contrast. Brooks et al.28 and Zhang
t al.29 obtained accurate reconstruction images by the joint
se of measurement-model agreement, amplitude, and total
ariation type constraints. Guven et al.30,31 proposed an adap-
ive multigrid algorithm for the enhancement of image reso-
utions where two-level meshes were generated to provide
igh resolution of the region of interest. Stott et al.32 presented
technique to improve optical images through using simulta-

eous calibration of optode positions that were sensitive to
mage quality. Furthermore, Ntziachristos et al.33 and Intes et
l.34 employed a fluorescent diagnostic agent, indocyanine
reen �ICG� to enhance heterogeneity contrast for obtaining
etter resolutions prior to optical image reconstruction. As to
he background information about image processing tech-
iques for the enhancement of reconstructed optical-property
mages, especially applied in this study, some

onographs35–37 and related papers38–40 are valuable. Three
eferred to books are rather appropriate for the beginner, es-
ecially the third one, and three reference papers are actually
he origin of the idea resulting in the proposed algorithm pre-
ented in this paper. Further, more references were reviewed
nd introduced.

In this paper, the design of a high-pass filtering �HPF�
ethod to enhance optical images is studied. Based on the

iewpoint of image processing, generally, visual quality per-
eption is preferred to actual image values. Moreover, as is
nown, the effect of an HP filter applied on an image to be
rocessed yields a different image, which cannot be used
hen true optical property values are required. In this paper,
e attempt to develop a systematic scheme through adopting
P filters for value-preserved images such as medical images.
herefore, as simply implementing a specific HP filter to re-
olve NIR DOT images, it is not suitable that the procedure of
he conventional approach takes routine steps like HPF the
riginal image to be weighted and then histogram equaliza-
ion. As can be understood, this conventional image-
rocessing procedure is performed on optical property images
etween a reconstruction and a true distribution. For instance,
ne may be more interested in estimating the true values than
ournal of Biomedical Optics 024022-
obtaining the visual effect. As a result, an approach to system-
atically implementing HPF is demanding. Additionally, recon-
structed highly resolved images that preserve true values are
extremely expected. In this paper, first we investigate the
properties of HP filters that can be classified into two types,
i.e., low-pass filter �LPF� combined form and a wavelet-like
filter, respectively. To preserve the true value distribution of
optical images, the approach proposed and realized is derived
from the Poisson maximum a priori �Poisson MAP� super-
resolution algorithm for the application of HPF on absorption-
and diffusion-coefficient DOT images. Following this, the
proposed approach is incorporated into the finite-element-
method �FEM�-based image reconstruction in the continuous
wave �cw� domain. Simulation results and their corresponding
evaluations are demonstrated and investigated by comparing
reconstruction with and without filtering.

This paper aims to �1� develop an approach derived from
the Poisson MAP superresolution algorithm to systematically
implement HP filters on optical property images; �2� justify
the proposed approach with various HP filters performed on
breast-like optical heterogeneity; �3� demonstrate the reso-
lution performance of this approach under certain extreme
conditions, significantly improving the reconstruction perfor-
mance even in the absence of a priori information or modified
reconstruction algorithms; and �4� define a set of measures for
the evaluation of computation resolutions on the separation,
size, and location of inclusions, and the contrast of inclusions
to background. Additionally, further discussions on these
measures are also provided. The paper is organized as fol-
lows. Section 2 briefly describes processing with HP filters
that are used to enhance an image. Following this, a novel
approach that starts from the Poisson MAP superresolution
algorithm is derived. Section 3 implements four HP filters on
several DOT images, and presents both qualitative and quan-
titative discussions of the reconstructed images. Finally, in
Sec. 4 we draw conclusions and discuss future works.

2 Theoretical Analysis of the Proposed
Approach

Following from the introduction this section concerns image
processing. As is known, a linear image enhancement tech-
nique can improve image visual quality but cannot preserve
its true values, whereas nonlinear image restoration can obtain
an improved and value-preserved image, but is time-
consuming. Here, we propose an approach derived from the
Poisson MAP superresolution algorithm. This approach is in-
corporated with the procedure of FEM-based image recon-
struction to obtain resolution-enhanced images. In this sec-
tion, conventional image processing is first addressed, then a
novel approach to implementing HP filters is derived, and
finally our proposed approach is integrated with DOT image
reconstruction.

2.1 Conventional Image Processing
In image processing, image enhancement is always used to
improve image visual quality. The techniques of contrast en-
hancement, histogram equalization, and HPF are usually
adopted. Contrast enhancement conducts an operation to ex-
pand the contrast of features of interest. The procedure of
histogram equalization, basically, transforms the histogram
March/April 2008 � Vol. 13�2�2
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istribution of an image into an output image with an equal
umber of pixels at each gray level. This causes a ragged
istogram to become flat. HPF is exactly a transfer function
ith a unit at dc frequency and higher gains associated with

arger frequencies. Usually, edge enhancement can be re-
arded as an alternative to HPF, sharpening the edge but with
vershoot.

As described in some image-processing monographs,35–37

he HPF applied to improve image quality follows some rou-
ine steps such as the so-called high-frequency emphasis fil-
ering,

Hhef = a + bHhp, �1�

nd histogram equalization, where Hhef denotes high-
requency emphasis filtering in the frequency domain �FD�,

hp is an HP filter, a is an offset, and b is a weighting number
usually, b�a�. Note that the capital to represent a filter is the
orresponding frequency function. Therefore, 1−Hlp is
dopted, a complementary filter to low-pass filtering in the FD
or an HP filter.

To achieve both improved image visual quality and pre-
erve true value distribution in biological applications, we ar-
ue in this paper that an in-depth investigation is required to
ope with the challenges of emergent biomedical imaging mo-
alities. Before proposing our scheme, we first define HP,
lters and classify them for the convenience of following dis-
ussions. There are two types of hhp to be performed, respec-
ively. One is a differential filter through the combination of
wo LPFs, and the other is an intrinsic �wavelet-like� HP filter.
t is sensible that an HP filter can be described as

hhp = hlp1 − hlp2, �2�

here hlp1 and hlp2 denote LPFs. More precisely, this repre-
ents a narrow full width at half maximum �FWHM� LPF
ith a larger amplitude �A1� subtracted by a broad FWHM
PF with a smaller amplitude �A2�. Both HP filters must com-
ly with two rules of thumb37 as follows:

Hhp�0� = A1 − A2 and �Hhp�max � A1. �3�

he difference between these filters is that the hlp1 of the
ormer rolls off faster than that of the latter. In this study,

Fig. 1 Two LPF-combined HP filters �a� 	−g2 and �b� g1
ournal of Biomedical Optics 024022-
Gaussian functions with various standard deviations ��� are
employed for hlp. Thus, the HP filter shown in Fig. 1 can be
formulated as

hhp�r� = g1�r� − g2�r� , �4�

where g1�r�= �A1 / �2��1
2�1/2�exp �−r2 /2�1

2� and g2�r�
= �A2 / �2��2

2�1/2�exp �−r2 /2�2
2�, respectively, and �1��2.

2.1.1 LPF-combined HP filter ��1��2�

This filter is usually determined with a smaller �1��1�, as
shown in Fig. 1�a�; this can also be determined with a larger
�1, as shown in Fig. 1�b�. If we let �1 approach zero, hhp1
narrows further to an impulse, then Eq. �4� can be expressed
in the frequency domain as 1−Hlp.

2.1.2 Wavelet-like HP filter

A dilated wavelet-like function expressed as

�a�r� =
1

�3a�4 �
�1 −

r2

a2�exp�−
r2

2a2� , �5�

where a is a dilated factor, as depicted in Fig. 1�c�, and can be
used as an HP filter.

2.1.3 Negative-oriented Laplacian HP filter

Alternatively, a 3�3 negative-orientated Laplacian edge op-
erator

	 0 − 1 0

− 1 4 − 1

0 − 1 0

 �6�

in a form similar to a wavelet is also considered and em-
ployed as an HP filter is this study.

As can be seen in Fig. 1, a wavelet-like HP filter has sharp
sidelobes rather than a LPF-combined HP filter.

d �c� a wavelet-like filter, where 	 is the delta function.
−g , an
March/April 2008 � Vol. 13�2�3
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.2 Novel Approach Implementing HPF for Optical
Tomography

o find the fundamental theoretical basis to explain our pro-
osed novel approach, an attempt to derive the value-
reserving HPF technique begins with the Poisson MAP su-
erresolution algorithm. Mathematically, the algorithm38–40 is
iven as

f̂ n = f̂ n−1 exp�� g

f̂n−1 � h
− 1� � h�  f̂ n−1C, n = 1,2, . . . ,N ,

�7�

here

C = exp�� g

f̂n−1 � h
− 1� � h� , �8�

s regarded as the correction term during the iterative restora-
ion progress; � represents a convolution; * represents cor-
elation; h denotes the point spread function �PSF�; g is the
bserved image; and the subscript n is the number of iteration.

dditionally, f̂0 defined as g is the initial guess of iteration,

nd f̂N is the final superresolved image. In terms of the op-
ration of Poisson MAP, it is an iterative algorithm, where
uccessive estimate of the restored image is obtained through
he multiplication of current estimate by such a quantity close
o one that is a function of the interpolated image divided by

convolution of the current estimate with the PSF. Using
aylor series expansion, Eq. �7� can be expanded to be ap-
roximate as

f̂ n � f̂ n−1�1 + � g

f̂n−1 � h
− 1� � h� = f̂ n−1 + f̂ n−1�� g

f̂n−1 � h

− 1� � h�  f̂ n−1 + 
 f̂ n−1, �9�

here the intermediate obtained image f̂ n can be expressed as

dding the previous one f̂ n−1 with a correction increment

f̂ n−1. It is nontrivial to further explore the correction incre-
ent


 f̂ n−1 = f̂ n−1�� g

f̂n−1 � h
− 1� � h�

= f̂ n−1��g − f̂ n−1 � h

f̂n−1 � h
� � h� , �10�

here g− f̂ n−1 � h can be reduced to an increment 
 f̂ n−1 in a

ondition of decreasing correction rate. Assuming f̂ n−1 � h ap-

roaches a constant as f̂ n−1 has a simple distribution. Thus,
q. �10� is approximated to
ournal of Biomedical Optics 024022-

 f̂ n−1 �
f̂ n−1

f̂ n−1 � h
�
 f̂ n−1 � h� . �11�

Through point-by-point multiplying both sides of Eq. �11�
with 
 f̂ n−1, we obtain

�
 f̂ n−1��
 f̂ n−1� =
f̂ n−1

f̂ n−1 � h
�
 f̂ n−1 � h�
 f̂ n−1, �12�

and then reorganize Eq. �12� to yield

f̂ n−1 � h = f̂ n−1��
 f̂ n−1 � h�
 f̂ n−1

�
 f̂ n−1��
 f̂ n−1�
� . �13�

As defined previously, h is the PSF like an LPF, and a Gauss-
ian function is employed in the study. Additionally, the opera-
tion of correlation is equivalent to take a convolution due to
the symmetry of function h. Therefore, Eq. �13� can be de-
rived to the following equation with the HPF definition

f̂ n−1 � hhp = f̂ n−1 � hlp1 − f̂ n−1 � hlp2

= f̂ n−1��
 f̂ n−1 � hhp�
 f̂ n−1

�
 f̂ n−1��
 f̂ n−1�
�

=
�
 f̂ n−1 � hhp�
 f̂ n−1

�
 f̂ n−1��
 f̂ n−1�/ f̂ n−1

. �14�

We here consider the quantity obtained through the convolu-
tion of an image and HPF as a new correction increment, i.e.,


 f̂ n−1 � f̂ n−1 � hhp. �15�

Thus, Eq. �15� is equivalent to


 f̂ n−1 =
�
 f̂ n−1 � hhp�
 f̂ n−1

�
 f̂ n−1��
 f̂ n−1�/ f̂ n−1

. �16�

To further simplify Eq. �16� for numerical evaluation, we as-
sume that the denominator is a positive number relative to


 f̂ n−1, and finally get an approximate solution of the correc-
tion increment for using HPF, as follows


 f̂ n−1 =
�
 f̂ n−1�hhp�
 f̂ n−1�

�
 f̂ n−1�
 f̂ n−1�/ f̂ n−1

�
�
 f̂ n−1�hhp�
 f̂ n−1�

w�
 f̂ n−1�
, �17�

where the denominator is simplified with the norm of 
 f̂ n−1
multiplied by w, a weight number 10, used in computation as
well as herein the symbols �·� and �·� stand for the state and
�z �x and x �y� represent the operations of a point-by-point
product �z and x� and a convolution �x and y�, respectively,
resulting in the other state. In considering Eq. �17� used in the
computation of NIR DOT imaging, heterogeneities are treated
as a perturbation to homogeneous background for a phantom,
and incremental values of both absorption and scattering co-
efficients are estimated from a projection of a high-frequency
enhancement to the original increment.
March/April 2008 � Vol. 13�2�4
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.3 NIR DOT Image Reconstruction Incorporating
with Novel Approach

ompared with other medical imaging modalities, NIR imag-
ng requires the solution of an inverse problem. In NIR DOT
maging, the fundamental equation governing the propagation
f light in biological tissues is the Boltzmann transport equa-
ion �BTE� to model the optical characteristics of the scatter-
ng and absorption.

The BTE is an integrodifferential equation, so it is rather
ifficult to obtain solutions to the BTE under general condi-
ions. With the use of approximation techniques by assuming
he experimental material or tissues have highly scattering
roperties and that the input radiance is isotropic and modu-
ated under a 1-GHz frequency, the BTE can be reduced to an
asily solvable form of the diffusion approximation. In NIR
maging, mappings of the absorption and/or scattering coeffi-
ients can be evaluated by using an FEM to invert the diffu-
ion approximation. The FEM-based image reconstruction in
he dc domain is concluded with the following equations.

ore derivation details can be found in Ref. 41.
As described previously, the physical process can be de-

uced from a diffusion equation:

� · D � ��r,�� − �a −
i�

c
���r,�� = − S�r,�� , �18�

here S�r ,�� and � denote the source and the radiance, re-
pectively; and a, c, and D are the absorption coefficient, the
ave speed in the medium, and the diffusion coefficient, re-

pectively. To solve Eq. �18�, the boundary condition
D�� · n̂=�� �flux in fact� and the FEM are applied. Since
nly dc data are considered, � is set as a null; i.e., the imagi-
ary part is to vanish from the subsequent equations. Thus,
he following discrete equations in a matrix form,

�19�

an be obtained. Obviously, the forward solution, �, can be
valuated through Eq. �19�. In terms of the physical process,
he radiance matrix is quantitatively and qualitatively depen-
ent on the source matrix and the optical-property matrix,
espectively, where the optical-property matrix is the inertia
f the material in spite of relating to the wavelength. Further-
ore, the following two equations can be derived for the

omputation of image reconstruction, i.e.,

Fig. 2 Flowchart of NIR DOT image reco
ournal of Biomedical Optics 024022-
�Abb − �Bbb AbI

AIb AII
��

��b

�Dk

��I

�Dk

� = 	−
�Abb

�Dk
−

�AbI

�Dk

−
�AIb

�Dk
−

�AII

�Dk


��b

�I
�

+ �
�Cb

�Dk

�CI

�Dk

� , �20�

and

�Abb − �Bbb AbI

AIb AII
��

��b

�l

��I

�l

� = 	−
�Abb

�l
−

�AbI

�l

−
�AIb

�l
−

�AII

�l


��b

�I
�

+ �
�Cb

�l

�CI

�l

� , �21�

where the superscripts I and b denote interior and boundary
nodes, and Dk for k=1,2 , . . . ,K and l for l=1,2 , . . . ,L are
the reconstruction parameters for the optical property profile.
For the inverse problem to update absorption/scattering coef-
ficients, the partial differentiation of boundary radiance to the
parameters of interest, ��b /�l or ��b /�Dk, must be ob-
tained from Eqs. �20� and �21�. The Newton-Raphson tech-
nique regularized by a Levenberg-Marquardt algorithm and
with the Tikhonov regularization parameter is adopted to it-
eratively update the diffusion and absorption coefficients, i.e.,

�JTJ + �I�
� = JT��o − �c� = JT
� , �22�

where Jacobian matrix J denotes J���b /�Dk ,��b /�l�, 
�
means 
��
Dk ,
l�, and � is a Tikhonov regularization pa-
rameter of the Jacobian matrix. As described, this inversion
generally requires the construction of the Jacobian matrix;
actually, the Jacobian represents a highly underdetermined
system of equations. Although it is possible to obtain a least-
squares solution to underdetermined systems of equations, the
resulting images are usually inaccurate relating to inferior res-
olution. The procedure of FEM-based image reconstruction in
the dc domain is illustrated in Fig. 2. As indicated, the pro-
posed approach is merely implemented once, subsequently
posterior to each iteration without altering the original FEM

ion incorporated with the HPF approach.
nstruct
March/April 2008 � Vol. 13�2�5
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odeling. The following section illustrates the comparison
nd effectiveness of the incorporated resolution-enhanced
chemes.

Results and Discussion
he phantoms employed to justify our proposed technique

ncorporate two or three inclusions with various sizes, loca-
ions, and separations, illustrated in Fig. 3, where R denotes
he radius in millimeters. In this paper, four HPFs and four
hantom cases were performed. The numerical simulations of
ultiinclusion phantoms provide further information concern-

ng the spatial resolution �separation, size, and location� and
he contrast resolution beyond that of the single-inclusion
ase. Of the phantom, the background absorption �a� and
educed scattering �s�� values are about 0.0025 and
.25 mm−1, respectively, while the maximum absorption and
educed scattering for the inclusion are 0.025 and 2.5 mm−1,
f we assume the contrast ratio of the inclusion to background
s 10:1, because high contrast results in much more overlap-
ing effects than low contrast, although a contrast of 2 to 10
as used throughout other published works.

As depicted in Fig. 3, cases 1 and 2 and cases 3 and 4,
espectively, have three and two inclusions separated by a
imilar distance but of different sizes. As the separation reso-
ution of inclusions is examined, several �two or three� em-
edded inclusions are necessary, and different inclusion sizes
re considered as well. To test the limitation of each HPF
mployed here, the phantoms of cases 1 and 4 with larger
nclusions and closer to the phantom center were designed,
ompared with case 2 and case 3 designs. For the convenience
f discussion, we denote M0 to M4 as the reconstructions
ith the schemes using nonfiltering, 	−g2��2=1.5�, g1
g2��1=0.75,�2=1.5�, wavelet �a=0.5�, and Laplacian
PF in their 2-D form, respectively. Currently, absorption-

oefficient images are presented for our cw image reconstruc-
ion algorithm.

In FEM-based image reconstruction, the homogeneous
ackground �a=0.0025 mm−1, s�=0.25 mm−1� was
dopted as an initial guess. For both the forward and inverse
rocesses, 256 elements and 257 nodes were used, associated
ith a desktop PC with a 3.6-GHz CPU and 4 Gbytes of
AM, respectively. Thirty iteration assignments were em-
loyed for each case as the normalized increasing rate, i.e.,
ean value of ���n+1−�n� /�n�2, reaches less than 10−2,
here each iteration takes about 2 min. Meanwhile, the

bsorption- and diffusion-coefficient images were updated

ig. 3 Schematic diagram for the dimensions of four different test case
illimeters.
ournal of Biomedical Optics 024022-
concurrently in spite of the fact that reconstruction began
from a homogeneous condition and only the acquired dc data
were employed.

First, a qualitative investigation of the reconstruction per-
formance of each case is presented in Sec. 3.1. Following this
in Sec. 3.2, we describe quantitative performance measures
for various HPFs for a range of resolutions including separa-
tion, size, contrast, and location. Finally, we further investi-
gate and discuss the significance of the proposed measures in
Sec. 3.3.

3.1 Examples Illustration

3.1.1 Case 1
Figure 4 shows a set of reconstructed absorption-coefficient
images �Figs. 4�a�–4�e�� and quantitative information �Figs.
4�f�–4�j�� for the images along with their corresponding cir-
cular transaction profiles. Comparing the reconstructed ab-
sorption images, it is obvious that all of the reconstructions
show roughly correct images of the inclusions and all of the
reconstruction techniques can highly resolve images and sepa-
rate inclusions, except the result using M0. However, the M1
to M4 schemes underestimate the computed absorption coef-
ficients of the inclusions. For further inspection, M4 generated
highly ringing artifacts between inclusions. At this phase, it is
not easy to speculate about the causes of such artifacts that
might be referred to as ‘false’ inclusions and concluded as a
wrong judgment.

3.1.2 Case 2
It can be found that compared with only the image reconstruc-
tion employed, considerable improvement is observed in the
reconstructed images, as illustrated in Figs. 5�a�–5�e� when
the HPF approach is invoked. Evidently, M0 retains highly
blurred inclusions, while the other reconstruction schemes can
better differentiate inclusions, and the M4 scheme overesti-
mated the absorption coefficients. Again, ringing artifacts are
produced surrounding inclusions and their optical properties
are lower than background levels, as depicted in Figs.
5�f�–5�j�.

From the results for cases 1 and 2 note that schemes with
filtering can discriminate even small size inclusions, whereas
scheme M0 cannot meet even the basic requirements of image
reconstruction, especially for small inclusions �case 2�.

ulation. �a� to �d� are cases 1 to 4, respectively, where R is radius in
s in sim
March/April 2008 � Vol. 13�2�6
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.1.3 Case 3
ompared with previous two cases, this case was designed as
phantom with three smaller inclusions. Several improved

mages were obtained by using appropriate filtering, as shown
n Figs. 6�b�–6�e�. Likewise, M2 resulted in a worse-resolved
mage than the others with HP filtering. Negative artifacts
ccurred in each reconstructed image, as depicted in Figs.
�g�–6�j�. It is well noted that M4 overestimated the inclusion
mplitudes, which yields a higher inclusion-to-background
ontrast.

.1.4 Case 4
n this highly challenging case, a phantom with two closest-
eparation inclusions was designed. As shown in Figs.
�a�–7�e�, all reconstructed images underestimated inclusions,
nd offered relatively poor resolution for two separate inclu-
ions. This is rather competitive for these employed filters.
ased on a quantitative comparison, as depicted in Figs. 7�i�

ig. 4 Case 1, 2-D reconstructed absorption images �a� without HPF �
ectional profiles corresponding to �a� to �e�, where the solid lines ar

Fig. 5 Reconstructed case 2 imag
ournal of Biomedical Optics 024022-
and 7�j�, the M3 and M4 schemes demonstrate better reso-
lution discrimination to separate longer and closer inclusions
in comparison with case 3.

From the results of cases 3 and 4 for a phantom with
inclusions of both small size and close separation, it can be
concluded that the wavelet-like HP filtering �M3� demon-
strates the best spatial-resolution capability to the inclusions.

This evidently shows that the enhancement of reconstruc-
tion through the incorporation of our proposed HPF approach
can effectively improve computed images. As already illus-
trated, the wavelet-like HP filtering schemes �M3 and M4�
further yield better results than the LPF-combined HP filtering
schemes �M1 and M2�. In the aspects of sensitivity and sta-
bility of evaluation, the M3 scheme yielded results closest to
the true absorption property compared to the other schemes.
However, scheme M4 visually characterizes the inclusion-to-
background contrast best.

d �b� to �e� with M1, M2, M3, M4 filtering, respectively; �f� to �j� 1-D
esigned and the dotted lines represent the reconstructed schemes.

�a� to �j� as described for Fig. 4.
M0� an
e the d
es, with
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.2 Performance Investigation
n terms of the optical properties within the inclusion and the
ackground, note that the image reconstruction not only pur-
ues qualitative correctness but also obtains favorably quanti-
ative information about the optical properties of either the
nclusions or the background. The parameters of interest, such
s size, contrast, and location variations associated with image
uantification measures are most frequently investigated and
iscussed.

Several measures42–45 have been used to evaluate the per-
ormance of the NIR imaging algorithms or systems. Song et
l.42 used the contrast-to-noise ratio �CNR�, which is defined
s the difference between the region of interest �ROI� and the
ackground region values of the optical properties divided by
he average variation in the background, where one inclusion
as considered. Furthermore, informative works �Pogue et

l.44� provided an overview of the three major methods uti-
ized for image analysis in the imaging science and medical
hysics communities, which lie in the areas of the spatial

Fig. 6 Reconstructed case 3 imag

Fig. 7 Reconstructed case 4 imag
ournal of Biomedical Optics 024022-
resolution, the contrast detail �CD� analysis, and human per-
ception of images. Briefly, the first one relates to the modula-
tion transfer function �MTF� profile; the second one, to the
CD curve �contrast versus size� obtained by human observa-
tion; and the last concerns the receiver operating characteristic
�ROC� curve and location receiver operating characteristic
curve �LROC� obtained by the human observer detection of
abnormalities. In our cases, however, several inclusions in the
background of a phantom were considered and further inves-
tigations of the contrast, size, separation, and location were
conducted so that it is essential that these four terms are re-
spectively defined and discussed.

To provide a quantitative assessment for these recon-
structed images through using various HPF approaches, we
designate and formulate four measures over the ROI for the
evaluation of these filtering schemes, and these measures are
normalized to be in-between a null and unit with the ratio of
the reconstructed to the original images. To interpret these
measures in detail, we describe them using Fig. 8, where

�a� to �j� as described for Fig. 4.

�a� to �j� as described for Fig. 4.
es, with
es, with
March/April 2008 � Vol. 13�2�8
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D�ROI is chosen as the line segment between the two out-
ost nodes of the inclusions, and 2D�ROI is the possibly

mallest region around and/or covering inclusions. Moreover,
lthough it is usually a difficult task to define a separation
esolution, here we regard an inclusion and a separation as a
ump and a cave, respectively.

.2.1 Contrast resolution �Rcont.
1D,2D�

he measure Rcont.
1D,2D is defined to evaluate the resolution on

he contrast of optical property values with the inclusions to
he background region especially between inclusions.

Rcont.
1D,2D =

�max
incl./min
incl.�reconstruction

�max
incl./min
incl.�original
, �23�

nd

Rcont.
1D,2D = 2 − Rcont.

1D,2D, if 1 � Rcont.
1D,2D � 2, �24�

here max and min denote the average of maxima and
inima over all the selected regions as the superscripts


incl. and 
incl�. Also incl. and incl correspondingly repre-

Table 1 Case 1 separation, size, contrast, and location

1-D

Sep. 0
Sep.

Size 0
Size Contrast

Loc. 0
Loc.

M0 0.46 0.93 0.12 1.00

0.23 0.33 0.35

M1 0.69 0.66 0.31 0.95

0.46 0.45 0.54

M2 0.70 0.63 0.30 0.98

0.46 0.44 0.55

M3 0.84 0.85 0.36 1.00

0.55 0.55 0.60

M4 0.74 0.71 0.15 1.00

0.33 0.32 0.38

Fig. 8 Diagram for the explanation of defined measures.
ournal of Biomedical Optics 024022-
sent inclusions and complementary inclusions as well as

incl. and 
incl are chosen with several nodes around central
area of incl. and incl.

3.2.2 Separation resolution �Rsep
1D,2D�

The measure Rsep
1D,2D is designed to evaluate the resolution on

the separation between inclusions.

Rsep
1D,2D = ��1 −

�MSEincl.�Recon.2Ori.

�MSEincl.�Ori.2Baseline
�Rcont.

1D,2D�1/2

 �Rosep
1D,2D � Rcont.

1D,2D�1/2, �25�

where MSE is the mean square error over all the selected
region as the superscript �incl� and Baseline is used with
0.025 mm−1; Ori.2Baseline is, here, 0.0025 to 0.025 mm−1,
and Recon.2Ori. is the reconstructed value in the region incl
to 0.0025 mm−1.

3.2.3 Size resolution �Rsize
1D,2D�

The measure Rsize
1D,2D is designed to evaluate the resolution on

the size over all inclusions.

Rsize
1D,2D = ��1 −

�MSEincl.�Recon.2Ori.

�MSEincl.�Ori.2baseline
�Rcont.

1D,2D�1/2

 �Rosize
1D,2D � Rcont.

1D,2D�1/2, �26�

where MSE is over the selected region incl. and baseline is
used with 0.0025 mm−1. Note that the FWHM usually oper-
ated manually and subjectively is not adopted for the evalua-
tion of inclusion size. Here, attempt to automatically estimate
this resolution with the idea of the capacity rate for the term
of interest.

ions for various filtering on 1-D and 2-D conditions.

2-D

p. 0
ep.

Size 0
Size Contrast

Locx. 0
Locx.

Locy. 0
Locy.

.92 0.94 0.58 1.00 0.98

.73 0.74 0.76 0.76

.99 0.66 0.68 0.96 0.99

.82 0.67 0.81 0.82

.99 0.65 0.54 1.00 1.00

.73 0.59 0.73 0.73

.99 0.78 0.87 1.00 0.99

.93 0.82 0.93 0.93

.97 0.65 0.80 1.00 0.98

.88 0.72 0.89 0.88
resolut

Se
S

0

0

0

0

0

0

0

0

0

0
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.2.4 Location resolution �Rlocat
1D,2D�

he measure Rlocat
1D,2D is defined to evaluate the resolution on

he location over all inclusions.

Rlocat
1D,2D = �1 −

�CMincl.�Reconstruction

�CMincl.�Original
Rcont.

1D,2D�1/2

 �Rolocat
1D,2D � Rcont.

1D,2D�1/2, �27�

nd

Rolocat
1D,2D = 2 − Rolocat

1D,2D, if 1 � Rolocat
1D,2D � 2, �28�

here CM is the average of the center of mass over all the
elected region as the superscript �incl.�.

Note that the resolutions, Rsep
1D,2D, Rsize

1D,2D, and Rlocal
1D,2D in-

lude a multiplication operation by Rcont.
1D,2D to avoid the low-

ontrast reconstruction with high-consistent inclusions or
omplements. Furthermore, it is expected that the resolution is
igher because the R value is approaching more closely to a
nit.

Based on the preceding definitions, the evaluated resolu-
ions of 1-D profiles and 2-D images with multiinclusions are
isted in Tables 1–4 for each phantom case, respectively. The
uantities for Rsep

1D,2D, Rsize
1D,2D, and Rlocal

1D,2D are small because
he defined measures are quite strict. For overall cases, it is
ound that location resolution is above 0.95 prior to Rolocat

1D,2D

ultiplied by Rcont.
1D,2D, and less difference exists between these

wo; whereas the contrast, separation, and size resolution have
omparable differences. Figures 9–12 illustrate comparisons
f the separation, size, and contrast resolutions among various
P filters to clarify our observation. Overall, the resolutions
btained in cases 1 to 3 are better than those in case 4, as
xpected. Basically, our approach demonstrates the effective-

Table 2 Case 2 separation, size, contrast, and location

1-D

Sep. 0
Sep.

Size 0
Size Contrast

Loc. 0
Loc.

M0 0.84 0.85 0.10 1.00

0.29 0.29 0.32

M1 0.94 0.95 0.33 0.98

0.56 0.56 0.57

M2 0.86 0.91 0.17 0.99

0.38 0.39 0.41

M3 0.88 0.94 0.17 1.00

0.39 0.41 0.42

M4 0.87 0.87 0.40 1.00

0.59 0.59 0.63
ournal of Biomedical Optics 024022-1
ness of separation and size resolution rather than contrast res-
olution. A discussion of each individual case follows.

3.2.5 Case 1
Figure 9�a� shows the resolution performance of schemes M3,
M1, M2, M4, and M0, respectively. The results show that the
M4 scheme yielded false inclusions. For the 2-D condition,
the revealed performance is similar to that in the 1-D condi-
tion except for the M0 and M4 schemes. Obviously, this
evaluation is consistent with that for Fig. 4 based on the visual
perception.

3.2.6 Case 2
Figure 10�a� shows the performance of schemes M4, M1, M3,
M2, and M0, respectively. The performance in the 2-D con-
dition is similar to that in the 1-D condition except for the M4
scheme. Unfortunately, a negative value occurs in the 2-D
condition �Fig. 10�b��, which means that M4 highly overesti-
mated the inclusion size.

3.2.7 Case 3
Obviously, the performance of case 3 is similar to that of case
2, shown as Fig. 11. For the same reasons as in case 2, the
highly overestimated effect of M4 attenuates the measure val-
ues. Basically, other filtering schemes obtain the measure dis-
tribution as expected.

Generally speaking, the M1 and M3 schemes perform bet-
ter than the M2 and M4 schemes on either of the defined
measures or the visual perception for cases 2 and 3.

3.2.8 Case 4
In this case, Fig. 7 shows that only wavelet-like HP filtering is
able to resolve images well. As expected, Fig. 12 shows a

ions for various filtering on 1-D and 2-D conditions.

2-D

p. 0
ep.

Size 0
Size Contrast

Locx. 0
Locx.

Locy. 0
Locy.

.95 0.87 0.24 1.00 0.98

.48 0.46 0.49 0.49

.95 0.89 0.95 0.96 0.99

.95 0.92 0.95 0.97

.97 0.90 0.83 0.99 0.96

.90 0.86 0.91 0.89

.97 0.95 0.70 1.00 0.99

.83 0.82 0.84 0.84

.74 −0.07 0.50 1.00 0.98

.61 −0.19 0.71 0.70
resolut

Se
S

0

0

0

0

0

0

0

0

0

0
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etter performance of schemes M4 and M3 than that of
chemes M1, M2, and M0 on both the 1-D and the 2-D mea-
ures.

In summary, it can be seen that the evaluations depicted in
igs. 9–12 using our defined measures are quite consistent
ith those evaluations based on visual perception on Figs.
–7.

Case 1 is the only example that is resolved to some extent
ithout having to use HPF �M0�. However, scheme M0 made

Table 3 Case 3 separation, size, contrast, and location

1-D

Sep. 0
Sep.

Size 0
Size Contrast

Loc. 0
Loc.

M0 0.85 0.74 0.10 1.00

0.29 0.27 0.32

M1 0.84 0.95 0.20 0.99

0.41 0.43 0.44

M2 0.57 0.86 0.12 0.98

0.26 0.32 0.34

M3 0.91 0.94 0.16 1.00

0.39 0.39 0.41

M4 0.74 0.80 0.42 1.00

0.56 0.58 0.65

Table 4 Case 4 separation, size, contrast, and location

1-D

Sep. 0
Sep.

Size 0
Size Contrast

Loc. 0
Loc.

M0 0.85 0.81 0.09 1.00

0.28 0.27 0.30

M1 0.79 0.83 0.09 0.98

0.27 0.27 0.30

M2 0.63 0.81 0.08 0.98

0.22 0.25 0.28

M3 0.83 0.89 0.11 1.00

0.31 0.32 0.34

M4 0.83 0.91 0.12 0.99

0.32 0.34 0.35
ournal of Biomedical Optics 024022-1
some measure evaluation better than others since the corre-
sponding M0 reconstructions have a nearly uniform distribu-
tion. In spite of this, the measures we defined remain effective
for most of the 1-D and 2-D cases.

3.3 Evaluation on Defined Measures
In an aspect of quantitative discussions on resolution, we em-
ploy these four measures to explain the effectiveness of each

ions for various filtering on 1-D and 2-D conditions.

2-D

p. 0
ep.

Size 0
Size Contrast

Locx. 0
Locx.

Locy. 0
Locy.

.98 0.75 0.18 1.00 1.00

.42 0.36 0.42 0.42

.92 0.97 0.40 0.98 0.98

.61 0.62 0.62 0.62

.91 0.94 0.33 0.96 0.99

.55 0.56 0.57 0.57

.95 0.92 0.38 1.00 0.99

.60 0.59 0.62 0.61

.82 0.69 0.42 0.99 0.98

.59 0.54 0.65 0.65

ions for various filtering on 1-D and 2-D conditions.

2-D

p. 0
ep.

Size 0
Size Contrast

Locx. 0
Locx.

Locy. 0
Locy.

.97 0.82 0.19 0.99 1.00

.43 0.40 0.44 0.44

.97 0.84 0.40 0.97 0.96

.62 0.58 0.62 0.62

.94 0.85 0.31 0.96 0.99

.54 0.51 0.54 0.55

.97 0.87 0.41 1.00 1.00

.63 0.60 0.64 0.64

.97 0.89 0.44 1.00 0.96

.65 0.63 0.66 0.65
resolut
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S

0

0

0

0

0

0

0

0

0

0

resolut

Se
S

0

0

0

0

0

0

0

0

0

0

March/April 2008 � Vol. 13�2�1



p
t
t
2
d
t
s
d
a

w
g
m
f

F
�

Pan et al.: Highly resolved diffuse optical tomography: a systematic approach…

J

roposed filtering. Particularly, accurate demonstrations for
he 1-D condition are almost fully matched with the evalua-
ion in quality. To an extent, most are also promising for the
-D condition. In other words, the evaluation implies that our
efined measures are quite acceptable. For further inspection,
hese measures can be seen based on individual inclusion or
eparation as well. In this subsection, more discussion of the
efined measures is given. First, the contrast resolution can be
lso defined as

Rcont.
1D,2D =

�meanincl./meanincl.�Reconstruction

�meanincl./meanincl.�Original
, �29�

here mean is to find the average value of the selected re-
ions as the superscripts �incl. and incl�. A definition in this
anner, however, is not suitable for our cases 1 to 3. For

urther investigation, Eq. �23� can be concluded as

ig. 9 Case 1: �a� 1-D measures and �b� 2-D measures, where solid, +,
, �, and � lines represent using schemes of M0 to M4, respectively.

Fig. 10 Case 2 with �a�, �b� and line key as described for Fig. 9.
ournal of Biomedical Optics 024022-1
Rcont.
1D,2D��c normal situation

=c no contrast

�c abnormal situation
� , �30�

where c is equal to 1 / �incl. /incl.� �0.1 is used here� and the
abnormal situation, here, means the optical value of the inclu-
sion is smaller than that of the separation region. Likewise,
the separation and size resolution can be defined as

Rosep;size
1D,2D =

�MSEincl.;incl.�Recon.2B�b�aseline

�MSEincl.;incl.�Ori.2B�b�aseline
. �31�

It is found that Eq. �31� eventually regards a reconstructed
“inclusion” as a reverse cave with values ranging between 0
and 1, and Eq. �31� always gives positive values. When con-
sidering Eqs. �25� and �26�, it can be proven that both
Rosep.;size

1D,2D are always smaller than a unit and, moreover, are

Fig. 11 Case 3 with �a�, �b� and line key as described for Fig. 9.

Fig. 12 Case 4 with �a�, �b� and line key as described for Fig. 9.
March/April 2008 � Vol. 13�2�2
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egative values to denote a high underestimation or overesti-
ation. Note that our 2-D ROI can be determined automati-

ally using a computer program but not with manual selec-
ion, whereas the FWHM is not adopted in this paper because
t is selected manually. Finally, the location resolution is regu-
ated by Eq. �28�. Prior to adjustment, the positive or negative
rrors to the unit can be explained as denoting the multiinclu-
ion position in a reverse direction.

Concluding Remarks
e proposed and implemented a resolution-enhancing tech-

ique using HPF incorporated with the FEM-based inverse
omputation to obtain highly resolved NIR diffuse optical im-
ges in a systematical manner. As mentioned previously, our
pproach, derived from the Poisson MAP, was justified by
arious HPFs for different designated phantoms. Qualitative
isual perception and quantitative evaluations of the recon-
tructions also validate the proposed approaches.

Obviously, the wavelet-like HP filtering is superior to the
PF-combined HPF, as shown in Figs. 4–7. In summary, the
pproach to use the wavelet-like HP filtering, M3, is recom-
ended in terms of its resolving ability and computational

tability. It is observed that the M4 scheme demonstrates a
igh resolution result as well, but reveals worse stability than
he M3 scheme. Additionally, a small inclusion-to-background
iameter ratio, 2:20, is detectable and distinguished.

Due to the variation in the choice of �1 and �2 associated
ith each filter, various filters result in different reconstruc-

ion results. In this paper, we did not attempt to conduct a
ide comparison and an extensive study over a range of HP
lters and phantom cases, but rather chose to begin with two
ategories of filters and a set of more-or-less extreme cases.
lthough the resolutions of absorption images enhanced with
ur proposed techniques were presented, this approach re-
ains effective to improve the scattering images for the

requency-domain DOT imaging system as well. In future
ork, a thorough investigation of HP filters used in the pro-
osed approach will be conducted to find one or several ap-
ropriate filters. Moreover, the resolution limit should be
pecified with a set of designed cases. A further study is also
equired to identify exact causes of the negative-value arti-
acts shown in Figs. 5�f�–5�j� and 6�f�–6�j� which are depen-
ent either on the filters or on the cases themselves. Owing to
he lack of a sound method for quantitative evaluation, it is
elieved that even to objectively define a measure correspond-
ng to visual perception is quite complicated. Alternatively,
our reasonable measure definitions were considered and de-
ned to provide an initial basis for quantitative evaluations,
rom which further explorations of an individual inclusion or
eparation ROI can begin. Briefly, our proposed measures
ainly provide approximate information, and areas remain for

urther investigation and improvement.
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