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Light transport in two-layer tissues
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Abstract. We study theoretically light backscattered by tissues using
the radiative transport equation. In particular we consider a two-
layered medium in which a finite slab is situated on top of a half
space. We solve the one-dimensional problem in which a plane wave
is incident normally on the top layer and is the only source of light.
The solution to this problem is obtained formally by imposing conti-
nuity between the solutions for the upper and lower layers. However,
we are interested solely in probing the top layer. Assuming that the
optical properties in the lower layer are known, we remove it from the
problem yielding a finite slab problem by prescribing an alternate
boundary condition. This boundary condition is derived using the
theory of Green’s functions and is exact. Hence, one needs only to
solve the transport equation in a finite slab using this alternate bound-
ary condition. We derive an asymptotic solution for the case when the
slab is optically thin. We extend these results to the three-dimensional
problem using Fourier transforms. These results are validated by com-
parisons with numerical solutions for the entire two-layered problem.
© 2005 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1925227]
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1 Introduction
Light propagation in tissues is governed by the theory of ra
diative transport.1 The radiative transport equation takes into
account absorption and scattering due to inhomogeneities
tissues. Analytical solutions to this integrodifferential equa-
tion are known only for relatively simple problems.2,3

For light that has propagated deeply into an optically thick
medium, the radiance becomes nearly isotropic due to mu
tiple scattering. For that case the transport equation can b
replaced by the diffusion equation.1 Solving the diffusion
equation is much easier than solving the transport equation
However, the diffusion approximation is limited to situations
in which the direction dependence of the radiance is nearl
negligible. Hence, it does not approximate well the solution to
the transport equation near collimated sources and interface
with significant refractive index mismatch.4

The limitations of the diffusion approximation are prob-
lematic. Diagnostic measurements at small source-detecto
separations yield valuable site-specific information that is no
available at larger separations.5 Moreover, noninvasive mea-
surements are made at the boundary of a medium where th
refractive index may be significantly different from that inside
the medium. Nonetheless, it is used extensively to model di
agnostic data.

Recently, there has been much progress in acquiring d
verse sets of diagnostic measurements of spatial, spectral, a
gular, and polarization variations of light scattered by tissues.6
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of California, Merced, P.O. Box 2039, Merced, California 95344. Tel:
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Those data show that these diverse diagnostic measurem
are rich with physiological information. However, this info
mation content is not understood well enough that this div
sity can be leveraged as a gain in biomedical applicatio
Modeling this data accurately necessitates a more soph
cated theory than the diffusion approximation. To overco
the limitations inherent to the diffusion approximation, w
seek a method to solve the transport equation.

Typically, one solves the transport equation using Mo
Carlo simulations. Monte Carlo simulations trace individu
photons as they propagate in and interact with the medi
Statistical averages of data collected from following a lar
number of these photons yield desired results. Although
method gives exact results up to statistical errors, the con
gence rate isO(N1/2) with N denoting the number of col-
lected photons. This slow convergence rate motivates u
seek a direct numerical solution method as an alternative

A two-layered medium is a useful model for tissues b
cause it allows for different optical properties to be prescrib
for the superficial and deep regions of tissues. For exam
this difference between optical properties is necessary
model accurately light propagation through tissues consis
of epithelial and stromal tissue layers. Because most can
originate in the epithelial layer,6,7 it is important to determine
how light has interacted with this layer. However, light al
penetrates into the stromal layer, multiply scatters within
and interacts back and forth with the epithelial layer befo
emerging at the surface. The coupling between these two
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Kim and Moscoso: Light transport . . .
ers is nontrivial since photons can scatter between them an
number of times.

There are several studies that have used the diffusion ap
proximation to calculate the reflectance due to a two-laye
medium.8–12 Because the diffusion approximation is not accu-
rate for describing light near sources, its use in the top laye
can be problematic. A recent study by Chang et al.13 has pro-
posed using the Beer–Lambert law for the epithelial tissue
layer and the diffusion approximation in the stromal layer.
Alternatively, hybrid methods that solve the transport equa
tion in the top layer using Monte Carlo simulations and solve
the diffusion approximation in the bottom one have been use
to study this problem.14,15 These methods overcome the limi-
tations of the diffusion approximation. However, both of them
use heuristic arguments, and are not derived systematical
from the transport equation. Rather, they have been show
empirically to agree with the solution of the transport equa-
tion.

From the experimental point of view, different gating tech-
niques have been proposed to discriminate between the lig
coming from the superficial and deep tissue layers. Time
gating16 uses picosecond time-resolved techniques to selec
the signal arriving early to the detector thereby excluding the
multiply scattered photons that have penetrated deeply. Pola
ization gating17,18 is based on the fact that single scattering in
the top layer retains the polarization state of the incident light
while the degree of polarization of multiply scattered light in
the deep tissue is nearly negligible. Therefore, the information
contained in backscattered light from epithelial tissues is al
most completely contained in the photons that retain thei
original polarization state.

Even though these sophisticated experimental technique
can be used to study epithelial tissue layers, the need to an
lyze, interpret, and predict diverse data from diagnostic mea
surements accurately necessitates the development of soph
ticated models. We address this need by solving the transpo
equation. Since we shall use a direct numerical solution
method, it is more complicated mathematically than solving
the problem using the diffusion equation or Monte Carlo
simulations. However, a direct numerical solution method
provides a tool to investigate the information content avail-
able in diverse diagnostic data.

In this paper we shall study the scalar, steady-state trans
port equation. In particular, we shall calculate the solution of
the transport equation for a two-layered medium in which a
finite slab resides on top of a half space. Using the theory o
Green’s functions, we replace the two-layer problem by an
equivalent slab problem. The key to this equivalent slab prob
lem is the prescription of an alternate boundary condition a
the bottom of the slab that takes into account exactly the
multiple scattering of light in the lower layer. This boundary
condition is given in terms of the surface Green’s function for
the half space. The surface Green’s function is related directl
to the volume Green’s function. We use the method due to
Kim19 to compute the volume Green’s function for the half
space. By solving this equivalent slab problem rather than th
two-layer problem, we reduce the computational domain to
the top layer. Hence, this result is useful for developing meth
ods to probe epithelial tissue layers.

For the case in which the finite slab is optically thin, we
compute an asymptotic solution to the equivalent slab prob
034015Journal of Biomedical Optics
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lem. This analytical solution gives a systematic representa
of interaction between the top and bottom layer. We sh
show that this thin layer approximation works well for a
angles except those that are near-grazing.

The paper is organized as follows. In Sec. 2 we discuss
two-layer problem and its direct numerical solution in o
spatial dimension. In Sec. 3 we discuss the equivalent pr
lem in the top slab using the alternate boundary condition
the bottom of the slab. Included in this discussion is the co
putation of the surface Green’s function for the lower mediu
and the direct numerical solution of the problem. In Sec. 4
compute an asymptotic approximation to the equivalent s
problem for the case in which the slab is optically thin. In Se
5 we discuss the extension of this work to three-dimensio
problems. Section 6 contains numerical results demonstra
the validity of this theory. Section 7 is the conclusions. T
Appendix gives the method used to calculate plane wave
lutions that are used throughout this discussion.

2 The Two-Layer Problem
The radianceC is the radiant power per unit solid angle p
unit area perpendicular to the direction of propagation. It
pends on the unit direction vectorv and the position vectorr .
The radiance in tissues is governed by the transport equa

v"“C1maC52msC1msE
V

f ~v"v8!C~v8,r !dv8.

~1!

Here,ma and ms denote the absorbing and scattering coe
cients, respectively. Integration is taken over the unit sph
V. The scattering phase functionf gives the fraction of light
scattered in directionv due to light incident in directionv8.
The unit direction vectorv is given in terms of the cosine o
the polar anglen5cosu and the azimuthal anglew. We as-
sume here that the scattering phase functionf depends only on
v"v8. It is normalized according to

2pE
21

1

f ~v"v8!d~v"v8!51. ~2!

We seek the solution of~1! in a two-layered medium in
which a finite slab0,z,z0 is situated on top of the hal
spacez.z0 . In particular, we wish to calculate the light back
scattered by this medium. The optical properties: the abs
tion coefficient ma , the scattering coefficientms , and the
scattering phase functionf, are homogeneous in each laye
However, the properties in one layer may be different fro
the other layer. To acknowledge this difference, we den
the optical properties in the top layer by(ma1 ,ms1 , f 1), and
those in the lower layer by(ma2 ,ms2 , f 2). For simplicity, we
assume index-matched boundaries. This discussion ext
readily for the case in which boundaries are ind
mismatched.20

2.1 The One-Dimensional Problem
To begin this discussion, we study the one-dimensional pr
lem. For this problem, a plane wave that illuminates norma
the top boundary of the slab is the only source. A sketch
this problem is shown in Fig. 1.
-2 May/June 2005 d Vol. 10(3)
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Kim and Moscoso: Light transport . . .
Fig. 1 A sketch of the two-layer problem.
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For this problem the solutionC is independent of the
transverse spatial coordinatesx andy. In addition, because we
consider a plane wave incident normally on the medium, the
solution is axisymmetric and hence, independent ofw. We
represent the solutionC of this one dimensional, two-layer
problem as

C~n,z!5H C1~n,z!, 0,z,z0 ,

C2~n,z!, z.z0 ,
~3!

with C1 satisfying

n]zC11ma1C52ms1C11ms1E
21

1

p1~n,n8!

3C1~n8,z!dn8, 0,z,z0 , ~4!

andC2 satisfying

n]zC21ma2C252ms2C21ms2E
21

1

p2~n,n8!

3C2~n8,z!dn8, z.z0 . ~5!

The functionsp1,2 are related tof 1,2 by

p1,2~n,n8!5E
2p

p

f 1,2@nn81A~12n2!~12n82!

3cos~w2w8!#d~w2w8!. ~6!

At z50 we prescribe the boundary condition

C1~n,0!5
F

2p
d~n21!, 0,n<1. ~7!
034015Journal of Biomedical Optics
This boundary condition corresponds to a plane wave w
flux F incident normally on the boundary atz50. At the
interface located atz5z0 , we prescribe that the radiance mu
be continuous over all directions

C1~n,z0!5C2~n,z0!, 21<n<1. ~8!

In addition, we prescribe thatC2→0 asz→`.

2.2 The Direct Numerical Solution Method
We discuss a direct solution method to solve~4! and~5! sub-
ject to ~7! and ~8!. This method makes use of plane wa
solutions to the transport equation. Plane wave solutions
solutions of the formC(n,z)5elzV(n). After substituting
this solution form into the transport equations and discretiz
the cosine of the polar anglen, we obtain aM3M eigenvalue
problem for each layer withM denoting the number of dis
crete angles we use~see the Appendix!. For the numerically
calculated plane wave solutions corresponding to the med
with the optical properties of the upper layer, we denote
eigenvalues byl j and the eigenvectors byVj (nm). For the
plane wave solutions corresponding to the medium with o
cal properties of the lower layer, we denote the eigenvalues
j j and the eigenvectors byWj (nm). Using these two sets o
plane wave solutions, we seekC1 in the form

C1~nm ,z!5(
j 51

M /2

@ajVj~2nm!e2l j z

1bjVj~nm!el j ~z2z0!#, m51,...,M . ~9!

Here, we have used the symmetry property of plane w
modes in whichl2 j52l j andV2 j (n)5Vj (2n). Similarly,
we seekC2 in the form

C2~nm ,z!5(
j 51

M /2

cjWj~2nm!e2j j ~z2z0!, m51,...,M .

~10!

The form for C2 given in ~10! satisfies the condition tha
C2→0 asz→`.

It remains to determine the expansion coefficientsaj , bj ,
andcj comprising3M /2 unknowns. We do this by substitut
ing ~9! and ~10! into boundary conditions~7! and ~8!. By
substituting~9! into ~7!, we obtain

(
j 51

M /2

@ajVj~2nm!1bjVj~nm!e2l j z0#

5
F

2p
s~nm!, m5M /211,...,M . ~11!
-3 May/June 2005 d Vol. 10(3)
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Kim and Moscoso: Light transport . . .
In ~11! we have replacedd~n21! in ~7! by a narrow Gaussian
centered aboutn51 denoted bys(n). By substituting~9! and
~10! into ~8!, we obtain

(
j 51

M /2

@ajVj~2nm!e2l j z01bjVj~nm!2cjWj~2nm!#50,

m51,...,M . ~12!

Equations~11! and ~12! comprise a3M /233M /2 linear sys-
tem of equations. After solution of this system, we compute
the radiance backscattered by evaluating

C1~nm,0!5(
j 51

M /2

@ajVj~2nm!1bjVj~nm!e2l j z0#,

m51,...,M /2. ~13!

3 The Equivalent Problem in the Slab
To compute the solution to the two-layer problem, one mus
solve two transport equations for the slab and for the hal
space. Those two solutions must satisfy the matching cond
tion at z5z0 given by ~8!. Because most early precancerous
tissues develop in the epithelial layer, we would like to focus
our analysis on the top layer. However, diagnostic measure
ments taken at the boundaryz50 include light that has pen-
etrated through the top layer into the bottom one, and sca
tered from there up into the slab. From there, light scatter
back and forth between the two layers any number of time
before emerging as backscattered light. This interaction i
taken into account by the coupling ofC1 andC2 in ~8!.

Suppose that the optical properties of the bottom layer ar
known. Under this assumption, we introduce a boundary con
dition at z5z0 that takes into account light backscattered by
the bottom layer. In this way we are able to replace the two
layer problem by an equivalent problem for a slab corre-
sponding to the top layer.

Consider the half space problem in which the top layer ha
been removed. A light sourceC(n,z0) for 0,n<1 is incident
on the half space at the boundaryz5z0 . There are no other
sources. The radiance backscattered by this half space is giv
in terms of the surface Green’s functionGs as3

C~n,z0!5E
0

1

Gs~n,n8!C~n8,z0!dn8, 21<n,0.

~14!

Equation~14! asserts that the radiance backscattered is give
by the superposition of the surface Green’s function with the
source incident on the boundary. The surface Green’s functio
is written in terms of the volume Green’s functionG as3

Gs~n;n8!5n8G~n,z0
2 ;n8,z0

1!. ~15!

Here,G is evaluated just outside the half space(z5z0
2) for a

source evaluated just inside the half space(z5z0
1).

Equation ~14! gives the radiance backscattered by the
lower medium due to light incident from above it. We can
interpret this formula as a diffuse reflection law~see Fig. 2!.
Rather than solve the problem in the lower layer, we can us
034015Journal of Biomedical Optics
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~14! as a boundary condition forC1 at z5z0 and for
21<n,0. Hence, we replace the original two-layer proble
by one in the finite slab0,z,z0 :

n]zC11ma1C152ms1C11ms1E
21

1

p1~n,n8!

3C1~n8,z!dn8, 0,z,z0 , ~16!

subject to

C1~n,0!5
F

2p
d~n21!, 0,n<1, ~17!

and

C1~n,z0!5E
0

1

Gs~n;n8!C1~n8,z0!dn8, 21<n,0.

~18!

The boundary condition given by~18! can be written for-
mally also in terms of the Chandrasekhar’s scatteringS
function.2 For the case that scattering is isotropic, this boun
ary condition can be written in closed-form in terms of Cha
drasekhar’sH-function2 or using the Green’s function given
by Case and Zweifel.3

3.1 Computing the Surface Green’s Function
The key to the equivalent slab problem given by~16! subject
to ~17! and~18! is the surface Green’s functionGs(n;n8). We
use plane wave solutions to compute the Green’s function.
use the same notation for plane wave solutions that we u
above in Sec. 2.2. Using those plane wave solutions, the
face Green’s function is given by19

Gs~nm ;nm8!5(
j 51

M /2 FWj~nm!Wj~nm8!nm8

2Wj~2nm!(
k51

M /2

YjkWk~nm8!nm8G ,

m51,...,M /2, m85M /211,...,M .

~19!

Fig. 2 A sketch of the equivalent slab problem in which we replace
the transport equation in the lower half space by an alternate bound-
ary condition given in terms of the surface Green’s function Gs .
-4 May/June 2005 d Vol. 10(3)
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Kim and Moscoso: Light transport . . .
The coefficientsYjk are the solution to the linear system

(
j 51

M /2

Wj~2nm!Yjk5Wk~nm!, m5M /211,...,M ,

k51,...,M /2. ~20!

Because the optical properties of the lower layer are assume
to be known, we can precompute the plane wave solutions fo
that medium using the method described in the Appendix.

3.2 The Direct Numerical Solution Method
To solve the equivalent slab problem, we seekC1 in the same
form given in ~9!. Hence, it remains to determine the expan-
sion coefficientsaj andbj comprisingM unknowns. We de-
termine this unknowns by substituting~9! into the boundary
conditions~17! and~18!. Equation~17! is exactly the same as
~7!, so we still impose~11!. Substituting~9! into ~18! and
replacing the integral by the Gauss–Legendre quadrature ru
used to calculate the plane wave solutions, we obtain

(
j 51

M /2 H aje
2l j z0FVj~2nm!2 (

m85M /211

M

Gs~nm ;nm8!

3Vj~2nm8!wm8G J 1(
j 51

M /2 H bjFVj~nm!

2 (
m85M /211

M

Gs~nm ;nm8!Vj~nm8!wm8G J 50,

m51,...,M /2. ~21!

Hence, ~11! and ~21! comprise aM3M linear system of
equations. After solution of this system, we compute the radi
ance backscattered using~13! as was done for the two-layer
problem.

The equivalent slab problem offers some savings in com
putational complexity. Instead of solving the3M /233M /2
linear system given by~11! and~12!, we only have to solve an
M3M system given by~11! and~21!. However, we still have
to solve twoM3M eigenvalue problems for the plane wave
solutions. This is the main source of work in solving the two-
layer problem. However, when the optical properties of the
lower layer are known, the plane wave solutions for the lower
layer can be calculated beforehand and stored in physica
memory for later use. This is the case, for example, when on
is interested on retrieving only the optical properties of the top
layer where most precancers form. The computational saving
from precalculating the plane wave solutions for the lower
layer are more significant for three-dimensional problems
since they include thew dependence in the angle discretiza-
tion.

4 Thin Layer Approximation
Suppose the top layer is very thin compared with the scatter
ing mean free pathz0! l s51/ms . Then, we can compute an
analytical approximation to the solution of the equivalent slab
problem. We introduce the nondimensional variables
034015Journal of Biomedical Optics
d
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e5ms1z0 , ~22a!

a5ma1z0 , ~22b!

z̄5z/z0 . ~22c!

In terms of these nondimensional variables, the slab prob
is

n] z̄C1aC5eLC, 0, z̄,1, ~23a!

C~n,0!5
F

2p
d~n21!, 0,n<1, ~23b!

C~n,1!5E
0

1

Gs~n,n8!C~n8,1!dn8, 21<n,0.

~23c!

Here, we have introduced the operatorL defined as

LC52C1E
21

1

p1~n,n8!C~n8,z̄!dn8. ~24!

The thin layer approximation corresponds to the limit
which e→0. In addition, we assume here thata is much
smaller thane. This assumption is not necessary, but simp
fies the following analysis. Furthermore, it is consistent w
typical optical properties for tissues~e.g., the absorption co
efficient is approximately one order of magnitude smaller th
the scattering coefficient!.

We representC as the asymptotic expansion

C~n,z̄!; (
n50

`

enCn~n,z̄!. ~25!

Each term in the series above is determined by substitutio
~25! into ~23! and matching powers ofe.21 To O(1) we obtain

n] z̄C050, 0, z̄,1, ~26a!

C0~n,0!5
F

2p
d~n21! 0,n<1, ~26b!

C0~n,1!5E
0

1

Gs~n,n8!C0~n8,1!dn8, 21<n,0.

~26c!

The general solution to~26a! is C05A(n). By imposing
~26b! we determine that

A~n!5
F

2p
d~n21!, 0,n<1. ~27!

Substituting~27! into ~26c!, we obtain

A~n!5E
0

1

Gs~n,n8!A~n8!dn8

5E
0

1

Gs~n,n8!
F

2p
d~n821!dn8 ~28!

5
F

2p
Gs~n,1!, 21<n,0.
-5 May/June 2005 d Vol. 10(3)
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Hence, the radiance toO(1) is

C05A~n!5
F

2p
3H d~n21!, 0,n<1,

Gs~n,1!, 21<n,0.
~29!

Because the effects of scattering and absorption do not appe
at this order, we observe thatC0 is the response to the two-
layer medium as if the top layer were not there. Franceschin
et al.22 showed experimentally that the role of the top layer on
the reflectance of a two-layer medium is not significant if it is
less than;4 mm thick. Here, we have shown that this result
follows readily from this systematic treatment of the transport
equation.

To O(e) we obtain

n] z̄C15LC0 , 0, z̄,1, ~30a!

C1~n,0!50, 0,n<1, ~30b!

C1~n,1!5E
0

1

Gs~n,n8!C1~n8,1!dn8, 21<n,0.

~30c!

Substituting~29! into ~24!, we obtain

LC052A~n!1E
21

1

p1~n,n8!A~n8!dn8

52A~n!1
F

2p E
21

0

p1~n,n8!Gs~n8,1!dn8

1
F

2p E
0

1

p1~n,n8!d~n821!dn8

52A~n!1
F

2p E
21

0

p1~n,n8!Gs~n8,1!dn8

1
F

2p
p1~n,1![B~n!. ~31!

The general solution to~30a! is given by C15B(n) z̄/n
1C(n). Imposing~30b!, we find that

C~n!50, 0,n<1. ~32!

Imposing~30c! and using~32!, we obtain

C~n!52
1

n
B~n!1E

0

1

Gs~n,n8!B~n8!
1

n8
dn8,

21<n,0. ~33!
034015Journal of Biomedical Optics
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Substituting~27! and ~31! into integral term in~33!, we find
that

C~n!52
1

n
B~n!2

F

2p
Gs~n,1!

1
F

2p E
0

1

Gs~n,n8!p1~n8,1!
1

n8
dn8

1
F

2p E
0

1

Gs~n,n8!E
21

0

p1~n8,n9!Gs~n9,1!

3dn9
1

n8
dn8, 21<n,0. ~34!

Hence, toO(e) the radiance backscattered by the two-lay
medium is

C~n,0!;C0~n!1eC1~n,0!, 21<n,0,

5
F

2p
Gs~n,1!F12eS 12

1

n D G2e
F

2pn
p1~n,1!

2e
F

2pn E21

0

p1~n,n8!Gs~n8,1!dn8

1e
F

2p E
0

1

Gs~n,n8!p1~n8,1!
1

n8
dn8

1e
F

2p E
0

1

Gs~n,n8!E
21

0

p1~n8,n9!Gs~n9,1!

3dn9
1

n8
dn8, 21<n,0. ~35!

One can continue this computation in a similar manner
obtain higher order corrections. For example, one can c
sider the limit in whicha5O(e2). Hence, by computing the
asymptotic expansion ofC up to O(e2), one takes into ac-
count absorption in the top layer. This computation involv
only a sequence of elementary calculations. However, the
lytical expressions become complicated, so we do not disc
them here.

The thin layer approximation yields a power series inz̄.
This power series is related to the successive scatterin
Neumann series. For that case the leading order term in
series is given by the Beer–Lambert law.1 Hence, it is propor-
tional to a exponential function decaying with respect
depth. Consequently, higher order corrections involve ex
nential functions also. By expanding these exponential fu
tions as Taylor series and truncating them in a manner tha
consistent with the balance of scales given in~22!, we can
show that the thin layer approximation and the success
order scattering series are equivalent asymptotically. Hen
we have shown that the model due to Chang et al.13 in which
they use the Beer–Lambert law for the top layer follow
readily from this systematic treatment of the transport eq
tion. Moreover, this perturbation analysis provides an estim
for the error incurred by applying this approximation. Henc
this analysis provides additional insight into the range of v
lidity of that model.
-6 May/June 2005 d Vol. 10(3)
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5 Extension to Three-Dimensional Problems
Even though we have discussed and demonstrated this theo
for the one-dimensional problem, it extends easily to the
three-dimensional problem. For that case the equivalent sla
problem is

n]zC1A12n2~cosw]xC1sinw]yC!1ma1C

52ms1C1ms1E
2p

p E
21

1

f 1~n,n8,w2w8!

3C~n8,w8,x,y,z!dn8dw8, 0,z,z0 , ~36!

with the following boundary condition atz50:

C~n,w,x,y,0!5F~x,y!d~n2n0!d~w2w0!,

0,n<1, 2p<w,p, ~37!

and the following boundary condition atz5z0 :

C~n,w,x,y,z0!

5E
2`

` E
2`

` E
2p

p E
0

1

Gs~n,w,n8,w8,x2x8,y2y8,z0!

3C~n8,w8,x8,y8!dn8dw8dx8dy8,

21<n,0, 2p<w,p, 2`,x, y,`. ~38!

Equation~37! corresponds to light incident on the boundary at
z50 with transverse spatial distributionF(x,y) in direction
(n0 ,w0). Equation ~38! is a nonlocal boundary condition
since it involves integration over allx andy.

Rather than solve the slab problem in the physical domain
we solve for its Fourier transform with respect to the trans-
verse spatial coordinates,x andy. The Fourier transform ofC
with respect tox andy is

Ĉ~n,w,z;kx ,ky!5
1

~2p!2 E2`

` E
2`

`

C~n,w,x,y,z!

3e2 ikxx2 ikyydxdy. ~39!

Fourier transforming~36! we obtain

n]zĈ1 iA12n2~kx cosw1ky sinw!Ĉ1ma1Ĉ

52ms1Ĉ1ms1E
2p

p E
21

1

f 1~n,n8,w2w8!

3Ĉ~n8,w8,z;kx ,ky!dn8dw8, 0,z,z0 .

~40!

Fourier transforming~37! yields

Ĉ~n,w,z;kx ,ky!5F̂~kx ,ky!d~n2n0!d~w2w0!,

0,n<1, 2p<w,p, ~41!

with F̂ the Fourier transform ofF. The integrals in~38! with
respect tox8 andy8 comprise a two-dimensional Fourier con-
volution. Hence, Fourier transforming~38! yields
034015Journal of Biomedical Optics
y
Ĉ~n,w,z0 ;kx ,ky!

5E
2p

p E
0

1

Ĝs~n,w,n8,w8;kx ,ky!Ĉ~n8,w8,z0 ;kx ,ky!

3dn8dw8, 21<n,0, 2p<w,p. ~42!

In contrast to~38!, the boundary condition given by~42! is
local since it depends on(kx ,ky) parametrically only.

Kim16 gives a method to compute the volume Gree
function for the half space in this Fourier domain. Using th
result we computeĜs . Hence, we are able to solve th
equivalent slab problem for each transverse spatial freque
pair (kx ,ky) over a discrete spectrum. In fact, the equivale
slab problem for each(kx ,ky) pair is a one-dimensional prob
lem just like the one we have discussed earlier. Once
spectrum is computed, we recover the solution in the phys
domain using discrete inverse Fourier transforms. Because
slab problem for each spatial frequency pair is decoup
from the others, this computation is easily implemented o
concurrent computing system thereby increasing the e
ciency of this calculation.

6 Numerical Results
We have used the Henyey–Greenstein scattering phase
tion to compute our numerical solutions. It is given by

f ~v"v8!5
1

4p

12g2

~11g222gv"v8!3/2
. ~43!

Its only parameter is the anisotropy factorg. By computing
~6! using ~43!, we determine the corresponding scatteri
function in the one-dimensional problem to be

p~n,n8!5
2~12g2!

p~a2b!Aa1b
ES 2b

a1bD . ~44!

Here, a511g212gnn8, b52gA(12n2)(12n82) and
E(k) is the complete elliptic integral of the second kind.

For the top layer, we have set the absorption coefficien
be ma150.02 mm21 and the scattering coefficient to bems1
56.50 mm21. For the bottom layer, we have set the abso
tion coefficient to bema150.01 mm21 and the scattering co
efficient to bems156.00 mm21. For both layers, we have se
the anisotropy factor to beg50.80.We have taken these val
ues from the study by Kienle et al.9

6.1 Plane Wave Source
In Fig. 3 we show numerical results for the case in which
plane wave is incident normally on the two-layer mediu
The plane wave solutions that we calculated numerically u
M564 Gauss–Legendre quadrature points. We show
solutions calculated for the two-layer problem~‘‘ x’’ symbols!,
the equivalent slab problem~solid curves! and the thin layer
approximation~dashed curves!. These solutions have bee
calculated for different top layer thicknesses:~a! z0
50.1 mm, ~b! z050.5 mm, ~c! z052.0 mm, and ~d! z0
56.0 mm.

In all of these results we observe that the solutions to
two-layer problem and the equivalent slab problem are ind
-7 May/June 2005 d Vol. 10(3)



Kim and Moscoso: Light transport . . .
Fig. 3 The radiance backscattered by a two-layer medium due to a plane wave normally incident on the medium. The optical properties of
the top slab are (ma1 ,ms1 ,g1)5(0.02 mm21,6.5 mm21,0.80) and the optical properties of the bottom half space are (ma2 ,ms2 ,g2)
5(0.01 mm21,6.0 mm21,0.80). The thickness of the top slab is (a) z050.1 mm, (b) z050.5 mm, (c) z052.0 mm, and (d) z056.0 mm. The x
symbols are for the solution to the two-layer problem, the solid curve is for the solution of the equivalent slab problem and the dashed curved is
the thin layer approximation.
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tinguishable. Because the theory underlying the equivalen
slab problem is exact, the only quantitative differences be
tween these results are below the double precision arithmet
used to calculate them. The thin layer approximation gives
good agreement forz050.1 mm corresponding toe50.65.
For the cases with larger slab thicknesses, we observe that t
thin layer approximation is not accurate. The accuracy of this
approximation breaks down especially for near-grazing angle
for which n'0. This break down occurs because higher orde
scattering events, which are not taken into account by the thi
layer approximation, are significant for near-grazing angles.

6.2 Gaussian Beam Source
Using the extension of the theory discussed in Sec. 5, we hav
computed the solution of the two-layer problem and the
equivalent slab problem due to a Gaussian beam incident no
mally on the medium. For that case, we can reduce the num
ber of independent variables by working in cylindrical coor-
dinates. Because the beam is incident normally on the
medium, the problem is axisymmetric. Hence, the reflectanc
is defined by the Hankel transform

R~r!5
1

2p E
0

`

F̂~k!J0~kr!kdk, ~45!

with
034015Journal of Biomedical Optics
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F̂~k!5E
2p

p E
21

0

Ĉ~n,w,z50;k!ndndw. ~46!

Here r5(x21y2)1/2 and k5(kx
21ky

2)1/2. Additional details
on the implementation of the direct numerical solution inclu
ing the numerical calculation of~45! are contained in Ref. 23

In Fig. 4 we show the radial dependence of the reflecta
due to a Gaussian beam incident normally on the medi
The beam width has been set to 2 mm. The plane wave s
tions that we calculated numerically usedM516 for the
Gauss product quadrature rule. We show the solutions ca
lated for the two-layer problem~x symbols! and the equiva-
lent slab problem~solid curves!. These solutions have bee
calculated for different top layer thicknesses:~a! z0
50.5 mm,~b! z052.0 mm,and~c! z056.0 mm.For all cases
we observe that the solutions to the two-layer problem
indistinguishable from those to the equivalent slab problem

7 Conclusions
We have discussed the direct numerical solution of the tra
port equation for a two-layer medium. Using the theory
Green’s functions, we have also reduced the two-layer pr
lem to an equivalent slab problem. This equivalent slab pr
lem uses an alternate boundary condition given in terms of
surface Green’s function for the lower layer. Hence, it d
pends only on the optical properties of the lower layer. T
theory behind the equivalent slab problem is exact.
-8 May/June 2005 d Vol. 10(3)
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Fig. 4 The reflectance by a two-layer medium due to a Gaussian
beam normally incident on the medium. All parameters are the same
as for Fig. 3. The beam width is 2.0 mm. The thickness of the top slab
is (a) z050.5 mm, (b) z052.0 mm, and (c) z056.0 mm. The x sym-
bols are for the solution to the two-layer problem, and the solid curve
is for the solution of the equivalent slab problem.
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We have discussed in detail the one-dimensional problem
in which a plane wave is incident normally on the top layer.
Numerical results confirm that the solutions to the two-layer
problem and the equivalent slab problem are equal as ex
pected. This theory extends easily to three-dimensional prob
lems through the use of Fourier transform methods. We hav
shown numerical results for the problem in which Gaussian
beam is incident normally on the medium. Again, the solu-
tions given by the two-layer problem and the equivalent slab
problem are indistinguishable.

For the case in which the top layer is optically thin, we
have derived an asymptotic approximation. The backscattere
034015Journal of Biomedical Optics
-
-

d

radiance given by the thin layer approximation agrees w
with that given by the numerical solution to the two-lay
problem. However, this approximation breaks down when
thickness of the top layer increases. Our numerical res
confirm this. The accuracy breaks down most dramatically
near-grazing angles. This discrepancy is because back
tered light at near-grazing angles is made up of multiply sc
tered light that is not taken into account by this asympto
theory.

These results suggest that this equivalent slab prob
should be extremely useful for studying the epithelial tiss
layer when the optical properties of the stromal layer a
known.

Appendix: Plane Wave Solutions
Plane wave solutions are a general class of solutions that
the form C(n,z)5elzV(n). Substituting this solution form
into the transport equation yields

lnV1maV52msV1msE
21

1

p~n,n8!V~n8!dn8.

~A1!

Plane wave solutions have the following three properties.19

1. For any pair @l,V(n)# satisfying ~A1!, the pair
@2l,V(2n)#, satisfies~A1! also. In light of this sym-
metry, we order and index the eigenvalues so thatl j

"0 for j "0.

2. The eigenfunctionsVj (n) are orthogonal in that they
satisfy

~l j2lk!E
21

1

Vj~n!Vk~n!ndn50, j Þk. ~A2!

We normalize the plane wave solutions according to

E
21

1

Vj~n!Vj~n!ndn52 j /u j u. ~A3!

The set of eigenfunctions$Vj (n)% are complete over the
full range. Hence, any arbitrary function can be expanded
terms of plane wave solutions.

We cannot calculate the plane wave solutions analytica
in general. Hence, we calculate them numerically using
discrete ordinate method. We approximate the integral op
tion in ~A1! using the Gauss–Legendre quadrature rule

E
21

1

p~n,n8!V~n8!dn8' (
m51

M

p~n,nm!V~nm!wm ,

~A4!

with nm and wm denoting the quadrature abscissas a
weights, respectively. Seeking the values ofV(n) at the
quadrature abscissas in~A1! and replacing the integral opera
tion by ~A4!, we obtain theM3M eigenvalue problem
-9 May/June 2005 d Vol. 10(3)
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Kim and Moscoso: Light transport . . .
lnmV~nm!1maV~nm!

52msV~nm!1ms (
m851

M

p~nm ,nm8!V~nm8!wm8 ,

m51,...,M . ~A5!

To normalize the eigenvectors as in~A3!, we use the Gauss–
Legendre quadrature rule to compute the normalization facto

g j5 (
m51

M

V~nm!V~nm!nmwm . ~A6!

Then we scale the calculated eigenvectors byA2g j for j
.0 and byA1g j for j ,0.

Because of the Gauss–Legendre quadrature rule is sym
metric about the origin, the numerically calculated plane wave
solutions obey the symmetry property. Hence,l2 j52l j and
V2 j (nm)5Vj (2nm)5Vj (nM2m11) for j 51,...,M . We order
and index the eigenvalues as

l2M /2,¯,l21,l11,¯,l1M /2 . ~A7!

For the three-dimensional problem given in~40!, one must
include thew dependence of the radiance. The method to cal
culate plane wave solutions follows in a similar way as shown
above for the one-dimensional problem. We use a produc
Gaussian quadrature rule to approximate the integral opera
tions:

E
2p

p E
21

1

p~n,n8,w2w8!V~n8,w8!dn8dw8

' (
n851

2M

(
m851

M

p~nm ,nm8 ,wn2wn8!V~nm8 ,wn8!wm8Dw.

~A8!

Here,wn5(n21)Dw with n51,...,2M andDw5p/M . Re-
placing the integrals in~40! by ~A8! and seeking the plane
wave solutions at the product quadrature abscissas
V(nm ,wn), we obtain the2M232M2 eigenvalue problem

lnmV~nm ,wn!1 iA12nm
2 ~kx coswn1ky sinwn!V~nm ,wn!

1maV~nm ,wn!

52msV~nm ,wn!1ms (
n851

2M

(
m851

M

f ~nm ,nm8 ,wn2wn8!

3V~nm8 ,wn8!wm8Dw, m51,...,M ,

n51,...,2M . ~A9!
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