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Abstract. We study theoretically light backscattered by tissues using
the radiative transport equation. In particular we consider a two-
layered medium in which a finite slab is situated on top of a half
space. We solve the one-dimensional problem in which a plane wave
is incident normally on the top layer and is the only source of light.
The solution to this problem is obtained formally by imposing conti-
nuity between the solutions for the upper and lower layers. However,
we are interested solely in probing the top layer. Assuming that the
optical properties in the lower layer are known, we remove it from the
problem yielding a finite slab problem by prescribing an alternate
boundary condition. This boundary condition is derived using the

theory of Green’s functions and is exact. Hence, one needs only to
solve the transport equation in a finite slab using this alternate bound-
ary condition. We derive an asymptotic solution for the case when the
slab is optically thin. We extend these results to the three-dimensional
problem using Fourier transforms. These results are validated by com-
parisons with numerical solutions for the entire two-layered problem.
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1 Introduction Those data show that these diverse diagnostic measurements

Light propagation in tissues is governed by the theory of ra- aré .rich with physiological information. However, thi; infpr-
diative transport. The radiative transport equation takes into Mation content is not understood well enough that this diver-
account absorption and scattering due to inhomogeneities inSity can be leveraged as a gain in biomedical applications.
tissues. Analytical solutions to this integrodifferential equa- Modeling this data accurately necessitates a more sophisti-
tion are known only for relatively simple problerfd. cated theory than the diffusion approximation. To overcome
For light that has propagated deeply into an optically thick the limitations inherent to the diffusion approximation, we
medium, the radiance becomes nearly isotropic due to mul- Seek a method to solve the transport equation.
tiple scattering. For that case the transport equation can be Typically, one solves the transport equation using Monte
replaced by the diffusion equatidnSolving the diffusion Carlo simulations. Monte Carlo simulations trace individual
equation is much easier than solving the transport equation.photons as they propagate in and interact with the medium.
However, the diffusion approximation is limited to situations Statistical averages of data collected from following a large
in which the direction dependence of the radiance is nearly number of these photons yield desired results. Although this
negligible. Hence, it does not approximate well the solution to method gives exact results up to statistical errors, the conver-
the transport equation near collimated sources and interfaceggence rate i<O(N*?) with N denoting the number of col-
with significant refractive index mismatéh. lected photons. This slow convergence rate motivates us to
The limitations of the diffusion approximation are prob- seek a direct numerical solution method as an alternative.
lematic. Diagnostic measurements at small source-detector A two-layered medium is a useful model for tissues be-
separations yield valuable site-specific information that is not cause it allows for different optical properties to be prescribed
available at larger separationddoreover, noninvasive mea-  for the superficial and deep regions of tissues. For example,
surements are made at the boundary of a medium where thehjs difference between optical properties is necessary to
refractive index may be significantly different from that inside - model accurately light propagation through tissues consisting
the medium. Nonetheless, it is used extensively to model di- of gpjthelial and stromal tissue layers. Because most cancers
agnostic data. originate in the epithelial layér! it is important to determine

Recently, there has been much progress in acquiring di- o\ jight has interacted with this layer. However, light also
verse sets of diagnostic measurements of spatial, spectral, anpenetrates into the stromal layer, multiply scatters within it,

gular, and polarization variations of light scattered by tisSues. and interacts back and forth with the epithelial layer before
emerging at the surface. The coupling between these two lay-
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ers is nontrivial since photons can scatter between them anylem. This analytical solution gives a systematic representation
number of times. of interaction between the top and bottom layer. We shall

There are several studies that have used the diffusion ap-show that this thin layer approximation works well for all
proximation to calculate the reflectance due to a two-layer angles except those that are near-grazing.

medium®-2Because the diffusion approximation is not accu- The paper is organized as follows. In Sec. 2 we discuss the
rate for describing light near sources, its use in the top layer two-layer problem and its direct numerical solution in one
can be problematic. A recent study by Chang et &las pro- spatial dimension. In Sec. 3 we discuss the equivalent prob-

posed using the Beer—Lambert law for the epithelial tissue lem in the top slab using the alternate boundary condition at
layer and the diffusion approximation in the stromal layer. the bottom of the slab. Included in this discussion is the com-
Alternatively, hybrid methods that solve the transport equa- putation of the surface Green’s function for the lower medium

tion in the top layer using Monte Carlo simulations and solve and the direct numerical solution of the problem. In Sec. 4 we
the diffusion approximation in the bottom one have been used compute an asymptotic approximation to the equivalent slab
to study this problem*° These methods overcome the limi- problem for the case in which the slab is optically thin. In Sec.

tations of the diffusion approximation. However, both of them 5 we discuss the extension of this work to three-dimensional
use heuristic arguments, and are not derived systematicallyproblems. Section 6 contains numerical results demonstrating
from the transport equation. Rather, they have been shownthe validity of this theory. Section 7 is the conclusions. The

empirically to agree with the solution of the transport equa- Appendix gives the method used to calculate plane wave so-
tion. lutions that are used throughout this discussion.

From the experimental point of view, different gating tech-
nigues have been proposed to discriminate between the light
coqming from the s?upgrficial and deep tissue layers. Tin?e 2 The Two-Layer Problem
gating® uses picosecond time-resolved techniques to select The radiance¥ is the radiant power per unit solid angle per
the signal arriving early to the detector thereby excluding the Unit area perpendicular to the direction of propagation. It de-
multiply scattered photons that have penetrated deeply. Polar-Pends on the unit direction vecterand the position vectar.
ization gating”®is based on the fact that single scattering in The radiance in tissues is governed by the transport equation
the top layer retains the polarization state of the incident light,
while the degree of polarization of multiply scattered light in _ PN , ,
the deep tissue is ne%rly negligible. Therrt)efore, the information @ VI pa¥= M5W+Msfgf(w @' )¥(e'.r)de’.
contained in backscattered light from epithelial tissues is al- (1)

most comple_tely_ contained in the photons that retain their Here, u, and ug denote the absorbing and scattering coeffi-
original polarization state. cients, respectively. Integration is taken over the unit sphere
Even though these sophisticated experimental techniquesQ Thé sczftterin y.hasegfuncticﬁ ives the fraction of li Et
can be used to study epithelial tissue layers, the need to ana-_~ attering p Iorgives L g,
. S . . scattered in directiom due to light incident in directiore’.
lyze, interpret, and predict diverse data from diagnostic mea- The unit direction vectomw is given in terms of the cosine of
surements accurately necessitates the development of sophis; 9

ticated models. We address this need by solving the transportthe polar anglev=cos¢ and the azimuthal angle. We as-

equation. Since we shall use a direct numerical solution sumsa he_re that th? scatterlng_phase funciidepends only on
L . . . w-w'. Itis normalized according to

method, it is more complicated mathematically than solving

the problem using the diffusion equation or Monte Carlo 1

simulations. However, a direct numerical solution method gwf florow )d(wo')=1. 2)

provides a tool to investigate the information content avail- -1

able in diverse diagnostic data.

In this paper we shall study the scalar, steady-state trans-
port equation. In particular, we shall calculate the solution of
the transport equation for a two-layered medium in which a
finite slab resides on top of a half space. Using the theory of
Green’s functions, we replace the two-layer problem by an
equivalent slab problem. The key to this equivalent slab prob-
lem is the prescription of an alternate boundary condition at
the bottom of the slab that takes into account exactly the
multiple scattering of light in the lower layer. This boundary
condition is given in terms of the surface Green'’s function for
the half space. The surface Green’s function is related directly
to the volume Green’s function. We use the method due to
Kim?® to compute the volume Green’s function for the half
space. By solving this equivalent slab problem rather than the ) )
two-layer problem, we reduce the computational domain to 2-1 The One-Dimensional Problem
the top layer. Hence, this result is useful for developing meth- To begin this discussion, we study the one-dimensional prob-
ods to probe epithelial tissue layers. lem. For this problem, a plane wave that illuminates normal to

For the case in which the finite slab is optically thin, we the top boundary of the slab is the only source. A sketch of
compute an asymptotic solution to the equivalent slab prob- this problem is shown in Fig. 1.

We seek the solution ofl) in a two-layered medium in
which a finite slab0<z<z, is situated on top of the half
spacez>z;,. In particular, we wish to calculate the light back-
scattered by this medium. The optical properties: the absorp-
tion coefficient u,, the scattering coefficienis, and the
scattering phase functiofy are homogeneous in each layer.
However, the properties in one layer may be different from
the other layer. To acknowledge this difference, we denote
the optical properties in the top layer fy.1,us1,f1), and
those in the lower layer byu .., uso,f5). For simplicity, we
assume index-matched boundaries. This discussion extends
readily for the case in which boundaries are index
mismatched?
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incident plane wave

vibvy

finite slab

Fig. 1 A sketch of the two-layer problem.

For this problem the solutioW is independent of the
transverse spatial coordinateandy. In addition, because we
consider a plane wave incident normally on the medium, the
solution is axisymmetric and hence, independentpofWe
represent the solutiod of this one dimensional, two-layer
problem as

This boundary condition corresponds to a plane wave with
flux F incident normally on the boundary at=0. At the
interface located at=z;, we prescribe that the radiance must
be continuous over all directions

Vi(v,29)=Vy(v,29), —1svs

®

In addition, we prescribe that',—0 asz—o.

2.2 The Direct Numerical Solution Method

We discuss a direct solution method to sold¢ and (5) sub-

ject to (7) and (8). This method makes use of plane wave
solutions to the transport equation. Plane wave solutions are
solutions of the form¥(v,z)=e?V(v). After substituting

this solution form into the transport equations and discretizing
the cosine of the polar angle we obtain aM X M eigenvalue
problem for each layer wittM denoting the number of dis-
crete angles we us@ee the Appendjx For the numerically
calculated plane wave solutions corresponding to the medium
with the optical properties of the upper layer, we denote the
eigenvalues by\; and the eigenvectors by;(v,). For the
plane wave solutions corresponding to the medium with opti-
cal properties of the lower layer, we denote the eigenvalues by
&; and the eigenvectors By/;(vy,). Using these two sets of
plane wave solutions, we sedk; in the form

M/2
W(v,2)= Yalvz), 0<z<z, 3 Vi(vm,2)= 2, [ajVj(—vme M
’ Vo(v,2), z>2, =1
AVA Nj(z—2p) —
with ¥, satisfying +bJVJ(Vm)e ! o], m=1,..M. (9
1 Here, we have used the symmetry property of plane wave
vd, W+ pa V= _ﬂslq,l"_ﬂslf pi(v,v") modes in which\ _;= —\; andV_;(v)=V,(—»). Similarly,
-1 we seek?, in the form
X‘I’l(V’,Z)dV’, O<Z<201 (4)
and ¥, satisfying M/2
Vo(vm,2)= 2, GWi(—vple %), m=1,.M.
' - (10
v, Wt papVo= _Mszq'z+M32Jllpz(V,V')
XWy(v',2)dv’, z>1z,. (5) The form for ¥, given in (10) satisfies the condition that
V,—0 asz—ox.
The functionsp; , are related td; , by It remains to determine the expansion coefficieatsb; ,
andc; comprising3M/2 unknowns. We do this by substitut-
™ ing (9) and (10) into boundary conditiong7) and (8). By
P V.V')=f fodvy' +(1—v%)(1—v'?) substituting(9) into (7), we obtain
-
xcode—¢")]d(e—¢’). (6) w
At z=0 we prescribe the boundary condition 121 [ajVi(—vm) + ijj(Vm)e‘MZO]
¥, (v,0)= F 1 1 o<v=l 7 = =M/2+1 11
1(n0)=5—4(r=1), O<v<Ll (7) =5-S(vm), M=M/2+1,.. M. (12)
Journal of Biomedical Optics 034015-3 May/June 2005 « Vol. 10(3)
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In (11) we have replaced(v—1) in (7) by a narrow Gaussian
centered about=1 denoted bys(»). By substituting(9) and
(10) into (8), we obtain

M/2
J_Zl [a;V(— vy)e NZo+ b;Vj(vm) = C;Wj(— vi)1=0,

m=1,...M. (12

Equations(11) and(12) comprise aBM/2X 3M/2 linear sys-
tem of equations. After solution of this system, we compute
the radiance backscattered by evaluating

M/2
Wo( vm.0)=j§1 [8,V|(— ) + bV (v e Ai%],

m=1,..M/2. (13)

3 The Equivalent Problem in the Slab

To compute the solution to the two-layer problem, one must
solve two transport equations for the slab and for the half
space. Those two solutions must satisfy the matching condi-
tion at z=z, given by (8). Because most early precancerous
tissues develop in the epithelial layer, we would like to focus
our analysis on the top layer. However, diagnostic measure-
ments taken at the boundazy- 0 include light that has pen-
etrated through the top layer into the bottom one, and scat-
tered from there up into the slab. From there, light scatters
back and forth between the two layers any number of times
before emerging as backscattered light. This interaction is
taken into account by the coupling &f; andW¥, in (8).

Suppose that the optical properties of the bottom layer are
known. Under this assumption, we introduce a boundary con-
dition at z=z, that takes into account light backscattered by
the bottom layer. In this way we are able to replace the two-
layer problem by an equivalent problem for a slab corre-
sponding to the top layer.

Consider the half space problem in which the top layer has
been removed. A light sourcE(»,z;) for 0<w=<1 is incident
on the half space at the boundary: z,. There are no other
sources. The radiance backscattered by this half space is give
in terms of the surface Green’s functi@y, as

1

Gy(v, ")V (v',zp)dv', —1=<v<0.

(14

Equation(14) asserts that the radiance backscattered is given
by the superposition of the surface Green’s function with the
source incident on the boundary. The surface Green'’s function
is written in terms of the volume Green’s functias

\If(v,zo)zf

0

Gy(viv)=v'G(v,z5 ;v',25). (15
Here,G is evaluated just outside the half spgdee-z,) for a
source evaluated just inside the half spéze z;).

Equation (14) gives the radiance backscattered by the
lower medium due to light incident from above it. We can
interpret this formula as a diffuse reflection Iqsee Fig. 2
Rather than solve the problem in the lower layer, we can use
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N/

N

=17,

Fig. 2 A sketch of the equivalent slab problem in which we replace
the transport equation in the lower half space by an alternate bound-
ary condition given in terms of the surface Green’s function G;.

(14) as a boundary condition fo; at z=z, and for
—1=<v<0. Hence, we replace the original two-layer problem
by one in the finite sla®)<z<z;:

1
vVt pa V= — Mslwl+ﬂslf_1pl( v,v')

X‘I’l(V,,Z)dV,, O<Z<Zo, (16)
subject to
F
Vi(v,00==—6(v—1), O0<w=l, 17)
2
and
1
\Ifl(v,ZO)ZJ Gy(v;v")W(v',z9)dv', —1=<v<O0.
0
(18)

The boundary condition given bil8) can be written for-
mally also in terms of the Chandrasekhar's scatterihig
function? For the case that scattering is isotropic, this bound-
ary condition can be written in closed-form in terms of Chan-

rasekhar’sH-functior? or using the Green’s function given

rgy Case and Zweifel.

3.1

The key to the equivalent slab problem given (i) subject

to (17) and(18) is the surface Green’s functiddg(v;v'). We

use plane wave solutions to compute the Green'’s function. We
use the same notation for plane wave solutions that we used
above in Sec. 2.2. Using those plane wave solutions, the sur-
face Green’s function is given by

Computing the Surface Green’s Function

M/2
Gs(vm;Vmr) :;l Wj(Vm)Wj(Vm’) Vm!

M2
—W;(— Vm)kz_:1 YicWi(vm) v |

m=1,.M/2, m'=M/2+1,. M.

19
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The coefficientsy, are the solution to the linear system €= 1120, (223
M/2
= , 22b
> W= ) Y =Wi(r), m=M/2+1,..M, @7 HarZo (220
=1 —
z=12/z,. (220
k=1,.M/2. (20

. ) In terms of these nondimensional variables, the slab problem
Because the optical properties of the lower layer are assumeds

to be known, we can precompute the plane wave solutions for

that medium using the method described in the Appendix. vi¥+a¥=elV, 0<z<l, (233
F

3.2 The Direct Numerical Solution Method Y(»0)= 2 ov=1), O<w<l, (23b)

To solve the equivalent slab problem, we sdékin the same N

form given in(9). Hence, it remains to determine the expan- W(V’l):j Gy(v,v)¥ (v, )dv', —1<v<O.

sion coefficientsa; andb; comprisingM unknowns. We de- 0

termine this unknowns by substituting) into the boundary (230

conditions(17) and(18). Equation(17) is exactly the same as

A o - Here, we have introduced the operatodefined as
(7), so we still impose(11). Substituting(9) into (18) and

. . 1 —

replacing the integral by the Gauss—Le_gendre quadr_ature rule LW =it Dy(v,0" )W (v Z)dv'. (24)
used to calculate the plane wave solutions, we obtain 1

M/2 M The thin layer approximation corresponds to the limit in
> aje M%) V(= vpy) — > Gy(vm V) which e—0. In addition, we assume here thatis much
j=1 m’' =M/2+1 smaller thane. This assumption is not necessary, but simpli-

fies the following analysis. Furthermore, it is consistent with

Mz/2 typical optical properties for tissudg.g., the absorption co-
XVj(= v )W | ¢+ = bj| Vi(vm) efficient is approximately one order of magnitude smaller than
the scattering coefficient
M We represent as the asymptotic expansion
- E Gs(Vm; Vm’)vj( Vi )Wy | ¢ =0, w
m’'=M/2+1 — —
V(r,2)~ 2 €"Wo(v,2). (25)
=0
m=1,...M/2. (21) "

Each term in the series above is determined by substitution of

Hence, (11) and (21) comprise aM XM linear system of (25) into (23) and matching powers a1 To O(1) we obtain
equations. After solution of this system, we compute the radi-

ance backscattered usiig3) as was done for the two-layer v;¥,=0, 0<z<1, (269
problem.

The equivalent slab problem offers some savings in com- F
putational complexity. Instead of solving ti8M/2x 3M/2 Yo(r,0=5—4d(r—1) 0<v<l, (26b)
linear system given b{11) and(12), we only have to solve an
M X M system given by11) and(21). However, we still have 1
to solve twoM X M eigenvalue problems for the plane wave Vo(v,1)= f Gy(v, v )Wo(v', Ddv', —1=<v<0.
solutions. This is the main source of work in solving the two- 0
layer problem. However, when the optical properties of the (260
lower layer are known, the plane wave solutions for the lower The general solution td26a is W,=A(v). By imposing
layer can be calculated beforehand and stored in physical 2gp) we determine that
memory for later use. This is the case, for example, when one
is interested on retrieving only the optical properties of the top
layer where most precancers form. The computational savings
from precalculating the plane wave solutions for the lower
layer are more significant for three-dimensional problems,

A(V)=%5(V—l), o<v<l1. (27)

Substituting(27) into (26¢), we obtain

since they include the dependence in the angle discretiza- 1
tion. Y ®aep 9 A(v)= fo Gy(v,v)A(v'")dv'
. . . 1 F
4 Thin Layer Approximation =f Gy(v,") 5—8(v' = 1)dv’ (28
0 o

Suppose the top layer is very thin compared with the scatter-
ing mean free patlzy<ls=1/us. Then, we can compute an
analytical approximation to the solution of the equivalent slab _ F G _
. . : ) =—0G4(7,D), 1=v<0.
problem. We introduce the nondimensional variables 2
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Substituting(27) and (31) into integral term in(33), we find
that

Hence, the radiance ©(1) is

F(8(v—1), 0<wp<1,

Vo=A(v)=—X (29

1 F
27" [ Gy, 1), —1=<v<0. C(v)=~—B(¥)~ 5—Gy(».1)

F (i 1
Because the effects of scattering and absorption do not appear + 7 f Gs(v,v")pa(v',1) 7dv’
at this order, we observe thdt, is the response to the two- 0
layer medium as if the top layer were not there. Franceschini
et al?? showed experimentally that the role of the top layer on
the reflectance of a two-layer medium is not significant if it is

less than~4 mm thick. Here, we have shown that this result

FE (1 0
+Efo Gs(VaV,)Jllpl(V,yV")Gs(V”yl)

follows readily from this systematic treatment of the transport

equation.
To O(€) we obtain

V&Z‘l’lzl_\lfo, 0<?< 1, (30@

V,(r,00=0, 0<p=<1, (30

1
Vy(v,1)= fo Gy(v,v") V(v Ddv', —1=<v<O0.
(3009

Substituting(29) into (24), we obtain

L\I/OZ—A(VH—f1 p1(v,v")A(v")dv’
—1
F (o0
:_A(V)+ﬂf_lpl(V!V,)Gs(Vl!l)dV,
S
+Ejo pi(v,v")8(v' —1)dv'
E (o
:_A(V)+EJ,lpl(V’V,)GS(V”l)dVI
F
—I—Epl(v,l)EB(v). (31

The general solution td309 is given by ¥;=B(v)z/v
+C(v). Imposing(30b), we find that

C(»)=0, 0<p<L. (32)

Imposing (300 and using(32), we obtain

1

1 1
C(V):_;B(V)'i‘f GS(V,V')B(V')TdV',

0

—1<p<0. (33

Journal of Biomedical Optics
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1
de”;dv', —1=v<0. (34)

Hence, toO(€) the radiance backscattered by the two-layer
medium is

V(v,00~V0(r)+eV¥1(r,0, —1=<v<0,

F 1
:EGS(VJ-) 1—6(1—;> —62771}[)1(1!,1)
F (o
Ry fﬁlpl(v,v )Gs(v',D)dv

F flG I ! 1 1 d I
+6ﬂ . s(v,v)p(v', )7 v

F r1 0
+E%fo Gs(v,v’)J_lpl(V’,V")GS(V”,l)

XdV"V—l,dv', —1=sv<0. (35)

One can continue this computation in a similar manner to
obtain higher order corrections. For example, one can con-
sider the limit in whicha=0(€?). Hence, by computing the
asymptotic expansion oF up to O(€?), one takes into ac-
count absorption in the top layer. This computation involves
only a sequence of elementary calculations. However, the ana-
lytical expressions become complicated, so we do not discuss
them here.

The thin layer approximation yields a power serieszin
This power series is related to the successive scattering or
Neumann series. For that case the leading order term in that
series is given by the Beer—Lambert lakence, it is propor-
tional to a exponential function decaying with respect to
depth. Consequently, higher order corrections involve expo-
nential functions also. By expanding these exponential func-
tions as Taylor series and truncating them in a manner that is
consistent with the balance of scales given(22), we can
show that the thin layer approximation and the successive
order scattering series are equivalent asymptotically. Hence,
we have shown that the model due to Chang ét al.which
they use the Beer—Lambert law for the top layer follows
readily from this systematic treatment of the transport equa-
tion. Moreover, this perturbation analysis provides an estimate
for the error incurred by applying this approximation. Hence,
this analysis provides additional insight into the range of va-
lidity of that model.

May/June 2005 « Vol. 10(3)
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5 Extension to Three-Dimensional Problems

Even though we have discussed and demonstrated this theory

for the one-dimensional problem, it extends easily to the

three-dimensional problem. For that case the equivalent slab

problem is

vd, W+ 1 v%(cospdy ¥ +sined W) + sy ¥

™ 1
:_MSl\P+MSlJ7 J’ilfl(yayrv(P_(p’)

XV (v, @' Xy, 2 dv'de’, 0<z<z,, (36)

with the following boundary condition a&=0:

‘I’(V'QD,X')’,O):F(X,Y) 5(]}_ V0)5(QD_ ()DO)u
o<wv=1,

37

—T=se<T,

and the following boundary condition at=z;:

V(v,¢.XY,20)

[ o) - 1
:f— f— f— foGs(”'SD'V',<P’,X—x',y—y’,20)

XW (v, o' X',y )dv'de’dx'dy’,

—1sv<0, —w=se<mwm, —o<X, y<owo. (38

Equation(37) corresponds to light incident on the boundary at
z=0 with transverse spatial distributiof(x,y) in direction
(vg,90). Equation (38) is a nonlocal boundary condition
since it involves integration over allandy.

Rather than solve the slab problem in the physical domain,
we solve for its Fourier transform with respect to the trans-
verse spatial coordinatesandy. The Fourier transform oV
with respect tox andy is

. 1 © o
‘If(v,cp,z,kx,ky)Z(zT)zfxJ'w‘If(v,go,X,y,Z)

x e x—ikydxdy. (39
Fourier transforming36) we obtain
v W +i1— 12k, cose+k, Sing) W+ uyy ¥
~ T 1
= _Iu‘Squ—'—lLl’SlJ_ f_lfl(V,Vl,(,D_ QD,)
X‘P(v’,@’,z;kx,ky)dv'dgo’, 0<z<z,.
(40)
Fourier transformindg37) yields
W(v,0,2; Ky ky) = F(Ky Ky) 8(v— 1) 80— o),
o<v=l, -—w=<op<mw, (41

with F the Fourier transform of. The integrals in(38) with
respect tok’ andy’ comprise a two-dimensional Fourier con-
volution. Hence, Fourier transformin@g) yields
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\IA’(V!QD!ZO;kx,ky)
T 1. .
:f_ foGS(V"P'VI’(PI;kx!ky)‘P(VI,(P,,ZO;kX,ky)

Xdv'de’, (42)

In contrast to(38), the boundary condition given bi2) is
local since it depends ofk, ,k,) parametrically only.

Kim!® gives a method to compute the volume Green’s
function for the half space in this Fourier domain. Using that
result we computeGs. Hence, we are able to solve the
equivalent slab problem for each transverse spatial frequency
pair (ky,ky) over a discrete spectrum. In fact, the equivalent
slab problem for eacfk, ,k,) pair is a one-dimensional prob-
lem just like the one we have discussed earlier. Once that
spectrum is computed, we recover the solution in the physical
domain using discrete inverse Fourier transforms. Because the
slab problem for each spatial frequency pair is decoupled
from the others, this computation is easily implemented on a
concurrent computing system thereby increasing the effi-
ciency of this calculation.

—1=v<0, —w=oe<m.

6 Numerical Results

We have used the Henyey—Greenstein scattering phase func-
tion to compute our numerical solutions. It is given by

1 1-g?
47 (1+¢°- 29w o' )32

Its only parameter is the anisotropy facitprBy computing
(6) using (43), we determine the corresponding scattering
function in the one-dimensional problem to be

floow' )= (43

(ov') 2(1-9% .
v,v')=

P m(a—b)Ja+b \ath
Here, a=1+g?+2gvv’, b=2gJ(1-?)(1-»'?) and

E(k) is the complete elliptic integral of the second kind.

For the top layer, we have set the absorption coefficient to
be u,;=0.02mm ! and the scattering coefficient to hey
=6.50mm L. For the bottom layer, we have set the absorp-
tion coefficient to beu,; =0.01 mm * and the scattering co-
efficient to beug; =6.00 mm L. For both layers, we have set
the anisotropy factor to bg=0.80.We have taken these val-
ues from the study by Kienle et l.

. (44)

6.1 Plane Wave Source

In Fig. 3 we show numerical results for the case in which a
plane wave is incident normally on the two-layer medium.
The plane wave solutions that we calculated numerically used
M =64 Gauss—Legendre quadrature points. We show the
solutions calculated for the two-layer probléix” symbols),
the equivalent slab probleigsolid curve$ and the thin layer
approximation(dashed curvgs These solutions have been
calculated for different top layer thicknessesa) z,
=0.1mm, (b) zg=0.5mm, (¢) z;=2.0mm, and (d) z,
=6.0mm.

In all of these results we observe that the solutions to the
two-layer problem and the equivalent slab problem are indis-
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Fig. 3 The radiance backscattered by a two-layer medium due to a plane wave normally incident on the medium. The optical properties of
the top slab are (w,i, 16 ,81)=(0.02mm™',6.5mm~',0.80) and the optical properties of the bottom half space are (u,,,us,8))
=(0.01 mm~1,6.0 mm~',0.80). The thickness of the top slab is (a) zo=0.1 mm, (b) z,=0.5 mm, (c) z,=2.0mm, and (d) z,=6.0 mm. The x
symbols are for the solution to the two-layer problem, the solid curve is for the solution of the equivalent slab problem and the dashed curved is
the thin layer approximation.

tinguishable. Because the theory underlying the equivalent
slab problem is exact, the only quantitative differences be-
tween these results are below the double precision arithmetic
used to calculate them. The thin layer approximation gives Here p=(x?+y?)*? and k= (k2+ k§)1’2, Additional details
good agreement for,=0.1 mm corresponding toe=0.65. on the implementation of the direct numerical solution includ-
For the cases with larger slab thicknesses, we observe that théng the numerical calculation ¢#5) are contained in Ref. 23.
thin layer approximation is not accurate. The accuracy of this  In Fig. 4 we show the radial dependence of the reflectance
approximation breaks down especially for near-grazing anglesdue to a Gaussian beam incident normally on the medium.
for which »~0. This break down occurs because higher order The beam width has been set to 2 mm. The plane wave solu-
scattering events, which are not taken into account by the thintions that we calculated numerically uséd=16 for the
layer approximation, are significant for near-grazing angles. Gauss product quadrature rule. We show the solutions calcu-
lated for the two-layer problenix symbolg and the equiva-
lent slab problem(solid curve$. These solutions have been
calculated for different top layer thicknesses$a) z,
Using the extension of the theory discussed in Sec. 5, we have=0.5mm, (b) zo=2.0 mm,and(c) zo=6.0 mm.For all cases
computed the solution of the two-layer problem and the we observe that the solutions to the two-layer problem are
equivalent slab problem due to a Gaussian beam incident nor-indistinguishable from those to the equivalent slab problem.
mally on the medium. For that case, we can reduce the num-
ber of independent variables by working in cylindrical coor- .
dinates. Because the beam is incident normally on the 7 Conclusions

medium, the problem is axisymmetric. Hence, the reflectance We have discussed the direct numerical solution of the trans-
is defined by the Hankel transform port equation for a two-layer medium. Using the theory of
Green’s functions, we have also reduced the two-layer prob-
lem to an equivalent slab problem. This equivalent slab prob-
lem uses an alternate boundary condition given in terms of the
surface Green’s function for the lower layer. Hence, it de-
pends only on the optical properties of the lower layer. The
with theory behind the equivalent slab problem is exact.

ﬁ(k):fj f_olxif(w,z:o;k)ydymp. (46)

6.2 Gaussian Beam Source

1 o
R(p)= 5 fo E (k) 3o(kp)kdlk, (45
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radiance given by the thin layer approximation agrees well
with that given by the numerical solution to the two-layer
problem. However, this approximation breaks down when the
thickness of the top layer increases. Our numerical results
confirm this. The accuracy breaks down most dramatically for
near-grazing angles. This discrepancy is because backscat-
tered light at near-grazing angles is made up of multiply scat-
tered light that is not taken into account by this asymptotic

x two-layer solution
— equivalent slab solution

reflectance (a.u.)

10 . theory.
h S m -2 20 These results suggest that this equivalent slab problem
p (mm) should be extremely useful for studying the epithelial tissue
layer when the optical properties of the stromal layer are

(a) zo =0.5mm known.

% two-layer solution Appendix: Plane Wave Solutions

— equivalentslab solution Plane wave solutions are a general class of solutions that take
the form ¥ (v,z)=e*?V(v). Substituting this solution form
into the transport equation yields

reflectance (a.u.)
Crr
ol

1
ANVVAH uV=—uV+ ’U“Sf p(v,v")V(v' )dv'.
-1

o
T

0 5 10 15 20 (A1)
P
(b) zo =2 .0mm Plane wave solutions have the following three propeffles.

1. For any pair[A,V(v)] satisfying (Al), the pair

10" g — T T3 [—\,V(—v)], satisfies(A1) also. In light of this sym-
F . . ] metry, we order and index the eigenvalues so that
— x two-layer solution - D
S 107 3 — equivalentslabsolution 3 =0 for J>O-
‘g - ] 2. The eigenfunction®/;(v) are orthogonal in that they
g 10’°F 3 satisfy
] F =
g i ]
T 10'F E ! i
2 F ] (NN | Vi(n)V(v)vdv=0, j#k. (A2)
- 7 -1
5 . [ I L .
107, 5 10 15 20
p (mm) We normalize the plane wave solutions according to
(c) zo =6 .0mm
1
Fig. 4 The reflectance by a two-layer medium due to a Gaussian f V. (»)Vi(v)vdv= _J/|J| (A3)
beam normally incident on the medium. All parameters are the same ! y

as for Fig. 3. The beam width is 2.0 mm. The thickness of the top slab

LS (Ia) ZO?O‘imm/l (b) Zo:io o and (c) kflo=6~0 - Thﬁdx sym- The set of eigenfunction§V;(v)} are complete over the
isonratfe(;ItuE;r? z??hnetgc;uievglﬁ-tas\l/:t; ?)rr?)blirr:. and the sofid curve full range. Hence, any arbitrary function can be expanded in
terms of plane wave solutions.
We cannot calculate the plane wave solutions analytically,
in general. Hence, we calculate them numerically using the
We have discussed in detail the one-dimensional problem discrete ordinate method. We approximate the integral opera

in which a plane wave is incident normally on the top layer. tion in (A1) using the Gauss—Legendre quadrature rule
Numerical results confirm that the solutions to the two-layer

problem and the equivalent slab problem are equal as ex- L M

ected. This theory extends easily to three-dimensional prob- / PNt o
E:ms through the Li/se of Fourier t?/ansform methods. We Fr)lave f,lp(y’y V()dv Nmz:l PV, vm)V (V) Win,
shown numerical results for the problem in which Gaussian (A4)
beam is incident normally on the medium. Again, the solu-
tions given by the two-layer problem and the equivalent slab with v, and w,, denoting the quadrature abscissas and
problem are indistinguishable. weights, respectively. Seeking the values \¢fv) at the

For the case in which the top layer is optically thin, we quadrature abscissas(Al) and replacing the integral opera-

have derived an asymptotic approximation. The backscatteredtion by (A4), we obtain theM X M eigenvalue problem

Journal of Biomedical Optics 034015-9 May/June 2005 « Vol. 10(3)
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A VmV( Vm) + ﬂav( Vm) g
M
=— 1N+ ps 2 P(Um, v )V (Vi W 4
m'=1
m=1,..M. (A5)

To normalize the eigenvectors as(#3), we use the Gauss—
Legendre quadrature rule to compute the normalization factor

M 6.

7= 2 V)V () VWi (A6)
Then we scale the calculated eigenvectors\@yj for j 7
>0 and by + y; for j<O0.

Because of the Gauss—Legendre quadrature rule is sym-

metric about the origin, the numerically calculated plane wave &

solutions obey the symmetry property. Henke, = —\; and
V,j(_vm) =V;(— ?’m) =Vj(¥m-m+1) for j=1,...M. We order
and index the eigenvalues as

)\_M/2<"‘<)\_l<)\+1<‘"<)\+M/2. (A7)

For the three-dimensional problem given(#0), one must
include thep dependence of the radiance. The method to cal-

culate plane wave solutions follows in a similar way as shown 11

above for the one-dimensional problem. We use a product
Gaussian quadrature rule to approximate the integral opera-
tions:

T 1
f- f_lp(”’v"ﬁ"_@')V(V’,QD’)dv’dgo’
2M M
~ > > P @n— @0 IV (U o Pn ) Wi A,

n=1m'=1
(A8)
Here, o, =(n—1)A¢ with n=1,...2M andA¢=7/M. Re-
placing the integrals irf40) by (A8) and seeking the plane

wave solutions at the product quadrature abscissas:qg
V(vm,@n), We obtain the2M?x 2M? eigenvalue problem

A V(Vm,en) Fiyl— Vzm( Ky COSg,+ Ky Sing,)V(vm, ¢n)

+ waV(vm, en)
2M M

:_NSV(vaQDn)+/~LSE Z f(Vm, Vi v on— @)

n=1m=1
XV(er,QDnr)Wm/AQD, m:].,...M, 21
n=1,...2M. (A9) 22
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