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Nonlinear anisotropic diffusion filtering of three-
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Abstract. Two-photon microscopy in combination with novel fluores-
cent labeling techniques enables imaging of three-dimensional neu-
ronal morphologies in intact brain tissue. In principle it is now pos-
sible to automatically reconstruct the dendritic branching patterns of
neurons from 3-D fluorescence image stacks. In practice however, the
signal-to-noise ratio can be low, in particular in the case of thin den-
drites or axons imaged relatively deep in the tissue. Here we present a
nonlinear anisotropic diffusion filter that enhances the signal-to-noise
ratio while preserving the original dimensions of the structural ele-
ments. The key idea is to use structural information in the raw data—
the local moments of inertia—to locally control the strength and di-
rection of diffusion filtering. A cylindrical dendrite, for example, is
effectively smoothed only parallel to its longitudinal axis, not perpen-
dicular to it. This is demonstrated for artificial data as well as for in
vivo two-photon microscopic data from pyramidal neurons of rat neo-
cortex. In both cases noise is averaged out along the dendrites, lead-
ing to bridging of apparent gaps, while dendritic diameters are not
affected. The filter is a valuable general tool for smoothing cellular
processes and is well suited for preparing data for subsequent image
segmentation and neuron reconstruction. © 2004 Society of Photo-Optical In-
strumentation Engineers. [DOI: 10.1117/1.1806832]
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1 Introduction
Two-photon laser scanning microscopy1 has become a princi-
pal technique for high-resolution fluorescence imaging in
various biological tissues because it provides intrinsic optica
sectioning and exceptional depth penetration~for reviews see
Refs. 2, 3, and 4!. Imaging depths in the cortex of more than
500 mm are now routinely achieved and image acquisition
from 1 mm inside a mouse neocortex has been demonstrate
recently.5 Combined with techniques for labeling individual
neurons or sparse populations of neurons, e.g., dye loadin
via intracellular pipettes6,7 or the expression of fluorescent
proteins,8–10 two-photon microscopy can resolve neurons with
high resolution in vivo, i.e., within the intact brain of living
animals.6,11 Thus, 3-D fluorescence images of neurons can be
obtained including their entire dendritic morphology within
their native environment.
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These advances in imaging technology are prerequis
for the automatic reconstruction of neuronal morphologi
An automatic reconstruction would allow fast, high
throughput determination of characteristic anatomical f
tures, for instance the dendritic branching pattern of differ
neuronal cell types. This is in contrast to standard man
reconstruction techniques, which are time-consuming
highly dependent on the experience of the human anatomi12

They also suffer from scaling problems due to shrinkage
fixed tissue. Automatic reconstruction would furthermore h
to establish large databases of neuronal morphologies for
physical modeling of cellular and neural network signal pr
cessing.

A number of different approaches for automatically reco
structing neuronal morphologies have been repor
previously.13–15 Recently, Maravall et al.16 automatically re-
constructed a large number of layer 2/3 pyramidal neurons
an analysis of experience-dependent plasticity of their d
dritic branching pattern. However, results in general stron
depend on the quality of the image data and in most ca
require preprocessing. One of the major obstacles for de
medical Optics d November/December 2004 d Vol. 9 No. 6 1253
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Fig. 1 Comparison of the anisotropic diffusion filtering with Gaussian blur. (a) One slice of a data stack from a two-photon scan of a pyramidal cell
in layer 2/3 of rat somatosensory cortex in vivo. This slice is at a depth of 280 mm inside the brain. The loading pipette is visible at the top of the
image next to the cell body. (b) Filtering with anisotropic diffusion. The filter was used with two time steps, a time step size of t52.0 and a scanning
range of d510 mm. (c) Data after Gaussian blur with s52.8'2A(2) (measured in voxel).
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oping an automatic reconstruction algorithm is the noise in
herent in low-level fluorescence images. For example, usin
two-photon microscopy for in vivo imaging, both excitation
light and fluorescence light are increasingly scattered with
imaging depth, causing a reduction in signal-to-noise ratio
and making it difficult to fully resolve thin, weakly fluores-
cent neural processes@Fig. 1~a!#. As a result, simple thresh-
olding procedures for image segmentation might erroneousl
insert gaps into dendritic branches, preventing the reconstruc
tion of a fully connected dendritic tree. Therefore, preprocess
ing of the raw fluorescence data in order to increase th
signal-to-noise ratio while preserving dendritic structure is an
essential prerequisite for automatic segmentation and subs
quent morphological reconstruction.

One way to preprocess the raw data is filtering. A wide
range of filters exist in image processing. The most basic fil
ters calculate an average brightness value in a region around
central voxel. Other, more sophisticated filters use spectra
analysis to extract signals within a defined bandwidth, such a
low- or high-pass filters. Both methods show a close connec
tion to the theory of partial differential equations.17 Actually
the well-known Gaussian blur is an excellent low-pass filter.18

But none of these methods are sensitive to the local structur
of the processed data.

One of the first approaches to include information abou
the data into the filter was made by the direction-pyramida
decomposition method.19 Alternatively, wavelet shrinkage has
been used for preprocessing neuronal image data.20,21 One of
the advantages of the wavelet approach is the use of multip
scales. A shortcoming is that the filtering threshold in the
wavelet space cannot be determined automatically. One of th
reasons is that the proper threshold depends on the local noi
statistic within the image. Because this threshold varies
throughout the data set an optimal value is difficult to find and
thus no optimal denoising strategy can be given in general. A
more general way to take the data structure into account is th
use of diffusion filters which have a long tradition in image
processing.17 They have mostly been used as convolution fil-
ters like Gaussian blurring. Nonlinear diffusion filters were
first used by Perona and Malik in 1987.22 Since then many
specific filters have been used to address a wide range
problems. For instance, an anisotropic diffusion filter con-
trolled by local properties of the data was used by Lenzen23 to
reconstruct DNA structures.

In our case the filter has to prepare the data for segmenta
tion. The filtering process aims to~1! separate noise and sig-
1254 Journal of Biomedical Optics d November/December 2004 d Vol.
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nal, ~2! close apparent gaps in the structure, and~3! preserve
dendritic diameters. For this purpose we designed an an
tropic diffusion filter which is now implemented in our sof
ware toolbox, NEURA~NEUron Reconstruction Algorithm!.
Here, we present this diffusion filter designed specifically
three-dimensional data of nerve cells. The filter is tuned
delete disturbances~remove noise! and to bridge open struc
tures while preserving dendritic diameters. In this respec
performs much better than Gaussian smoothing~see Fig. 1 for
a first impression!. The primary goal of our algorithm is to
facilitate automatic reconstruction of neuronal morpholo
for example in order to import them into the NEURON sim
lation environment24 for in silico experiments.

2 Material and Methods
2.1 Linear Isotropic Diffusion and Gaussian Blur
Linear isotropic diffusion is described by the partial differe
tial equation~pde!:

] tu~x,t !5Du~x,t !,xPRn ~1!

u~x,0!5u0~x! on Rn ~2!

The solution tends to zero fort→`. In image processing the
time t is an artificial parameter. In case of linear diffusion t
filter makes sense only if the time is limited to a finite valu
as can be seen comparing linear diffusion with a sim
Gaussian blur. Gaussian blur or Gaussian smoothing is
excellent low-pass filter in image processing. It attenua
high frequencies in a monotonic way.18 The close connection
between linear diffusion and Gaussian blur gives a dee
understanding of the filter process.

Let a gray-scale imageu be represented by a real-value
mappingu0(x)PL1(Rn). The linear diffusion process~1! can
be solved analytically for any timet.0 by using the Green’s
function for the diffusion equation, which is actually th
Gaussian kernel25:

u~x,t !5E
Rn

u0~y!•
1

~4pt !n/2 e2 (x2y)2/4tdy. ~3!

The Gaussian smoothing ofu0 is described by:
9 No. 6
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Nonlinear anisotropic diffusion filtering . . .
u~x,s!5~u0* Gs!~x!

5E
Rn

u0~y!•
1

~2ps2!n/2e2 (x2y)2/2s2
dy. ~4!

Apparently the timet has the same effect as the blurring pa-
rameters ~that means filtering an image stack with linear
diffusion t52.0 is the same as using a Gaussian blur with
s254.0). For finite times a linear diffusion filter yields a
smoothing of the picture, which is desirable to suppress nois
on large homogeneous faces. On distinct structures like sha
edges, however, isotropic diffusion leads to undesirable blur
ring of the structure as illustrated in the examples below.

2.2 Nonlinear Anisotropic Diffusion
To avoid broadening of edges, while preserving the smoothin
of uniform surfaces, we need an anisotropic diffusion operato
which leads to isotropic diffusion on surfaces, but avoids
cross-diffusion at sharp edges. This implies that the operato
@see Eq.~1!# needs to depend on the structure of the image
i.e., it must be nonlinear. In 1987, Perona and Malik22 intro-
duced such a nonlinear operator using the gradient of the da
to control the diffusion. Their algorithm was designed specifi-
cally to preserve edges with diffusion occurring mainly per-
pendicular to the gradient of the image data in order to en
hance edges in two dimensions. More recent results using
gradient-controlled approach can be found in Refs. 26 and 27

Mathematically speaking, modeling a~nonlinear aniso-
tropic! diffusion process means to solve the following bound-
ary value problem:

] tu5¹•~D~u!•¹u! on R13V

u~x,0!5u0~x! on V̄

~D~u!•¹u!•nW 50 on R13]V ~5!

with the permeability tensorD(u). In our caseV,R3 de-
scribes the image data volume,u0(x) the raw data set, andnW
the outer normal at the volume boundary]V. The third equa-
tion states that no flux crosses the image boundary, i.e., n
signal is lost from the image.

In the case ofD being the identity this is the linear isotro-
pic diffusion, which we have already seen in Eq.~1!. The
choice of the tensorD(u) is crucial for the performance of the
filter. Note that time is no longer just a blurring parameter.
Because of the nonlinearityD(u) the solution does not nec-
essarily tend to zero fort→`; see Ref. 27. Instead a steady
state solution of the equation might exist. To choose an ap
propriate permeability tensorD(u) we need to extract struc-
tural information from the raw gray value datau(x,t).

2.3 Structure Detection
Fluorescence images often are too noisy to use a gradie
criterion to control the diffusion direction. More information
is needed to reliably detect the object structure. In the case o
filtering cellular processes, e.g., neuronal dendrites, we woul
like to use strong diffusion parallel to the main axis of the
dendrite but not perpendicular to it. Thus we have to find a
Journal of Bio
p

r

a

a
.

t

f

way to detect the axis of the dendrite locally. Motivated
Lenzen and Rumpf23 we decided to use the moments of ine
tia.

2.3.1 Moment of inertia
To determine the local structure of the data in a thre
dimensional image stack we consider the gray value func
as a density function of a real body. Then we can calculate
~local! moments of the virtual body, by choosing an integr
tion volumeBd(x0) around the voxel of interest. The param
eter d represents the size of the integration volume and
referred to as scanning range.28 The local moments are de
fined by:

• mass:

M0~x0!5E
Bd(x0)

u~x!dx, ~6!

• center of mass:

M1~x0!5
1

M0~x0!
E

Bd(x0)
u~x!xdx, ~7!

• moment of inertia:

M2~x0!5E
Bd(x0)

u~x!@x2M1~x0!#^@x2M1~x0!#dx, ~8!

with ^ being the outer product.

The eigenvectors of the moment of inertia are the m
axes of inertia. The eigenvalues contain information about
spatial structure. The size of the integration volume, the sc
ning range, is a critical parameter~see below!.

2.3.2 Example
The eigenvectors and eigenvalues of the moment of inerti
a hexahedron~see Fig. 2! can easily be calculated. The tens
calculated at the origin is:

M2~x!5
1

12S a3bc 0 0

0 ab3c 0

0 0 abc3
D . ~9!

The corresponding eigenvectors and the eigenvalues are g
by:

V1~0!5S 1
0
0
D , V2~0!5S 0

1
0
D , V3~0!5S 0

0
1
D , ~10!

a15
1

12
a3bc, a25

1

12
ab3c, a35

1

12
abc3 ~11!

2.3.3 Geometry classification
Following Lenzen23 we define the following variables to
quantify the size of the eigenvalues:

c15
a12a2

(a i
, c25

2~a22a3!

(a i
and c35

3a3

(a i
, ~12!
medical Optics d November/December 2004 d Vol. 9 No. 6 1255
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Fig. 2 Direction of the eigenvectors of the moment of inertia of a
hexahedron. The structure is assumed to be solid with a constant
density function. a,b,c: the three sides, V1 ,V2 ,V3 : the main axes of
inertia.
l

be
ex-

e an
c-
e of

sor
l-
he

the

tor
ly
ro
the a i are sorted bya1.a2.a3 .

1. Remark. Theci in Eq. ~12! are normalized in the following
way: (ci51 and0<c1 ,c2 ,c3<1.
Consequently, theci can be visualized by a state triangle; see
Fig. 3. A high value ofc1 means that the local structure re-
sembles a cylinder, a high value ofc2 a plane, and a high
value of c3 an isotropic structure. The parametersci can be
further used for geometry classification as shown in the fol-
lowing example.

2.3.4 Example
We calculate the eigenvectors, eigenvalues, and theci for the
structure from Fig. 4 in the voxel next to the gap. The inte-
gration volume is plotted around the voxel.

Table 1 shows how the values ofc1 , c2 , and c3 change
according to the integration sized. The dominating eigenvec-
tor ~DEV! changes when the integration size grows and fi-
nally they converge as can be seen from Table 1. For sma
s
of
or
gy

en-
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integration volumes the algorithm tends to detect an isotro
structure (d5$3,5,7%) while for integration volumes large
enough to reach over the gap(d>9) a cylindrical structure is
identified. Therefore it is important to know the scale of t
structure to be detected. Consequently the algorithm can
tuned to detect small structures or large structures. For
ample, for enhancing dendritic branches we usually choos
integration size of 10mm. For enhancement of smaller stru
tures such as dendritic spines a smaller scanning rang
about 3mm has to be used.

2.3.5 Construction of D(u)
We are now in a position to construct the permeability ten
D(u). We defineD(u) such that diffusion occurs only para
lel to the axis of the tube, but not perpendicular to it. T
dominating eigenvectorV1 of the moment of inertia gives us
the local main direction of the structure. So we separate
diffusion direction ¹u into two, (¹u)p and (¹u) t , with
(¹u)p•V150.

Technically speaking this means to transform the vec
¹u into the eigenspace of the diffusion tensor and multip
the first component with unity, the others with a nearly ze
constante ~which is necessary for well-posedness!. So we
finally setD from Eq. ~5! to:

D~u!5BS 1 0 0

0 e 0

0 0 e
D BT ~13!

with B5(V1 ,V2 ,V3) and e.0 @with Vi the eigenvectors;
compare with Eq.~10!#. This means that the filter alway
causes diffusion into the direction of the largest eigenvalue
the local tensor of inertia, even if the local mass is small
nearly isotropic. We found this to be the optimal strate
when preparing neuronal image data for subsequent segm
tation ~see discussion in Sec. 4!. However, for other applica-

Fig. 4 A simple linear structure to analyze the behavior of the eigen-
values and ci respectively to the scanning range d. The structure is
again assumed to be solid with a constant density value. The structure
is three voxel high (y direction) and three voxel deep (z direction).
Fig. 3 Visualization of the normalized values ci using a state triangle.
Table 1 Dependence of the ci on the integration size d in pixels.

scanning range d53 d55 d57 d59 d511

c1 0.00 0.00 0.23 0.75 0.84

c2 0.53 0.00 0.00 0.00 0.00

c3 0.47 1.00 0.77 0.25 0.16

DEV y,z x,y,z x x x
9 No. 6



-
e

s

r

l

-

r

ime
fect

of

32.

as

of

tor
Pi-
e

-

ef.

m-

on

en

oic

-
ing

ure
In
.
ide.
et,

lled
pic

Nonlinear anisotropic diffusion filtering . . .
tions of the filter it may be advantageous to switch off local
diffusion if the data within the scanning range is close to
isotropic, or to apply planar diffusion ifc2 is large.

2.4 Numerical Solution

2.4.1 Discretization and solver
In order to solve the partial differential equation@Eq. ~5!# we
use a semi-implicit time discretization and a finite volume
spatial discretization. The semi-implicit scheme is advanta
geous compared to the fully explicit time scheme because th
time step size can be increased without losing stability.29 For
time discretization a simple backward-Euler scheme wa
used. Starting from

] tu5¹•~D~u!¹u! ~14!

we obtain:

ut112ut

t
5¹•~D~ut!¹ut11! ~15!

~wheret is the time step size without unit!. For spatial dis-
cretization a finite-volume method was used~see Ref. 30!. In
this method each voxel is surrounded by a control volume
V i . The distance between two voxels ish. To obtain the
discrete nodal valueuh,i

t11 assigned to voxeli , we introduced
the following equation:

uh,i
t115uh,i

t 1
t

uV i u H(j
uh, j

t11E
]V i

@D~uh,i
t !¹w j #•nW dsJ ; i .

~16!

The w j are standard bilinear finite element basis functions.30

The integral is approximated by using numerical integration
with several integration pointsipk . Finally we get the linear
algebraic equation

~I2tA!uh
t115uh

t ~17!

with

ai j 5
1

uV i u
(

k
~D~uh,i

t !¹w j~ ipk!!•nW ~ ipk!•uSku, ~18!

whereuSku is the size of the subareaSk,]V i corresponding
to ipk . We evaluated the integral by using a standard mid-
point rule. Due to the boundary condition in Eq.~16! it is
sufficient to consider in Eq.~16! only inner integration points
ipkPV and to ignore boundary integration pointsipkP]V.

To solve Eq.~17! we used a conjugated gradient~CG!
solver ~see Ref. 31!, which is a standard iterative solver for
linear algebraic systems.

2.4.2 Computational effort
Because a simple CG solver is used without preconditione
the computational complexity isO(n3/2) in each time step. To
keep the computational effort low we implemented a specia
algorithm for the computation of the moments. We calculate
the moments by using a fast Fourier transform, which trans
forms the convolution into a multiplication. Another impor-
tant feature is the convergence of the solver for the linea
Journal of Bio
system. Table 2 shows the number of iterations and the t
needed to solve the linear algebraic equations up to a de
reduction of1028. The results show the typical increase
number of iterations with increasingt. However for our com-
putation this increase is not practically significant.

2.5 In vivo Two-photon Imaging
Two-photon imaging was performed as described in Ref.
Rats were anaesthetized with urethane. A small(232 mm)
craniotomy was made over barrel cortex and the dura w
removed. The craniotomy was covered with agar~1–1.5%,
type III-A, Sigma! in the following solution~in mM!: 135
NaCl, 5.4 KCl, 1MgCl2 , 1.8 CaCl2 , 5 HEPES. A glass cov-
erslip was positioned over the agar. This reduced motion
the cortex during recording and imaging.

Neurons were filled with the soluble fluorescent indica
Alexa 594 using the whole-cell patch-clamp technique.
pettes with 4–6 MV open tip resistance were filled with th
following intracellular solution~in mM!: 135 K gluconate, 4
KCl, 10 HEPES, 10Na2-phosphocreatine, 4 Mg-ATP, 0.3 Na
GTP, 0.2% biocytin, 0.02 Alexa 594~pH 7.2; 291-293
mOsm!. Recordings were obtained blind, as described in R
33.

Two-photon microscopy was performed using a custo
built microscope.32 The specimen was illuminated with
840-nm light from a pulsed Ti:sapphire laser with a repetiti
rate of 80 MHz and 100- to 150-fs pulse width~Mira 900,
Coherent!. Excitation light was focussed onto the specim
using a403, NA 0.8 water immersion objective~Zeiss!.

Emitted fluorescence was deflected by 680-nm LP dichr
mirror and detected with a photomultiplier tube~Hamamatsu!.
An infrared-blocking filter~Calflex, Linos! and an emission
filter ~HQ 610/75M, Chroma! were used in the detection path
way. Scanning and image acquisition were controlled us
custom software~R. Stepnoski and M. Mu¨ller, Lucent Tech-
nologies, New Jersey and MPImF, Heidelberg!.

3 Results
3.1 Testing the Filter on Artificial Data
We designed a simple data stack containing a Y-like struct
to test how the filter works under controlled conditions.
Fig. 5~a! one slice of this653 voxel data stack is illustrated
The Y has three gaps, each of them being three voxels w

We applied the anisotropic diffusion filter to this data s
with a scanning range of 10 voxels@Fig. 5~b!#. As expected
the filter preserved the diameters of the Y branches but fi
in the gaps. For comparison we also applied a simple isotro
diffusion to the same data set@Fig. 5~c!#. Although the linear

Table 2 Convergence of CG solver for a 1293 voxel image stack
(where %̄ is the average convergence rate).

t50.2 t50.6 t51.0 t53.0 t55.0 t510.0

Time [s] 71 111 131 230 300 408

Iterations 6 10 12 22 29 40

%̄ 0.0319 0.1344 0.2148 0.4304 0.5272 0.6201
medical Optics d November/December 2004 d Vol. 9 No. 6 1257
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Fig. 5 Test data stack. A simple test data stack with a Y-like structure was created to analyze the behavior of the filter. The structure is assumed to
be solid with a density value of 1. The diameter of the Y-like structure is three voxels. The background is defined with density value zero. The
structure has three gaps, each of which is three voxels wide. (a) One slice of the initial data. The red lines mark the area where the data for the
signal profiles shown in (d), (e) were taken from. (b) Nonlinear anisotropic diffusion. (c) Linear isotropic diffusion. The normalized signal profiles
demonstrate the effect of the anisotropic filter and the Gaussian smoothing. (d) Signal perpendicular to the branch. Anisotropic filtering conserves
the signal profile. However, Gaussian blurring distorts the signal structure. Sharp edges are lost. (e) Signal along the branch. Both filters fill the gap
in nearly the same way.
1258 Journal of Biomedical Optics d November/December 2004 d Vol. 9 No. 6



Nonlinear anisotropic diffusion filtering . . .
Fig. 6 A layer 2/3 pyramidal neuron was imaged using two-photon microscopy. The data stack consists of 216 slices each 2 mm thick. Each slices
has 2562 pixels. One pixel is 1 mm in x direction and 1 mm in y direction. (a) Sagittal view of a maximum intensity projection of the raw data. (b),
(c) Two slices of the raw data. The loading pipette is visible on the left side of the images. (d), (e), (f) Same data after anisotropic diffusion filtering.
The broken red lines in (d) indicate the depth where the two slices shown are taken from. In (g), (h), (i) a Gaussian blurring is applied to the raw
data.

Fig. 7 Close-up views of dendritic branches. The conservation of the diameter of the dendrites was one of the major goals for the design of the filter.
In this figure the dendrites which were used to measure the change in the diameter are shown. See Table 3 for results of the measurement of the
full width at half maximum.
Journal of Biomedical Optics d November/December 2004 d Vol. 9 No. 6 1259
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Table 3 Changes in diameter (FWHM) after anisotropic diffusion filtering or Gaussian blurring com-
pared to raw size (in mm): f/raw is the ratio of the FWHM after anisotropic diffusion to the raw FWHM,
and G/raw is the ratio of the FWHM after Gaussian blur to the raw FWHM. Seven different dendrites have
been evaluated.

dendrite 1 2 3 4 5 6 7 mean s.d.

raw 1.45 0.65 2.15 1.25 1.3 2.05 2.3

filtered 1.35 1.25 1.55 1.0 0.95 1.35 1.5

Gauss 2.1 2.25 2.95 2.3 2.35 2.8 2.65

f/raw 0.93 1.92 0.72 0.80 0.73 0.66 0.65 0.92 0.45

G/raw 1.45 3.46 1.37 1.84 1.81 1.37 1.15 1.78 0.78
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filter closed the gaps similar to the anisotropic filter, the di-
ameters of the branches were severely broadened. Because
the enlargement of the structure and the conservation of th
mean gray value the peak signal level of the isotropically
filtered image is reduced compared to the anisotropic case.

To further quantify the differences between anisotropic and
isotropic filtering, we measured the spatial intensity profiles
parallel and perpendicular to one branch@Figs. 5~d! and 5~e!#.
Broadening of this structure was analyzed by calculating the
full width at half maximum~FWHM! for the raw data set, and
for the anisotropically and isotropically filtered data set, re-
spectively~using linear interpolation!. The anisotropic filter
maintained the half width of the branch(FWHMraw56,
FWHManisotropic55.84, measured in pixels!. In contrast the
FWHM was increased with linear filtering(FWHMgauss
56.91.). Because of the step-like nature of the artificial data
the anisotropic diffusion even caused a slight reduction of the
FWHM. The spatial profiles parallel to the branch demon-
strate how both filters fill the gap in nearly the same way@Fig.
5~e!#. This is expected because along detected linear struc
tures anisotropic diffusion and Gaussian blurring convolve the
data nearly equally.

3.2 Testing the Filter on Two-photon Images
We next applied the anisotropic diffusion algorithm to 3-D
fluorescence image stacks of pyramidal neurons in rat neoco
tex obtained using two-photon microscopy.6 Neurons were
filled with a fluorescent dye via the whole-cell patch pipette.
The data typically consisted of several hundreds of slice
taken at 2mm focal increments, each consisting of256
3256 pixels~8-bit depth!. A maximum intensity side projec-
tion of a raw data set is shown in Fig. 6~a!. In addition, two
example slices from different focal planes are shown@Figs.
6~b! and 6~c!# to illustrate how noisy the raw images are. In
particular, thin basal dendrites close to the soma are difficul
to resolve. Following anisotropic diffusion the signal-to-noise
ratio was improved and the thin dendrites can easily be sepa
rated from background@Figs. 6~d!–6~f!#. To gain an impres-
sion of how the filter works we again compared the filter
result to the Gaussian blur@Figs. 6~g!–6~i!; s52.8 voxel].
The difference between isotropic and anisotropic filtering is
particularly evident at the basal dendrites. After Gaussian fil
tering it is nearly impossible to see thin dendrites in slices
iomedical Optics d November/December 2004 d Vol.
of

-

-

-

deep inside the tissue, whereas the anisotropic diffusion
ther enhances the signal-to-noise ratio of these fine structu

For automatic reconstruction of the dendritic tree it is ve
important how dendritic diameters are affected by the filt
To quantify the diameters we again measured the FWHM
seven dendrites of different sizes. Some of them were par
to the coordinate axis, some were oblique~see Fig. 7!. The
effects of these filters are shown in Table 3. The anisotro
filter has little effect on dendritic diameter~on average they
shrink by a factor of0.9260.45) whereas Gaussian blurrin
almost doubles the diameter on average~expansion by a fac-
tor of 1.7860.78). In Fig. 9~a! the ~normalized! signal profile
of dendrite number 5 is shown.

We next examined whether the filter bridges gaps in tw
photon microscopic data. Therefore we first enlarged one s
of the data set and measured the signal profile along one
drite. In Fig. 8~a! the same raw data as in Fig. 6 are shown
an expanded scale. Figure 8~b! shows the data after aniso
tropic filtering. The box indicates the areas which are p
sented in Figs. 8~c! and 8~d!. In Fig. 8~c! there are disconti-
nuities in the dendritic branch as bright pixels are separa
by dark pixels. After anisotropic filtering these discontinuiti
are closed@see Figs. 8~d! and 9~b!#. The filter effect is clearer
when looking at a projection. Figures 8~e! and 8~f! are maxi-
mum intensity projections of 10 slices. Dendrites, which we
difficult to follow in the raw data set, are easy to find in th
filtered data, for instance, the dendrite in the upper left corn

3.3 Application to Binary Data
One of the purposes of the filter is to preprocess the data
segmentation of objects. Even with this preprocessing so
gaps may remain after a segmentation process. In this ca
is convenient to apply the anisotropic diffusion filter a seco
time on the segmented~i.e., binary! data. An example appli-
cation of the filter on binary data is shown in Fig. 10. Th
filter bridges the remaining gaps while preserving the dia
eter of the dendrites.

To illustrate how the filter facilitates automatic reconstru
tion of the dendritic morphology, we compared reconstru
tions of the same layer 2/3 pyramidal neuron without and w
prior filtering ~Fig. 11!. Filtering included a first pass of an
isotropic diffusion filtering on the raw data, subsequent s
mentation, and a second pass of the filter on the segme
9 No. 6



Nonlinear anisotropic diffusion filtering . . .
Fig. 9 Conservation of dendritic diameters and closure of gaps in the two-photon fluorescence data stack. The plot in (a) shows the normalized
signal profile perpendicular to dendrite 5 in Fig. 7. Again the anisotropic diffusion filtering conserves the signal profile whereas the Gaussian
blurring causes a widening of the signal. In (b) the closing of a gap is demonstrated by showing the (normalized) signal along the dendrite marked
in Fig. 8(a) by red arrows. There is nearly no difference between anisotropic diffusion and blurring.
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~binary! data. The unfiltered and filtered data were then both
segmented, reconstructed using the same algorithm and p
rameter settings, and visualized using the NEURON simula
tion environment.24 In both reconstructions the main apical
dendrites are well detected. However, the fine basal dendrite
and the thin side branches of the neuron are missing in th
case of no pre-processing@Fig. 11~a!# whereas these structures
are present following application of the anisotropic diffusion
filter @Fig. 11~b!#. This is particularly evident for the fine basal
dendrites deep within the neocortex. A detailed discussion o
results obtained with different reconstruction procedures wil
be presented in a forthcoming paper.

4 Discussion
We have presented a method for filtering two-photon micros
copy data of neuronal morphologies. The method is based o
anisotropic diffusion in three dimensions. The key idea of the
algorithm is the use of the local moments of inertia to reliably
detect the dimensionality~isomorph, planar, or linear! and the
orientation of the morphological structures, particularly of
Journal of Bio
-

s

dendrites. The filter is controlled by adapting the diffusi
tensor in a way to produce smoothing along but not perp
dicular to the structure. We have demonstrated that an
tropic filtering preserves dendritic diameters in a set of art
cial test data and in two-photon microscopic images
neocortical neurons. In addition it bridges apparent gaps
images of dendrites, which result from poor signal-to-no
ratio, by smoothing along the dendritic axis similar to
Gaussian blurring filter. It should be noted that dendrite dia
eters can only be resolved accurately if they are larger t
the optical resolution of the microscope system. This is a f
damental limitation, which is not overcome by anisotrop
diffusion filtering. For thin dendrites the diameters obtain
therefore represent an overestimate of the true diameters
cause they are convolved with the point spread function of
microscope. However, in any case anisotropic diffusion filt
ing does not introduce an additional systematic bias in d
dritic diameters.

The anisotropic diffusion filter was implemented using
semi-implicit scheme for time discretization and a finit
Fig. 10 Nonlinear anisotropic filter applied to binary data. During the reconstruction process filtering on binary data is needed. These figures
illustrate how the filter can be used on binary data, too. The initial binary data was obtained from the same raw data as used in Fig. 6. (a) Initial
binary data. The data was filtered by nonlinear anisotropic diffusion with t52.0, two time steps, and d510 mm. The result is shown in (b). The
same region as in Fig. 6 was chosen for analyzing the data at higher magnification (c), (d). The gaps in (c) are closed in (d). The diameter is nearly
unchanged.
medical Optics d November/December 2004 d Vol. 9 No. 6 1261



Broser et al.
Fig. 8 Zooming into one slice illustrates further how the filter enhances the quality of the data. One slice of the raw data from Fig. 6 is presented
in (a). The red arrows mark the line where the signal profiles along the dendrite [see Fig. 9(b)] were measured. The blue box indicates the area from
which panel (c) and panel (d) respectively were taken from. (b) Data after nonlinear anisotropic diffusion filtering. (c) and (d) Initial data (filtered
data) at higher magnification. (e) and (f) Maximum intensity z projections of ten slices of the raw and the filtered data respectively are illustrated.
1262 Journal of Biomedical Optics d November/December 2004 d Vol. 9 No. 6
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Nonlinear anisotropic diffusion filtering . . .
Fig. 11 Automatic reconstruction of neuronal morphology from two-
photon fluorescence data (same layer 2/3 pyramidal neuron as in Fig.
6). The morphology of soma and dendrites is presented using the
simulation program NEURON.24 (a) Result of segmentation and re-
construction without prior anisotropic diffusion filtering. (b) Result of
filtering, segmentation, and a second pass of the filter over the seg-
mented (binary) data, followed by the same segmentation and recon-
struction algorithms with the same parameter settings as in (a).
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volume method for spatial discretization. The semi-implicit
time scheme is advantageous since each time step can be us
with a larger time step size without losing stability.29 In con-
trast, explicit schemes for time disretization are limited in the
time step size by the Courant-Friedrich-Levy condition.29

Smaller time steps have to be used so that the number of tim
steps required to achieve the same filtering increases. As
result the time to solution is typically longer for an explicit
scheme compared to an implicit scheme. Due to the complex
ity of the filtering algorithm, anisotropic diffusion filtering of
large data sets is time consuming. But in some parts of th
algorithm parallelization is possible, for instance for the cal-
culation of the tensor of inertia or the assembly of the stiffness
matrix @see Eq.~17!#. In the future, such parallelization will
substantially reduce the computation time.

Anisotropic diffusion filtering offers a convenient way to
enhance the quality of fluorescence image stacks without us
ing information about the microscope system used for imag
ing. The signal-to-noise ratio is enhanced such that the differ
entiation between foreground and background~segmentation!
can easily be done by a simple local thresholding algorithm
The smooth signal profile along structures and the large gra
dient between structure and background allow even the dete
tion of small dendrites several hundred micrometers deep in
side the cortex. Anisotropic diffusion filtering therefore
represents an excellent starting point for automatic recon
struction of neurons. In addition, filtering and segmentation
can be iterated since the filter does not depend on the depth
the data. It works both on grayscale and on binary data. Th
advantage of our method compared, for instance, to th
method of wavelet shrinkage is that no a-priori information
about the given data set is needed. Thus, for a specific stru
Journal of Bio
ed
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ture a general filter algorithm can be used, offering the po
bility of automated filtering of large numbers of data se
Nevertheless it will be interesting to compare the present
proach to the wavelet shrinkage method used in Ref.
Mrázek et al.34 showed for the one-dimensional case that t
Perona-Malik diffusivity or the Weickert diffusivity have a
corresponding wavelet shrinkage. This means that certain
fusion processes can be described by wavelet shrinkage
the future it may be possible to extend this connection
tween anisotropic diffusion filtering and wavelet transform
tions to the three-dimensional case.

For those who are interested in trying the anisotropic d
fusion filter by themselves we offer a sample program in R
35.

We are currently developing a new software toolbo
NEURA, designed for automatic reconstruction of neuro
morphologies, which includes the anisotropic diffusion f
data preprocessing. Preliminary results indicate that the c
bination of the anisotropic filter with a sophisticated segme
tation algorithm can deliver a good restoration of the neu
shape. Even fine dendrites can be tracked using graph trac
algorithms, yielding a reconstruction of the branching patt
of the neuron. Here the next challenge will be to apply t
reconstruction algorithm to the finer axonal arborisation
cortical neurons. The overall algorithm for neuron reconstr
tion implemented in NEURA will be discussed in a forthcom
ing paper.
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