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Abstract. Two-photon microscopy in combination with novel fluores-
cent labeling techniques enables imaging of three-dimensional neu-
ronal morphologies in intact brain tissue. In principle it is now pos-
sible to automatically reconstruct the dendritic branching patterns of
neurons from 3-D fluorescence image stacks. In practice however, the
signal-to-noise ratio can be low, in particular in the case of thin den-
drites or axons imaged relatively deep in the tissue. Here we present a
nonlinear anisotropic diffusion filter that enhances the signal-to-noise
ratio while preserving the original dimensions of the structural ele-
ments. The key idea is to use structural information in the raw data—
the local moments of inertia—to locally control the strength and di-
rection of diffusion filtering. A cylindrical dendrite, for example, is
effectively smoothed only parallel to its longitudinal axis, not perpen-
dicular to it. This is demonstrated for artificial data as well as for in
vivo two-photon microscopic data from pyramidal neurons of rat neo-
cortex. In both cases noise is averaged out along the dendrites, lead-
ing to bridging of apparent gaps, while dendritic diameters are not
affected. The filter is a valuable general tool for smoothing cellular
processes and is well suited for preparing data for subsequent image
segmentation and neuron reconstruction. © 2004 Society of Photo-Optical In-
strumentation Engineers. [DOI: 10.1117/1.1806832]
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1 Introduction These advances in imaging technology are prerequisites

Two-photon laser scanning microscdmas become a princi- for the automatic reconstru_ction of neuronal morpholqgies.
pal technique for high-resolution fluorescence imaging in AN automatic reconstruction would allow fast, high-
various biological tissues because it provides intrinsic optical hroughput determination of characteristic anatomical fea-
sectioning and exceptional depth penetratian reviews see tures, for instance the d_engirlt_lc branching pattern of different
Refs. 2, 3, and ¥ Imaging depths in the cortex of more than neuronal cell types. This is in contrast to standard manual
500 um are now routinely achieved and image acquisition reconstruction techniques, which are time-consuming and
from 1 mm inside a mouse neocortex has been demonstratedlighly dependent on the experience of the human anatdfnist.
recently’> Combined with techniques for labeling individual They also suffer from scaling problems due to shrinkage in
neurons or sparse populations of neurons, e.g., dye loadingfixed tissue. Automatic reconstruction would furthermore help
via intracellular pipettés’ or the expression of fluorescent to establish large databases of neuronal morphologies for bio-
proteins®~*°two-photon microscopy can resolve neurons with physical modeling of cellular and neural network signal pro-
high resolution in vivo, i.e., within the intact brain of living  cessing.

animals®* Thus, 3-D fluorescence images of neurons can be A number of different approaches for automatically recon-
obtained including their entire dendritic morphology within structing neuronal morphologies have been reported
their native environment. previously*~1° Recently, Maravall et df automatically re-
constructed a large number of layer 2/3 pyramidal neurons for
an analysis of experience-dependent plasticity of their den-
dritic branching pattern. However, results in general strongly
depend on the quality of the image data and in most cases
require preprocessing. One of the major obstacles for devel-
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Fig. 1 Comparison of the anisotropic diffusion filtering with Gaussian blur. (a) One slice of a data stack from a two-photon scan of a pyramidal cell
in layer 2/3 of rat somatosensory cortex in vivo. This slice is at a depth of 280 um inside the brain. The loading pipette is visible at the top of the
image next to the cell body. (b) Filtering with anisotropic diffusion. The filter was used with two time steps, a time step size of 7=2.0 and a scanning
range of =10 um. (c) Data after Gaussian blur with o-=2.8~2\/(2) (measured in voxel).

oping an automatic reconstruction algorithm is the noise in- nal, (2) close apparent gaps in the structure, &)dpreserve
herent in low-level fluorescence images. For example, using dendritic diameters. For this purpose we designed an aniso-
two-photon microscopy for in vivo imaging, both excitation tropic diffusion filter which is now implemented in our soft-
light and fluorescence light are increasingly scattered with ware toolbox, NEURA(NEUron Reconstruction Algorithim
imaging depth, causing a reduction in signal-to-noise ratio Here, we present this diffusion filter designed specifically for
and making it difficult to fully resolve thin, weakly fluores- three-dimensional data of nerve cells. The filter is tuned to
cent neural process¢Fig. 1(@]. As a result, simple thresh-  delete disturbanceemove noiseand to bridge open struc-
olding procedures for image segmentation might erroneously tures while preserving dendritic diameters. In this respect, it
insert gaps into dendritic branches, preventing the reconstruc-performs much better than Gaussian smootligeg Fig. 1 for
tion of a fully connected dendritic tree. Therefore, preprocess- a first impression The primary goal of our algorithm is to
ing of the raw fluorescence data in order to increase the facilitate automatic reconstruction of neuronal morphology,
signal-to-noise ratio while preserving dendritic structure is an for example in order to import them into the NEURON simu-
essential prerequisite for automatic segmentation and subselation environmertt for in silico experiments.
quent morphological reconstruction.

One way to preprocess the raw data is filtering. A wide
range of filters exist in image processing. The most basic fil- 2 Material and Methods
ters calculate an average brightness value in a region around 62 1
central voxel. Other, more sophisticated filters use spectral ©*
analysis to extract signals within a defined bandwidth, such asLinear isotropic diffusion is described by the partial differen-
low- or high-pass filters. Both methods show a close connec- tial equation(pde):
tion to the theory of partial differential equatiotsActually
the well-known Gaussian blur is an excellent low-pass fiter. gu(x,t)=Au(x,t),xe R" 1)
But none of these methods are sensitive to the local structure
of the processed data.

One of the first approaches to include information about u(x,00=ug(x) on R" 2
the data into the filter was made by the direction-pyramidal
decomposition methot? Alternatively, wavelet shrinkage has  The solution tends to zero far. In image processing the
been used for preprocessing neuronal image d&teOne of timet is an artificial parameter. In case of linear diffusion the
the advantages of the wavelet approach is the use of multiplefilter makes sense only if the time is limited to a finite value
scales. A shortcoming is that the filtering threshold in the as can be seen comparing linear diffusion with a simple
wavelet space cannot be determined automatically. One of theGaussian blur. Gaussian blur or Gaussian smoothing is an
reasons is that the proper threshold depends on the local noisexcellent low-pass filter in image processing. It attenuates
statistic within the image. Because this threshold varies high frequencies in a monotonic w&The close connection
throughout the data set an optimal value is difficult to find and between linear diffusion and Gaussian blur gives a deeper
thus no optimal denoising strategy can be given in general. A understanding of the filter process.
more general way to take the data structure into accountis the Let a gray-scale imaga be represented by a real-valued
use of diffusion filters which have a long tradition in image mappinguy(x) € LY(R"). The linear diffusion procesd) can
processing” They have mostly been used as convolution fil- pe solved analytically for any time>0 by using the Green’s
ters like Gaussian blurring. Nonlinear diffusion filters were function for the diffusion equation, which is actually the
first used by Perona and Malik in 1987Since then many  Gaussian kern&t
specific filters have been used to address a wide range of
problems. For instance, an anisotropic diffusion filter con-
trolled by local properties of the data was used by Lefzen
reconstruct DNA structures.

In our case the filter has to prepare the data for segmenta-
tion. The filtering process aims (@) separate noise and sig- The Gaussian smoothing af, is described by:

Linear Isotropic Diffusion and Gaussian Blur

1 — (x—y)2/4t
UG )= | oY) gopme® dy. (3
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u(x,o)=(Uug* G,)(X) way to detect the axis of the dendrite locally. Motivated by
Lenzen and Rumpt we decided to use the moments of iner-
_ J 1 - (x-y)20%y @ tia.
= Bnuo()/)' (2mo?)2® y.
Apparently the time has the same effect as the blurring pa- 2.3.1. Moment of inertia
rametero (that means filtering an image stack with linear T0 determine the local structure of the data in a three-
diffusion t=2.0 is the same as using a Gaussian blur with dimensional image stack we consider the gray value function
a?=4.0). For finite times a linear diffusion filter yields a @S a density function of a real body. Then we can calculate the
smoothing of the picture, which is desirable to suppress noise (loca) moments of the virtual body, by choosing an integra-
on large homogeneous faces. On distinct structures like sharption volumeB (Xo) around the voxel of interest. The param-
edges, however, isotropic diffusion leads to undesirable blur- €ter & represents the size of the integration volume and is

ring of the structure as illustrated in the examples below.  referred to as scanning ranfeThe local moments are de-
fined by:

2.2 Nonlinear Anisotropic Diffusion * mass:

To av_oid broadening of edges, whilc_e prese_rvin_g th_e smoothing MO(XO)ZJ u(x)dx, (6)

of uniform surfaces, we need an anisotropic diffusion operator Bs(*o)

which leads to isotropic diffusion on surfaces, but avoids
cross-diffusion at sharp edges. This implies that the operator ¢ center of mass:

[see Eq.1)] needs to depend on the structure of the image, N 1
i.e., it must be nonlinear. In 1987, Perona and Mdliktro- M (XO):WXO)J; u(x)xdx, ()
: : ; o0
duced such a nonlinear operator using the gradient of the data
to control the diffusion. Thgir al_gorit_hm was d(_asigned_ specifi- « moment of inertia:
cally to preserve edges with diffusion occurring mainly per-
pendicular to the gradient of the image data in order to en- MZ(XO)ZJ U(X)[X—MY(xp) |@[x—M¥(xp)]dx, (8)
hance edges in two dimensions. More recent results using a Bs(%0)
gradient-controlled approach can be found in Refs. 26 and 27. with ® being the outer product.
Mathematically speaking, modeling @onlinear aniso-
tropic) diffusion process means to solve the following bound- ~ The eigenvectors of the moment of inertia are the main
ary value problem: axes of inertia. The eigenvalues contain information about the
spatial structure. The size of the integration volume, the scan-
du=V-(D(u)-Vu) on R*xQ ning range, is a critical parametéee below.
U(X,O):Uo(X) on Q 2.3.2 Example
The eigenvectors and eigenvalues of the moment of inertia of
(D(u)-Vu)-A=0 on R*xdQ (5) a hexahedroisee Fig. 2 can easily be calculated. The tensor

, . calculated at the origin is:
with the permeability tensob(u). In our caseQ CR® de-

scribes the image data volume,(x) the raw data set, andl abc 0 0
the outer normal at the volume boundaXy. The third equa- ) 1 3
tion states that no flux crosses the image boundary, i.e., no M=(x)= 12 0 ab’c 0 . )
signal is lost from the image. 0 0 abc

In the case oD being the identity this is the linear isotro-
pic diffusion, which we have already seen in E@). The
choice of the tensdDd (u) is crucial for the performance of the
filter. Note that time is no longer just a blurring parameter.

The corresponding eigenvectors and the eigenvalues are given

Because of the nonlinearity (u) the solution does not nec- L 0 0
essarily tend to zero far—«; see Ref. 27. Instead a steady Vi(0)={ O f, V5(0)=| 1], V50)=| 0], (10
state solution of the equation might exist. To choose an ap- 0 0 1

propriate permeability tensdd (u) we need to extract struc-
tural information from the raw gray value datéx,t). al:liza%q Otzzlizab?’C, agzlizab@ (11

2.3 Structure Detection

Fluorescence images often are too noisy to use a gradien
criterion to control the diffusion direction. More information . . ) .
is needed to reliably detect the object structure. In the case quuannfy the size of the eigenvalues:

filtering cellular processes, e.g., neuronal dendrites, we would . 2y ary) 3a
like to use strong diffusion parallel to the main axis of the Ci=———2, Cp=———> and cz==—, (12
dendrite but not perpendicular to it. Thus we have to find a Za Za; Za;

2.3.3 Geometry classification
tFoIIowing LenzeR® we define the following variables to
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Vi y-axis —

Z-axIls  X-axis

5 voxels

Va Fig. 4 A simple linear structure to analyze the behavior of the eigen-
a values and c; respectively to the scanning range &. The structure is
again assumed to be solid with a constant density value. The structure

/ is three voxel high (y direction) and three voxel deep (z direction).
;\. C

integration volumes the algorithm tends to detect an isotropic
Fig. 2 Direction of the eigenvectors of the moment of inertia of a structure (§={3,5,7}) while for integration volumes large
zexa.hedron..The struc.ture is assu.med to be sollfi with a constant enough to reach over the g&p=9) a cylindrical structure is
ensity function. a,b,c: the three sides, V;,V,, V;: the main axes of . =, I
inertia. identified. Therefore it is important to know the scale of the

structure to be detected. Consequently the algorithm can be

tuned to detect small structures or large structures. For ex-
the a; are sorted byr; > ay,> as. ample, for enhancing dendritic branches we usually choose an
integration size of 1Qum. For enhancement of smaller struc-
tures such as dendritic spines a smaller scanning range of
about 3um has to be used.

1. RemarkThec; in Eq. (12) are normalized in the following
way: 2¢;=1 and0=c,C,,C3<1.

Consequently, the; can be visualized by a state triangle; see
Fig. 3. A high yalue ofc1. means that the local structurg & 535 Construction of D(u)
sembles a cylinder, a high value of a plane, and a high ) - -

value ofcs an isotropic structure. The parametefscan be We are now in a position to construct the permeability tensor

further used for geometry classification as shown in the fol- D(u). We defineD(u) such that diffusion occurs only paral-
lowing example. lel to the axis of the tube, but not perpendicular to it. The

dominating eigenvectov, of the moment of inertia gives us
the local main direction of the structure. So we separate the
diffusion direction Vu into two, (Vu), and (Vu);, with
(Vu)p~V1:0.

Technically speaking this means to transform the vector
Vu into the eigenspace of the diffusion tensor and multiply
the first component with unity, the others with a nearly zero
constante (which is necessary for well-posedngsSo we
finally setD from Eq. (5) to:

2.3.4 Example

We calculate the eigenvectors, eigenvalues, ancilier the
structure from Fig. 4 in the voxel next to the gap. The inte-
gration volume is plotted around the voxel.

Table 1 shows how the values of, c,, andcs change
according to the integration siz® The dominating eigenvec-
tor (DEV) changes when the integration size grows and fi-
nally they converge as can be seen from Table 1. For small

100
D(u=B| 0 e 0|BT (13
0 0 €

with B=(V,V,,V3) and €>0 [with V; the eigenvectors;
compare with Eq.(10)]. This means that the filter always
causes diffusion into the direction of the largest eigenvalue of
the local tensor of inertia, even if the local mass is small or
nearly isotropic. We found this to be the optimal strategy
when preparing neuronal image data for subsequent segmen-
tation (see discussion in Sec).However, for other applica-

Table 1 Dependence of the c¢; on the integration size & in pixels.

scanning range 6=3 8=5 6=7 6=9 6=11

oy = |

& =0

< 0.00 0.00 0.23 0.75 0.84

cy 0.53 0.00 0.00 0.00 0.00

c3 0.47 1.00 0.77 0.25 0.16
DEV Y.z X,y,z X X X

Fig. 3 Visualization of the normalized values c; using a state triangle.
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tions of the filter it may be advantageous to switch off local
diffusion if the data within the scanning range is close to
isotropic, or to apply planar diffusion i, is large.

2.4 Numerical Solution

2.4.1 Discretization and solver

In order to solve the partial differential equatifgg. (5)] we

use a semi-implicit time discretization and a finite volume
spatial discretization. The semi-implicit scheme is advanta-

geous compared to the fully explicit time scheme because the

time step size can be increased without losing staBflifor
time discretization a simple backward-Euler scheme was
used. Starting from

du=V-(D(u)Vu) (14
we obtain:

t+1_ t

u +
. =V.-(D(u)Vu'tt)

c

(19

(where 7 is the time step size without uiitFor spatial dis-
cretization a finite-volume method was usede Ref. 3D In

this method each voxel is surrounded by a control volume
);. The distance between two voxels lis To obtain the
discrete nodal valuafﬁl assigned to voxael, we introduced

the following equation:

t+1__ t

t+1
Upi = Upj

.
o U, |
|Qi|[; g

Lﬂi[D(UL,i)V‘PJ‘]'ﬁdSJV'-

(16)
The ¢; are standard bilinear finite element basis functins.
The integral is approximated by using numerical integration
with several integration pointig, . Finally we get the linear
algebraic equation

(17

(I-7A)uf t=ul,

with

1

where|S,| is the size of the subare®,C 9(); corresponding
to ipx. We evaluated the integral by using a standard mid-
point rule. Due to the boundary condition in E.6) it is
sufficient to consider in Eq16) only inner integration points
ipxe Q) and to ignore boundary integration points e d€}.

To solve EQ.(17) we used a conjugated gradie(@G)
solver (see Ref. 3], which is a standard iterative solver for
linear algebraic systems.

2.4.2 Computational effort

Nonlinear anisotropic diffusion filtering . . .

Table 2 Convergence of CG solver for a 129° voxel image stack
(where @ is the average convergence rate).

=02 =06 =10 =30 =50 =100
Time [s] 71 111 131 230 300 408
lterations 6 10 12 22 29 40
0 0.0319 0.1344 0.2148 0.4304 0.5272 0.6201

system. Table 2 shows the number of iterations and the time
needed to solve the linear algebraic equations up to a defect
reduction of10 8. The results show the typical increase of
number of iterations with increasing However for our com-
putation this increase is not practically significant.

2.5 In vivo Two-photon Imaging

Two-photon imaging was performed as described in Ref. 32.
Rats were anaesthetized with urethane. A sri2aik 2 mm)
craniotomy was made over barrel cortex and the dura was
removed. The craniotomy was covered with agh+1.5%,
type IlI-A, Sigma in the following solution(in mM): 135
NacCl, 5.4 KCI, 1MgCl,, 1.8 CaCl,, 5 HEPES. A glass cov-
erslip was positioned over the agar. This reduced motion of
the cortex during recording and imaging.

Neurons were filled with the soluble fluorescent indicator
Alexa 594 using the whole-cell patch-clamp technique. Pi-
pettes with 4—6 M) open tip resistance were filled with the
following intracellular solution(in mM): 135 K gluconate, 4
KCI, 10 HEPES, 1MNa,-phosphocreatine, 4 Mg-ATP, 0.3 Na-
GTP, 0.2% biocytin, 0.02 Alexa 594pH 7.2; 291-293
mOsn). Recordings were obtained blind, as described in Ref.
33.

Two-photon microscopy was performed using a custom-
built microscope? The specimen was illuminated with
840-nm light from a pulsed Ti:sapphire laser with a repetition
rate of 80 MHz and 100- to 150-fs pulse widthlira 900,
Coherent. Excitation light was focussed onto the specimen
using a40x, NA 0.8 water immersion objectiveZeiss.

Emitted fluorescence was deflected by 680-nm LP dichroic
mirror and detected with a photomultiplier tul¢amamatsh
An infrared-blocking filter(Calflex, Linog and an emission
filter (HQ 610/75M, Chrompwere used in the detection path-
way. Scanning and image acquisition were controlled using
custom softwargR. Stepnoski and M. Mier, Lucent Tech-
nologies, New Jersey and MPImF, Heidelberg

3 Results
3.1

We designed a simple data stack containing a Y-like structure
to test how the filter works under controlled conditions. In

Testing the Filter on Atrtificial Data

Because a simple CG solver is used without preconditioner Fig. 5a) one slice of thiss5® voxel data stack is illustrated.

the computational complexity ©(n®?) in each time step. To
keep the computational effort low we implemented a special

The Y has three gaps, each of them being three voxels wide.
We applied the anisotropic diffusion filter to this data set,

algorithm for the computation of the moments. We calculate with a scanning range of 10 vox€gEig. 5(b)]. As expected
the moments by using a fast Fourier transform, which trans- the filter preserved the diameters of the Y branches but filled
forms the convolution into a multiplication. Another impor- in the gaps. For comparison we also applied a simple isotropic
tant feature is the convergence of the solver for the linear diffusion to the same data sifig. 5(c)]. Although the linear
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" Diistanee (voxel) T Dist .:|.|-:'|- { x'm'n.-‘i |

Fig. 5 Test data stack. A simple test data stack with a Y-like structure was created to analyze the behavior of the filter. The structure is assumed to
be solid with a density value of 1. The diameter of the Y-like structure is three voxels. The background is defined with density value zero. The
structure has three gaps, each of which is three voxels wide. (a) One slice of the initial data. The red lines mark the area where the data for the
signal profiles shown in (d), (e) were taken from. (b) Nonlinear anisotropic diffusion. (c) Linear isotropic diffusion. The normalized signal profiles
demonstrate the effect of the anisotropic filter and the Gaussian smoothing. (d) Signal perpendicular to the branch. Anisotropic filtering conserves
the signal profile. However, Gaussian blurring distorts the signal structure. Sharp edges are lost. (e) Signal along the branch. Both filters fill the gap
in nearly the same way.
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Fig. 6 A layer 2/3 pyramidal neuron was imaged using two-photon microscopy. The data stack consists of 216 slices each 2 um thick. Each slices
has 256 pixels. One pixel is 1 um in x direction and 1 um in y direction. (a) Sagittal view of a maximum intensity projection of the raw data. (b),
(c) Two slices of the raw data. The loading pipette is visible on the left side of the images. (d), (e), (f) Same data after anisotropic diffusion filtering.
The broken red lines in (d) indicate the depth where the two slices shown are taken from. In (g), (h), (i) a Gaussian blurring is applied to the raw
data.

dendrite 1 2 3 4 i [} i

raw

anisotropic

(Gaussian }

7.5 prm

Fig. 7 Close-up views of dendritic branches. The conservation of the diameter of the dendrites was one of the major goals for the design of the filter.
In this figure the dendrites which were used to measure the change in the diameter are shown. See Table 3 for results of the measurement of the
full width at half maximum.
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Table 3 Changes in diameter (FWHM) after anisotropic diffusion filtering or Gaussian blurring com-
pared to raw size (in um): f/raw is the ratio of the FWHM after anisotropic diffusion to the raw FWHM,
and G/raw is the ratio of the FWHM after Gaussian blur to the raw FWHM. Seven different dendrites have
been evaluated.

dendrite 1 2 3 4 5 6 7 mean s.d.
raw 1.45 0.65 2.15 1.25 1.3 2.05 2.3
filtlered 1.35 1.25 1.55 1.0 0.95 1.35 1.5
Gauss 2.1 2.25 2.95 2.3 2.35 2.8 2.65
f/raw 0.93 1.92 0.72 0.80 0.73 0.66 0.65 0.92 0.45
G/raw 1.45 3.46 1.37 1.84 1.81 1.37 1.15 1.78 0.78

filter closed the gaps similar to the anisotropic filter, the di- deep inside the tissue, whereas the anisotropic diffusion fur-
ameters of the branches were severely broadened. Because dher enhances the signal-to-noise ratio of these fine structures.
the enlargement of the structure and the conservation of the For automatic reconstruction of the dendritic tree it is very
mean gray value the peak signal level of the isotropically important how dendritic diameters are affected by the filter.
filtered image is reduced compared to the anisotropic case. To quantify the diameters we again measured the FWHM of

To further quantify the differences between anisotropic and seven dendrites of different sizes. Some of them were parallel
isotropic filtering, we measured the spatial intensity profiles to the coordinate axis, some were obligisee Fig. 7. The
parallel and perpendicular to one brarétigs. 5d) and Fe)]. effects of these filters are shown in Table 3. The anisotropic
Broadening of this structure was analyzed by calculating the filter has little effect on dendritic diametéon average they
full width at half maximum(FWHM) for the raw data set, and  shrink by a factor 0f0.92+ 0.45) whereas Gaussian blurring
for the anisotropically and isotropically filtered data set, re- almost doubles the diameter on averdgepansion by a fac-
spectively (using linear interpolation The anisotropic filter tor of 1.78+0.78). In Fig. 9a) the (normalized signal profile
maintained the half width of the branctFWHM,,,=6, of dendrite number 5 is shown.
FWHM_pisotropic= 5-84, measured in pixejs In contrast the We next examined whether the filter bridges gaps in two-
FWHM was increased with linear filterind FWHMgqyss photon microscopic data. Therefore we first enlarged one slice
=6.91). Because of the step-like nature of the artificial data of the data set and measured the signal profile along one den-
the anisotropic diffusion even caused a slight reduction of the drite. In Fig. 8a) the same raw data as in Fig. 6 are shown on
FWHM. The spatial profiles parallel to the branch demon- an expanded scale. FigurébB shows the data after aniso-
strate how both filters fill the gap in nearly the same \W&ig. tropic filtering. The box indicates the areas which are pre-
5(e)]. This is expected because along detected linear struc-sented in Figs. @) and &d). In Fig. 8c) there are disconti-
tures anisotropic diffusion and Gaussian blurring convolve the nuities in the dendritic branch as bright pixels are separated
data nearly equally. by dark pixels. After anisotropic filtering these discontinuities

are closedsee Figs. &l) and 9b)]. The filter effect is clearer
. . when looking at a projection. FigureseB and 8f) are maxi-

3.2 Testing the Filter on Two-photon Images mum intensity projections of 10 slices. Dendrites, which were
We next applied the anisotropic diffusion algorithm to 3-D difficult to follow in the raw data set, are easy to find in the
fluorescence image stacks of pyramidal neurons in rat neocor-filtered data, for instance, the dendrite in the upper left corner.
tex obtained using two-photon microscdpyeurons were
filled with a fluorescent dye via the whole-cell patch pipette. o )
The data typically consisted of several hundreds of slices 3-3 Application to Binary Data
taken at 2um focal increments, each consisting 266 One of the purposes of the filter is to preprocess the data for
X 256 pixels(8-bit depth. A maximum intensity side projec- segmentation of objects. Even with this preprocessing some
tion of a raw data set is shown in Fig(@. In addition, two gaps may remain after a segmentation process. In this case it
example slices from different focal planes are shdWwigys. is convenient to apply the anisotropic diffusion filter a second
6(b) and Gc)] to illustrate how noisy the raw images are. In time on the segmente(@.e., binary data. An example appli-
particular, thin basal dendrites close to the soma are difficult cation of the filter on binary data is shown in Fig. 10. The
to resolve. Following anisotropic diffusion the signal-to-noise filter bridges the remaining gaps while preserving the diam-
ratio was improved and the thin dendrites can easily be sepa-eter of the dendrites.

rated from backgroungFigs. §d)—6(f)]. To gain an impres- To illustrate how the filter facilitates automatic reconstruc-
sion of how the filter works we again compared the filter tion of the dendritic morphology, we compared reconstruc-
result to the Gaussian bllFigs. 6g)—6(i); o=2.8 voxel] tions of the same layer 2/3 pyramidal neuron without and with

The difference between isotropic and anisotropic filtering is prior filtering (Fig. 11). Filtering included a first pass of an-
particularly evident at the basal dendrites. After Gaussian fil- isotropic diffusion filtering on the raw data, subsequent seg-
tering it is nearly impossible to see thin dendrites in slices mentation, and a second pass of the filter on the segmented

1260 Journal of Biomedical Optics * November/December 2004 * Vol. 9 No. 6
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/4 Perpendicular B Parallel

Distance (um) Distance (um)

Fig. 9 Conservation of dendritic diameters and closure of gaps in the two-photon fluorescence data stack. The plot in (a) shows the normalized
signal profile perpendicular to dendrite 5 in Fig. 7. Again the anisotropic diffusion filtering conserves the signal profile whereas the Gaussian
blurring causes a widening of the signal. In (b) the closing of a gap is demonstrated by showing the (normalized) signal along the dendrite marked
in Fig. 8(a) by red arrows. There is nearly no difference between anisotropic diffusion and blurring.

(binary) data. The unfiltered and filtered data were then both dendrites. The filter is controlled by adapting the diffusion
segmented, reconstructed using the same algorithm and patensor in a way to produce smoothing along but not perpen-
rameter settings, and visualized using the NEURON simula- dicular to the structure. We have demonstrated that aniso-
tion environment* In both reconstructions the main apical tropic filtering preserves dendritic diameters in a set of artifi-
dendrites are well detected. However, the fine basal dendritescjal test data and in two-photon microscopic images of
and the thin side branches of the neuron are missing in theneocortical neurons. In addition it bridges apparent gaps in
case of no pre-processififig. 11a)] whereas these structures images of dendrites, which result from poor signal-to-noise
are present following application of the anisotropic diffusion ratio, by smoothing along the dendritic axis similar to a
filter [Fig. 11(b)]. This is particularly evident for the fine basal  Gaussian blurring filter. It should be noted that dendrite diam-
dendrites deep within the neocortex. A detailed discussion of gters can only be resolved accurately if they are larger than
results obtained with different reconstruction procedures will {he gptical resolution of the microscope system. This is a fun-

be presented in a forthcoming paper. damental limitation, which is not overcome by anisotropic
diffusion filtering. For thin dendrites the diameters obtained
4 Discussion therefore represent an overestimate of the true diameters be-

We have presented a method for filtering two-photon micros- cause they are convolved with the point spread function of the
copy data of neuronal morphologies. The method is based onmicroscope. However, in any case anisotropic diffusion filter-
anisotropic diffusion in three dimensions. The key idea of the ing does not introduce an additional systematic bias in den-
algorithm is the use of the local moments of inertia to reliably dritic diameters.

detect the dimensionalitfisomorph, planar, or lineaand the The anisotropic diffusion filter was implemented using a

orientation of the morphological structures, particularly of semi-implicit scheme for time discretization and a finite-

Fig. 10 Nonlinear anisotropic filter applied to binary data. During the reconstruction process filtering on binary data is needed. These figures
illustrate how the filter can be used on binary data, too. The initial binary data was obtained from the same raw data as used in Fig. 6. (a) Initial
binary data. The data was filtered by nonlinear anisotropic diffusion with 7=2.0, two time steps, and §=10 um. The result is shown in (b). The
same region as in Fig. 6 was chosen for analyzing the data at higher magnification (c), (d). The gaps in (c) are closed in (d). The diameter is nearly
unchanged.
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Fig. 8 Zooming into one slice illustrates further how the filter enhances the quality of the data. One slice of the raw data from Fig. 6 is presented
in (a). The red arrows mark the line where the signal profiles along the dendrite [see Fig. 9(b)] were measured. The blue box indicates the area from
which panel (c) and panel (d) respectively were taken from. (b) Data after nonlinear anisotropic diffusion filtering. (c) and (d) Initial data (filtered
data) at higher magnification. (e) and (f) Maximum intensity z projections of ten slices of the raw and the filtered data respectively are illustrated.
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ture a general filter algorithm can be used, offering the possi-
bility of automated filtering of large numbers of data sets.
Nevertheless it will be interesting to compare the present ap-
proach to the wavelet shrinkage method used in Ref. 21.
Mrazek et aP* showed for the one-dimensional case that the
Perona-Malik diffusivity or the Weickert diffusivity have a
corresponding wavelet shrinkage. This means that certain dif-
fusion processes can be described by wavelet shrinkage. In
the future it may be possible to extend this connection be-
tween anisotropic diffusion filtering and wavelet transforma-
tions to the three-dimensional case.

For those who are interested in trying the anisotropic dif-
fusion filter by themselves we offer a sample program in Ref.
35.

We are currently developing a new software toolbox,

NEURA, designed for automatic reconstruction of neuronal
morphologies, which includes the anisotropic diffusion for
data preprocessing. Preliminary results indicate that the com-
bination of the anisotropic filter with a sophisticated segmen-

tation algorithm can deliver a good restoration of the neuron

Fig. 11 Automatic reconstruction of neuronal morphology from two-
photon fluorescence data (same layer 2/3 pyramidal neuron as in Fig.
6). The morphology of soma and dendrites is presented using the
simulation program NEURON.?* (a) Result of segmentation and re-
construction without prior anisotropic diffusion filtering. (b) Result of
filtering, segmentation, and a second pass of the filter over the seg-
mented (binary) data, followed by the same segmentation and recon-
struction algorithms with the same parameter settings as in (a).

shape. Even fine dendrites can be tracked using graph tracking
algorithms, yielding a reconstruction of the branching pattern
of the neuron. Here the next challenge will be to apply the
reconstruction algorithm to the finer axonal arborisation of
cortical neurons. The overall algorithm for neuron reconstruc-
tion implemented in NEURA will be discussed in a forthcom-

ing paper.
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ing. The signal-to-noise ratio is enhanced such that the differ-
entiation between foreground and backgrouselgmentation

can easily be done by a simple local thresholding algorithm. 7-

The smooth signal profile along structures and the large gra- ¢
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side the cortex. Anisotropic diffusion filtering therefore
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