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ABSTRACT

We present a status report on a study on the effects of instrumental polarization on the fine structure of the
stellar point spread function (PSF). These effects are important to understand because the the aberration caused
by instrumental polarization on an otherwise diffraction-limited PSF will likely have have severe consequences for
extreme high contrast imaging systems such as NASA’s proposed Terrestrial Planet Finder (TPF) mission and
the proposed NASA Eclipse mission. The report here, describing our efforts to examine these effects, includes
two parts: 1) a numerical analysis of the effect of metallic reflection, with some polarization-specific retardation,
on a spherical wavefront; 2) an experimental approach for observing this effect, along with a status report
on preliminary laboratory results. The numerical analysis indicates that the inclusion of polarization-specific
phase effects (retardation) results in a point spread function (PSF) aberration more severe than the amplitude
(reflectivity) effects previously recorded in the literature. Preliminary in-lab results are consistent with our
numerical predictions.
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1. INTRODUCTION

Breckinridge & Oppenheimer (2004) published a numerical study on the effects of variations in reflectivity from
an off-axis F'/1.5 parabolic telescope primary mirror on the resulting point spread function (PSF), in the context
of high-contrast imaging. That study investigated reflectivity variations across a curved mirror surface due to
variations in the angle of incidence for light rays striking different parts of the mirror. Those reflectivity variations
are a form of pupil apodization. The authors calculated that these reflectivity variations affected the PSF by a
magnitude on the order of 1075 of the peak intensity. They noted that this result was particularly important
to high contrast imaging experiments such as TPF or Eclipse, which require supression of the on-axis PSF to
factors of ~ 10'°. Hence, a 10~° term must be investigated and understood.

Figure 1, from Breckinridge & Oppenheimer (2004), shows their predicted differences between an ideal PSF
from a circular, unapodized, unobscured aperture, and the aperture created by an F/1.5, off-axis, primary
mirror. The authors note that the radiation forming the narrow core of the PSF, which establishes the system
resolution, reflects from the edge, or the steepest portion of the mirror. This light therefore experiences the
greatest polarization attenuation. This phenomenon results in the bifurcated PSF displayed in Figure 1.

This type of bifurcated PSF has been shown experimentally by Fainman & Shamir (1984) and Kohazi-Kis
(2005). In the more recent paper, Kohazi-Kis employs an experimental setup similar to the one described in this
paper, where a quickly converging beam (Gaussian-shaped in their case) encounters a flat, reflecting surface.
The incident beam is polarized with a polarizing sheet and the outcoming focused PSF is then measured in the
original and orthogonal directions. Figure 2, reproduced from that document, shows their measured PSF.

The Figure 2 data results from a setup using two 4-mm diameter focusing lenses (one converges the beam
onto the reflecting surface, the other images the resulting PSF) with 50 mm focal lengths. A 633 nm He-Ne
laser serves as the light source. In contrast to our experimental setup, described in Section 4, the Kohazi-Kis

Further author information: (Send correspondence to J.C.C.)
J.C.C.: E-mail: Joseph.Carson@jpl.nasa.gov, Telephone: 1 818 354 0674

Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter,
edited by John C. Mather, Howard A. MacEwen, Mattheus W.M. de Graauw,
Proc. of SPIE Vol. 6265, 62653M, (2006) - 0277-786X/06/$15 - doi: 10.1117/12.672518

Proc. of SPIE Vol. 6265 62653M-1



Figure 1. This figure from Breckinridge & Oppenheimer (2004) shows the difference between an ideal PSF from a circular,
unobscured aperture and an F'/1.5, off-axis, primary mirror. Axes indicate distance from the image center, in units of
A/D.

Figure 2. This figure from Kohazi-Kis (2005), reproduced with that author’s permission, shows bifurcated PSFs, measured
in the lab, resulting from a fast converging beam reflecting off an angled mirror flat.
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setup uses a slower beam (F/12.5 instead of our F/2.7) and a glass prism as the reflector; our setup employs a
protected silver coating currently used for a number of telescope coatings. The Kohazi-Kis result verifies that
this bifurcation phenomenon exists. In our experimental study, we hope to also verify this effect, but with
measurements for a dielectric surface proposed as a candidate for future NASA space-based telescopes.

Balasubramanian et al. (2005) consider cross-polarization as it may degrade contrast for a TPF coronagraph.
In particular, they consider various mirror coatings that may be employed to reduce phase differences that
occur between orthogonal polarizations. Their study forms a compliment to ours in that they suggest different
coatings that one may test in-lab to try and mitigate these PSF aberrations. We hope that, in the future, we may
collaborate with that group to provide laboratory compliments to some of their more analytic considerations.

Our study begins at a similar starting point as the Breckinridge & Oppenheimer study, regarding the reflection
of light off a metallic mirror at a range of angles of incidence. We calculate both the amplitude and phase changes
on reflection, for two orthogonal polarizations . In doing so, we conclude that the inclusion of polarization-specific
phase effects (retardation) has a greater influence on the resulting PSFs than the amplitude effects (reflectivity)
previously calculated. The expected effect should be large enough to be seen in relatively simple laboratory
experiments.

Section 2 summarizes the general optical setup we consider. Section 3 describes our numerical predictions.
Section 4 describes our experimental setup. Sections 5 presents our conclusions.

2. GENERAL OVERVIEW OF NUMERICAL AND EXPERIMENTAL TESTS

We embarked on this study to gain insights into how a large off-axis space-based telescope mirror may, through
metallic reflection and polarization-specific retardation, induce aberrations in the imaged stellar point spread
function. The numerical and laboratory experiments proposed here do not involve reflection of a plane wave off
of a powered metallic surface, but rather reflection of a spherical wave off a tilted flat mirror. The physics of
these two configurations is quite similar, in that the angles of incidence of rays across either reflecting surface
vary with position, giving rise to variations in reflected amplitude and phase that differ between polarizations.
By measuring the resulting PSFs in orthogonal polarizations, the effect should be readily measurable. We are
aware of no study that has verified these predictions in the laboratory, with real-life telescope dielectric coatings
that may affect these predictions. In particular, we are investigating in-lab the effects of a protected silver
coating used by ITT (Rochester, NY) for a number of telescope coatings, which is also a likely candidate for any
future TPF or Eclipse mirror coating. The Jet Propulsion Laboratory (JPL) High Contrast Imaging Testbed
(HCIT; Trauger et al. 2004) group, of which J. Carson, B. Kern, and J. Trauger are members, is currently
approaching in-laboratory high-contrast results where such polarization-induced aberrations may play a role in
the final achievable performance. This fact provides a driver for the investigations described in this paper.

Results from the numerical study indicate that inclusion of polarization-specific phase effects (retardation)
has a greater influence on the resulting PSFs than the amplitude effects (reflectivity) calculated in Breckinridge
& Oppenheimer (2004). The expected effects should be large enough to be seen in relatively simple laboratory
experiments. Preliminary lab results report flux ratios consistent with our numerical predictions; uncertainties
are currently too high to verify or contradict the shape of the predicted PSF.

3. NUMERICAL PREDICTIONS

The optical train used for the numerical analysis corresponding to this experiment was quite simple: a perfectly
spherical converging wavefront reflects off a flat mirror, and propagates to a focus. For simplicity, we define
“vertical” as the direction defined perpendicular to the propagation direction of the chief ray, lying in the plane
of incidence of the chief ray with the mirror, and assume that the chief ray’s angle of incidence is 45°. For each
point in a grid in the input pupil, the angle of incidence and plane of incidence is calculated at the flat mirror.
The complex reflection coefficients for p-polarized (in the plane of incidence) and s-polarized (perpendicular to
the plane of incidence) light are copied from tabular data supplied by ITT from measurements on the coating
in question. The corresponding Jones matrix for each point is tabulated, relating the amplitude and phase of
output light in orthogonal linear polarizations to the amplitude and phase of input light in orthogonal linear
polarizations.
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Figure 3. Analytic results for orthogonally polarized PSF's, given a vertically polarized input. Vertical polarization is on
the left and horizontal on the right. The images are logarithmically scaled. The intensity in 3b is ~ 0.003 that of Ia.

If there were no retardation, an input containing only vertically polarized light would produce an output
containing only vertically polarized light, and the resulting PSF could be analyzed along the lines of the Breck-
inridge & Oppenheimer study. With retardation, the output polarization state depends on the location in the
input pupil, and will, in general, be elliptically polarized. By separating the output PSF, which was originally
a vertically polarized input, into vertically and horizontally polarized components, the effect of retardation can
be directly seen in the horizontally polarized PSF, without having to“subtract off” the unaberrated PSF or
make additional differential measurements or theoretical assumptions. The difference between this analysis and
traditional ellipsometry is that this analysis integrates the retardation over a number of angles and planes of
incidence, and observes in the focal plane of the spherical wavefront.

For an input F'/3 beam at 635 nm, using the protected silver coating from ITT, we predict that the“cross-
polarized” PSF (the outputted horizontal polarization, given a 100% vertical input) has 1/360 the intensity of
the orthogonally polarized PSF. The predicted PSF's in orthogonal polarizations, for a vertically polarized input,
are shown in figures 3a and 3b.

4. THE LABORATORY EXPERIMENT

Our laboratory setup includes two inter-changeable configurations, as shown in Figure 4. In both configurations,
a standard, commercially available polarizing sheet (with polarization leakage ~ 0.1%) linearly polarizes the light
emerging from a 5-micron pinhole. We orient the polarizing sheet parallel to the vertical, to maximize detection
of the cross-polarization effect. Next, an iris constrains the beam f-number while also minimizing stray light. A
following aspheric lens (effective diameter = 4 mm, focal length = 11 mm) converges the light into a fast beam,
F/2.7 in our case. Next the light either reflects off a silver coated (ITT [Rochester, NY]) flat set at a 45-degree
angle, or continues on a straight-line setup. In either case, a downstream aspheric lens (also 4 mm diameter and
11 mm focal length) focuses the emerging light onto a CCD camera (from Apogee). Before the beam reaches the
CCD camera, a calcite displacement polarizer (from Karl Lambrecht Corporation) splits the beam so that PSFs
with orthogonal polarizations image simultaneously on the detector chip.

The straight-line setup serves as a calibration comparison: PSF structure seen in the reflective setup may
be compared with the straight-line setup to verify that the mirror flat is indeed the source of an observed
fine-structure effect. The particular selection of the lenses fulfills several requirements: the existence of a fast
beam incident on the mirror ensures that the cross-polarization effect is maximized. The pinhole-image de-
magnification, caused by the first lens, ensures that the pinhole is unresolved compared to the imaged beam
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Figure 4. This schematic outlines the laboratory setup. Solid rays indicate the reflective configuration. Dashed beam
rays indicate the straight-through setup we use as a comparison calibration. The fast converging beams represent F'/2.7.
Both lenses (aspherics) have 4 mm effective diameters and 11 mm focal lengths. The lenses were selected and positioned
to create a fast-beam (making the cross-polarization effect easy to recognize), allow for a well-sampled PSF at the CCD,
and ensure an unresolved pinhole (thus mimicing a stellar point source).
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Figure 5. Experimental results for orthogonally polarized PSF's, given a vertically polarized input. Vertical polarization is
on the left and horizontal is on the right. The top images represents “straight-line” data and the bottom images represent
“reflective” data, as defined in Figure 4. The very faint PSF that may just be discerned in the upper right image represents
leakage from our polarizing sheet. The bottom-right PSF, also marginally visible, represents a combination of this leakage
(about 1 part in 1000) along with the cross-polarization term induced by the convergent beam reflecting off the mirror
flat. The images are plotted on a linear scale. The cross-polarized PSF for the “reflective” setup measures 0.4% =+ 0.3%
of the vertical polarization PSF (after polarizing sheet leakage has been removed).

diffraction pattern. Thus it effectively mimics a point source. The position and focal length of the second lens
ensures that the transmitted beam successfully focuses on the CCD camera, and with an appropriately sampled
pixel scale. The top half of Figure 5 shows the orthogonal PSFs for the straight-line setup. The reflective setup
PSF, noticeably messier (as can be seen in the two bottom images in Figure 5) contains too many un-accounted
for aberrations (perhaps a mixture of astigmatism, coma, and stray light) to produce a meaningful test of the
PSFs predicted bifurcated shape. The flux level of the cross-polarized PSF, 0.4% =% 0.3% of the orthogonal PSF
intensity (after polarizing sheet leakage has been removed) is consistent with our numerical predictions.

5. CONCLUSIONS

We have presented procedures and results from a numerical and laboratory study testing for the effects of
instrumental elliptical polarization on stellar point spread function fine structure. Our numerical experiments
indicate that polarization-specific phase effects (retardation) have a larger effect on PSF aberrations than the
amplitude (reflectivity) effects previously calculated by Breckinridge & Oppenheimer (2004). Our preliminary
experimental results are consistent with this prediction.
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