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ABSTRACT  

Group-IV monochalcogenides belong to a family of 2D layered materials. Monolayers of group-IV monochalcogenides 
GeS, GeSe, SnS and SnSe have been theoretically predicted to exhibit a large shift current owing to a spontaneous 
electric polarization at room temperature.  Using THz emission spectroscopy, we find that above band gap 
photoexcitation with ultrashort laser pulses results in emission of nearly single-cycle THz pulses due to a surface shift 
current in multi-layer, sub-µm to few- µm thick GeS and GeSe, as inversion symmetry breaking at the crystal surface 
enables THz emission by the shift current. Experimental demonstration of THz emission by the surface shift current puts 
this layered group-IV monochalcogenides forward as a candidate for next generation shift current photovoltaics, 
nonlinear photonic devices and THz sources.   
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1. INTRODUCTION  
In 2D layered materials, atomic layers with strong in-plane covalent bonds stack together via weak van der Waals forces. 
The 2D material family that has recently attracted renewed attention is group-IV monochalcogenides GeS, GeSe, SnS 
and SnSe. They are non-toxic and composed of earth-abundant elements. With high optical absorption in the visible and 
near-infrared range, combined with predicted ultrahigh carrier mobility within the layers, they are promising for 
applications in solar energy conversion and optoelectronics. Recent theoretical predictions also suggest that group-IV 
monochalcogenide monolayers combine robust room temperature ferroelectricity and ferroelasticity with giant 
spontaneous electric polarization.1-5 In-plane electric polarization results from an elastic distortion of the lattice, as the 
top and the bottom atoms shift in the armchair direction, as shown in Fig. 1(a) 2, 6. Of group-IV monochalcogenides, GeS 
and GeSe are predicted to exhibit the highest polarization, ~5 x 10−10 C/m and ~3 x 10−10 C/m at zero temperature, 
respectively.2. In-plane polarization breaks inversion symmetry of the monolayer, and can enable second order nonlinear 
optical effects such as optical rectification, a non-resonant effect, and a shift current, a resonant effect that is expected to 
dominate under above the band gap photoexcitation conditions.4, 6, 7. A shift current is an instantaneous spatial shift of 
electron density distribution along S-Ge or Se-Ge bond (Fig. 1 (a)). 6, 8, and it has been proposed as a mechanism behind 
the bulk photovoltaic effect (BPVE), a bias-free photocurrent generation that has been proposed as a mechanism for 
efficient third generation photovoltaics (Butler, Frost et al. 2015, Tan, Zheng et al. 2016). Here, we have used terahertz 
(THz) emission spectroscopy to explore generation of THz radiation in multi-layer GeS and GeSe crystals in response to 
the above band gap excitation with ultrashort laser pulses. We attribute the observed THz generation to the surface shift 
current in these 2D materials.  
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3. RESULTS AND DISCUSSION 
Excitation with 400 nm (3.1 eV) pulses ensures direct interband excitation in both GeS and GeSe. We find that both 
systems emit nearly single-cycle electromagnetic field transients (Fig. 1 (c) and (d)). Normal incidence geometry, above 
band gap, linearly polarized excitation in the absence of external electrical bias suggest that the observed emission is 
indeed a result of a shift current.10, 19.  Data shown in Figures 1(c) and 1(d) have been taken with the pump polarization 
unchanged and parallel to the THz detection. The figures shows that rotating the sample by 180° reverses the polarity of 
emission for both GeS and GeSe while the temporal shape of the waveform show only minimal change. This suggests 
the emission polarity is dictated by the symmetry breaking due to the intrinsic ferroelectric polarization, and supports the 
surface shift current as a mechanism of THz generation. Unlike the monolayers, bulk group-IV monochalcogenides do 
possess inversion symmetry, ruling out bulk shift current response. However, inversion symmetry is broken at the 
surface, indicating that the observed THz emission is due to a surface rather than bulk shift current. Shift current in 
response to photoexcitation suggests applications of these layered materials in BOVE photovoltaics and THz sources. 
Surface selectivity of THz emission in GeS and GeSe may also lead to new applications of these 2D materials in 
chemical sensing. 
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