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Abstract 

 
Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, 
edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to 
measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage 
fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. 
Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the 
world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods 
are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made 
during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by 
ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle 
contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part 
of clinical ultrasound examinations in our opinion.  
 

1. Introduction 
 

For numerous decades, the physical material properties of soft tissue have been an important topic of investigation. 
Several of the imaging techniques image fundamental attributes such as differences of mass density in x-ray computed 
tomography; proton density among other molecular properties in magnetic resonance imaging; and backscattering 
characteristics based on differences in acoustic impedance in ultrasonic imaging. The field of elastic or elasticity imaging 
in medical imaging modality is based on the hypothesis that alterations in tissue state are mirrored by alterations in the 
mechanical viscoelastic properties of soft tissues(1). Measurements of the mechanical properties of soft tissues can be 
done several ways, however the methods generally consist of two types – the application of a force or stress from the 
outside of the body and then imaging the resulting deformation (4), or applying force inside the body while measuring 
and imaging the deformation. Measurement of the deformation can be done using ultrasound or magnetic resonance 
imaging (3,7).  

 
2. Viscoelastic parameter estimation 

 
Quantitative elasticity imaging requires determination of the elastic or viscoelastic modulus of the tissue (2). Here, we 
derive some relationships between what can be measured using magnetic resonance imaging or ultrasound and 
fundamental properties, such as the Young’s Modulus, which is the ratio of unilateral stress to strain in a sample. The 
Young’s modulus is defined for compressional stress and the shear modulus is defined for shear stress, which is also the 
ratio of shear stress to shear strain. Young’s modulus E and shear modulus G are related by the Possion ratio ݒ where; 

 
ܧ  = 1)ܩ2 +  (1)          .(ݒ
 

In the following derivations, we confine our studies to soft tissues, which are water saturated, and therefore, extremely 
incompressible giving a Possion ratio of about 0.5. This produces a Young’s modulus equal to 3 times the shear 
modulus. The shear modulus can be considered complex e.g.,  

(߱)ܩ  = (߱)ଵܩ +  ଶ(߱),         (2)ܩ݅
 

where ω = 2݂ߨ is the angular frequency, ܩଵ storage modulus, ܩଶ is the loss modulus. Therefore, the complex shear 
modulus can also be written as  
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(߱)ܩ = ఘఠమ௞మ(ఠ),           (3) 
 

where ߩ is the mass density of the medium. In soft tissues, this is assumed to be ߩ = 1000	݇݃/݉ଶ and ݇ is the complex 
wave number. Shear wave velocity and shear wave attenuation can be written as these two terms: 

 
     (4) 

 
     (5) 

 
Viscoelastic materials can be modeled using a rheological approach. A widely used model in elasticity imaging is the 
Kelvin-Voigt model, which includes an elastic spring and a viscous dashpot in parallel and provides shear elasticity ߤଵ	and viscosity ߤଶ	.  
 
Shear wave velocity and shear wave attenuation can be computed giving the next 2 equations;  

 

        (6) 
 

        (7) 
 

The implications of these two equations are that shear wave velocities and attenuation are functions of frequency and the 
elastic and viscous terms of the medium. The above two equations can be solved for ߤଵ	ܽ݊݀	ߤଶ			if we can measure the 
speed cs and attenuation αs over a range of frequencies. 

 
3. The shear wave approach 

 
Sarvazyan et. al. suggested a method called shearwave elasticity imaging, SWEI (1). In this method radiation force 
produced by a focused ultrasound creates shearwaves in the tissue. This shearwave propagates out from the focal center. 
The speed of these shearwaves can be related through the equation ݏܥ = ඥߤଵ/ߩ if there is no attenuation.  

 
There are many methods of creating shearwaves including those by SSI (8), in which short high intensity ultrasound tone 
bursts are focused along a line of points in the tissue and producing shearwaves. Imaging the shearwave propagation 
requires high speed ultrasound to measure particle motion because the shear wave propagates in tissue at up to 5 meters 
per second. The most advanced modern ultrasound systems can obtain up to 10,000 frames per second and so these 
shearwaves can be measured rather easily. Shearwave velocity dispersion in various tissues have been reported 
previously in such tissues and organs as liver, kidney, brain, prostate, skeletal muscle, breast, cornea, and blood 
clots(10,13,14,19, 20, 22, 23).  

 
3.1. SDUV 

A new method of measuring shearwaves is to use shearwave dispersion ultrasound velocimetry, SDUV (12, 19). The 
speed of the shearwave is calculated by the following equation:   

 ܿ௦(߱) = ఠ∆௥∆∅  ,          (8) 
 

where ∆∅ and ∆ݎ are phase difference and distance between two observation point along the shearwave path. Linear 
regression can be used to calculate a least square estimate of the ratio for each frequency. This measurement of course is 
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