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ABSTRACT 
The relations between radiometric magnitudes and quantities associated to optical properties of 

materials (processes of reflection, transmission and emission of radiant flux by or through material media) 
have been analyzed. By studying some particular examples, we illustrate the dependence of optical properties 
of materials on the radiometric magnitude chosen and it is shown that quantities obtained from a radiometric 
point of view differ mathematically and physically from the corresponding Optics expressions.  

1. INTRODUCTION

Radiometry is a system of language, mathematics and instrumentation used to describe and measure the 
propagation of electromagnetic (EM) radiation, including the effects on reflection, absorption, transmission 
and scattering by material substances. Many textbooks on electromagnetism1-7 and optical physics8-17 analyze 
these physical phenomena. In most of them the flux of energy associated to electromagnetic radiation is 
described in terms of the time average of the Poynting vector. This average is related to the square of the 
amplitude of the electric field and it is called “intensity” or “power density”. Likewise, the reflectance and 
transmittance at an interface separating two different media or the reflectance and transmittance of a plane 
parallel plate are expressed as a function of the incident, reflected and transmitted amplitudes of the electric 
field. The basic concepts of radiometry are introduced in most undergraduate optics textbooks9,14,17. However, 
these texts do not explain in adequate detail the relation between the “intensity” and the radiometric 
magnitude called irradiance neither express the reflectance and transmittance (either at an interface or of a 
plate) as a function of the radiometric magnitudes. Other example where the link between both views (optical 
and radiometric) is far from clear is the propagation of radiation through a lossy medium. The empirical law 
which describes this behavior is the well-known exponential decay of the radiation with the distance. EM 
textbooks describe this decrease of radiation studying the decay of the amplitude of electric field with the 
traveled distance. However, in Optics books, there is a great dispersion in the magnitudes used to describe 
the exponential law and it seems that exponential decay takes always the same form regardless of the 
radiometric magnitude.  

The purpose of this article is to contribute to a better understanding in the relation between the optical 
properties of materials and radiometric magnitudes, paying special attention to the physical concepts 
underlying the equations and trying to clarify what is somewhat messed. With that purpose in mind, in the next 
section radiometric magnitudes are briefly introduced. In section 3, the definitions of reflectance and 
transmittance at an interface and the propagation of an elemental beam of radiation immersed in a lossy 
medium are analyzed as a function of radiometric magnitudes. In section 4 we develop an example which is 
found in most textbooks: the optical properties of plane parallel plates. The reflectance and transmittance by 
calculating the power fluxes at each interface of the plate have been obtained and compared with the 
corresponding optical expressions found in optics textbooks. Finally, we end with the conclusions. 

This paper is freely available as a resource for the optics and photonics education community.
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ds

2. REMARKS ON RADIOMETRIC MAGNITUDES

Let us begin regarding the principal magnitudes used in radiometry. They are displayed in Table I. The 
meanings of most of the quantities are shown by their defining equations. 

Table I. Radiometric magnitudes 

Symbol Defining equation Radiometric magnitudes 
Name         Unit 

Φ Radiant power or flux       W    

I 

ω
Φ

=
d
dI

Radiant intensity      W/sr 

M ds
dM Φ

=
Radiant exitance           W/m2

E ds
dE Φ

=
Irradiance       W/m2

L ωθ
Φ

=
ddscos

dL
2 Radiance        W/srm2 

Usually, the definition of the intensity (I) as flux per unit of solid angle, is related to point sources. However, 
the definition can be applied to extended surfaces using the concept of radiance (L).The intensity of an 
infinitesimal surface ds at θ direction respect to its normal is defined as: 

dsLcosdIθ θ=         (1) 
where L is the radiance at ds. The definition of L, stated here for a source, is extended trivially for a detector 
and even for a ray, at any point along its path. For a source, radiance may vary from point to point, and for a 
fixed point, it may vary as a function of the direction. Radiance is the most general quantity for describing the 
propagation of radiation through space. Its importance stems mainly from the invariance theorem that states 
that, in any optical system, the radiance along the path of a ray is invariant18.  

Irradiance (E) is the most important quantity for describing radiation incident on or leaving a surface when 
it is not essential to describe the directional distribution of that radiation in detail. It does not discriminate, for 
example, between very collimated radiation and radiation that is impinging from all angles. In order to take 
into account the orientation of the elemental surfaces in which the radiation impinges with respect to the 

ds

ds dω 

θ 
ray

normal

dω dΦ 
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direction of propagation of the beam, we propose the use of what we have called perpendicular irradiance, S, 
which is the radiant flux which crosses a unit area perpendicular to the direction of the flow. The definition of 
this perpendicular irradiance would be: 

θ
Φ

=
dscos

dS (2) 

which matches the definition of the time average of the Poynting vector 2
oE 

μ
ε

2
1S =  where E0 is the 

amplitude of the electric field. 

The perpendicular irradiance is equal to the irradiance when the surface element is perpendicular to the 
direction of propagation of the radiation. The propagation of the radiation is frequently studied for wave 
planes, that is, it would correspond to a parallel beam of radiation. In this case the surface is usually placed 
perpendicular to the direction of propagation (θ=0), so there is no distinction between irradiance and 
perpendicular irradiance and both magnitudes are identical to the radiation “intensity”. In this case, some 
Optics textbooks13,14,17 call correctly the “intensity” irradiance. 

The necessity of the perpendicular irradiance will be fully revealed when, in the next sections, we proceed 
to develop the reflectance and transmittance coefficients as functions of radiometric magnitudes as well as in 
the study of the propagation of radiation in a lossy medium. 

3. PROPAGATION THROUGH AN INTERFACE SEPARATING TWO MEDIA AND A LOSSY
MEDIUM 

We examine the situation where a beam of radiation passes through a smooth surface separating two 
media with different refractive indices (n1 and n2). The geometric situation is shown in figure 1. We consider 
the extremely thin surface region of a perfectly smooth homogeneous and isotropic dielectric material. This 
interface is too thin to absorb significant quantities of the radiation incident on it. The radiation incident upon 
the interface is split into two parts: some is reflected and the rest is transmitted. The angles of incidence and 
reflection (θi and θr) are identical due to considering a specular reflection. The conservation of energy at the 
interface implies: 

t
2

r
2

i
2 ddd Φ+Φ=Φ (3) 

where i
2d Φ is the element of the incident flux on

the area ds, r
2d Φ  is the element of the reflected

flux and t
2d Φ  is the element of the transmitted

flux. The definitions of reflectance and 
transmittance for incident radiation of a given 
spectral composition, polarization and geometrical 
distribution are the ratios of the reflected or 
transmitted flux to incident radiant flux:  

i
2

r
2

d

d

Φ

Φ
=ρ  and  

i
2

t
2

d

d

Φ

Φ
=τ  (4) 

θi θr 

θt 

dωi dωr

dωt

n1

n2

Li Lr 

Lt 

Medium 1 

Medium 2 

d2Φi d2Φr 

d2Φt 

Figure 1. Reflection and transmission of an incident 
beam irradiating an elemental surface ds at the 
interface. The angles of incidence and reflection are θi 
and θr (θi = θr) and θt  is the angle of refraction.  

Let’s write them as function of the different radiometric magnitudes. By applying the definition of the 
corresponding radiometric magnitude and performing simple geometrical and mathematical operations, we 
obtain the expressions of reflectance and transmittance at an interface as a function of radiometric 
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magnitudes. The obtained expressions have been depicted in Table II. Note that reflectance is always the 
ratio of the reflected quantity to the incident one. On the contrary, transmittance expression changes with the 
radiometric magnitude. Similar relations to the expressions obtained for perpendicular irradiance have been 
found in some texts14,17 but they simply call S irradiance instead of perpendicular irradiance, what is a bit 
misleading. This is not the case of the text by Born9, where reflectance and transmittance are correctly 

defined as the ratio of irradiances 
i
r

E
E

=ρ , 
i
t

E
E

=τ  , then written in terms of S, and finally, in terms of the 

electric fields amplitudes. Although in the end, in all cases ρ and τ are expressed in terms of the amplitudes, 
authors define them as ratios of different magnitudes. Therefore, it becomes absolutely necessary to use 
correctly the corresponding magnitude in order to describe accurately the optical properties of the material.  

Table II. Reflectance and transmittance at an interface as a function of radiometric magnitudes. Dependence with 
these quantities of the exponential decay of radiation in a lossy medium. 

Suppose now we have some radiation leaving the surface element ds1 in the direction θ1 and another 
surface ds2 at x distance receiving this radiation flux from direction θ2. This is illustrated on Figure 2 (a). The 
flux entering the solid angle dω1 and leaving ds1 is 1

2d Φ . The flux received by ds2 is 2
2d Φ . If the two surfaces

are immersed in lossy medium whose absorption of light results from linear response, the flux falls off 
exponentially with increasing the distance travelled in the medium:  

cx
1

2
2

2 edd −Φ=Φ (5) 

ENERGY CONSERVATION REFLECTANCE TRANSMITTANCE EXPONENTIAL LAW 

Flux 
t

2
r

2
i

2 ddd Φ+Φ=Φ
i

2
r

2

d

d

Φ

Φ
=ρ

i
2

t
2

d

d

Φ

Φ
=τ

cx
1

2
2

2 edd −Φ=Φ

L 2
2

2
1

tri
n

n
LLL += i

r
L
L

=ρ
2
2

2
1

i
t

n

n

L
L

=τ
cx

12 eLL −=

I 
t

2
2

i
2
1

θtθrθi
cosn

cosn
dIdIdI

θ

θ
+=

i

r

θ

θ
dI

dI
=ρ

t

i

θ

θ

cosn

cosn
dI

dI
2
2

2
1

i

t

θ

θ
=τ

cxe
)(ds
)(ds

dIdI
1

2
12

−

⊥

⊥
θθ =

E tri EEE +=
i
r

E
E

=ρ
i
t

E
E

=τ cx
12 e

)(ds
)(dsEE

2

1 −=

(E)⊥ i
t
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cos

SSS
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+=
i
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S
S
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here c is the attenuation coefficient which we suppose constant. This coefficient is the absorption coefficient 
when only absorbing effects are considered. If the surfaces were within a lossless medium, the flux would 
remain constant. By performing the appropriate calculations we can express this equation as a function of the 
radiometric magnitudes. The obtained equations have been included in Table II. 

(a) (b) (c) 

Figure 2.  (a) A narrow beam of radiation that pass through the elemental areas ds1 and ds2. (b) Collimated beam 
propagating along the direction indicated by the arrows.(c) Point source: Radiation flux contained in the solid angle 
dω , dΦ = Idω.  

If one has a collimated beam of radiation, that is, a bundle of approximately parallel rays propagating in 
the same direction with the associated flux contained in a small but measurable solid angle (Figure 2(b)), the 
irradiance is usually considered on a plane perpendicular to the ray. In this case, (ds1)⊥=ds1 = (ds2)⊥=ds2,  the 
irradiance and the perpendicular irradiance, are identical and the simple exponential law is satisfied with all 
radiometric magnitudes. For the case of a point source immersed in a lossy medium (Figure 3(c)), it can be 
demonstrated that simple exponential law is satisfied if the magnitude chosen is the intensity of point source. 
If the magnitude used is the irradiance or the perpendicular irradiance the obtained equation is the familiar 
inverse-square law of radiation from a point source with the exception that the radiation is being attenuating 
by the medium. These results are summarized in Table III. 

Table III. Exponential law of the radiation propagating within an absorbing medium applied to 
the case of a collimated beam of radiation and a point source. R is the radius of the point 
source (x>>R).I0 is the intensity of the point source and E0 is the irradiance on the surface of the 
point source. 

To end with this section, we would like to emphasize the importance of the different cases we have 
studied here in order to relate properly the physical situation with the appropriate radiometric magnitude. The 
next section illustrates an application of the equations we have just worked out (and displayed in Table II). 

4. CASES STUDIES: PLANE PARALLEL PLATE

A material bounded by two parallel interfaces defines an object that can reflect, transmit and absorb 
radiation incident on it. (Scattering processes are considered negligible). Let’s now obtain the optical 
properties of the plate by separating the power flux at each interface into an outgoing component and an 
incoming component. The reflectance, transmittance and absorptance of this object are defined respectively 

Collimated beam Point source 

I cx)exp(dIdI θ1θ2 −= cx)exp(II(x) 0 −=  

E , S cx)exp(EE 12 −=  
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= 2

2
0

x
Rcx)exp(EE(x)

dΦ1

ds1 ds2

dΦ2

x 

dω dΦ 

x 
ds1

ds2

θ1 
θ2

dω1
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as the fraction of flux incident upon the object that is reflected, transmitted and absorbed by the object for 
defined directions of incidence and emergence, polarization state and wavelength.  

Let’s consider an unpolarized collimated beam of radiation of wavelength λ at the direction θ1 
impinging on a plane parallel plate of a homogeneous and isotropic material of known thickness d and 
refractive index n which is surrounded by two media of index n1 and n2. The multiple reflections and 
transmissions of the incident beam are shown in Figure 3. 

Figure 3. Multiply reflected and transmitted beams in a parallel plate. The value of x is given by x=d/cosθ. The values of S 
in different positions of the beam have been plotted for incident Si =1. The expressions in parenthesis are the values of 
radiance (L) for incident Li =1. 

The reflectance and transmittance of the left interface are ρ12 , τ12, and ρ21, τ21 depending on the direction of 
the radiation (from n1 medium to n material or from the material to the n1 medium). In the same way, the 
reflectance and transmittance of the right interface are denoted by ρ23 , τ23, ρ32 and τ32. The definitions of 

4cx
211221

2
23 e−ττρρ

12ρ

2cx
211223 e−ττρ
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1cos
cose cx
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τ −
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2312 cos
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ττ −
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1223 cos
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θ
θ

τρ −

1

2cx
122123 cos
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θ
θ

τρρ −

1

4cx
1221

2
23 cos

cose
θ
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τρρ −
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n
1n 2n

1cos
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τρρ −
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these interface magnitudes as a function of different radiometric magnitudes have been displayed in Table II. 
They can be determined by using Fresnel equations, which give the ratio of reflected (or transmitted) electric 
field amplitude to the incident one. Absorption is considered by taking into account that the flux of the ray 
propagating across the material will decrease according to the exponential law.  

4.1 Radiation view 
Supposing that the incident flux is 1Φ , the total reflectance R of the plate for this situation will be the 

ratio of the sum of all the fluxes emerging to the left of the incident flux: 
( )

i
k

kr
R

Φ

Φ

=
∑

(6) 

where the summatory is extended to the total number of interreflections in the material. Taking into account 
that the direction of reflected radiation is the same for all the emergent beams and that the angles of reflection 
and incidence are equal, the next relations are satisfied: 1k coscos θ=θ  ∀k ⇒ 1k dd ω=ω ∀k ⇒ 

kcosdsdcosdsd 11kkk ∀θω=θω (collimated beam kdsdsk ∀= ). Applying these relations the reflectance
can be expressed as a function of different radiometric magnitudes as follows:  

( ) ( ) ( )

i
k

kr

11i
k

kkkkr

i
k

kr

L

L

cosdsdωL

cosdsdωL

R
∑∑∑

=
θ

θ

=
Φ

Φ

= (7) 

( ) ( ) ( )

i
k

kr

i
k

kkr

i
k

kr

E

E

dsE

dsE

R
∑∑∑

==
Φ

Φ

= (8) 

( ) ( ) ( )

i
k

kr

1i
k

kkkr

i
k

kr

S

S

cosdsS

cosdsS

R
∑∑∑

=
θ

θ

=
Φ

Φ

= (9) 

Therefore, the reflectance of the plate can be defined as the ratio of reflected to incident radiance or 
irradiance or perpendicular irradiance. Let’s perform the same calculations in order to obtain the transmittance 
of the plate. The total transmitance T of the plate will be the ratio of the sum of all the fluxes emerging to the 
right of the plane parallel plate: 

( )

i
k

kt
T

Φ

Φ

=
∑

(10) 

Now, the directions of the transmitted radiation are identical but they are different to the incident 
direction. The transmittance expressed as a function of different radiometric magnitudes will be: 

( ) ( )

11i
k

kkkkt

i
k

kt

cosdsdωL

cosdsdωL

T
θ

θ

=
Φ

Φ

=
∑∑

(11) 

In this case kcosθdsdcosθdsd 22kkk ∀ω=ω  and we can write: 
( )

11i
k

kt22

cosdL

Lcosd

T
θω

θω

=
∑

(12) 

Proc. of SPIE Vol. 9666  96661N-7



( )

i
k

kt

2
2

2
1

L

L

n

n
T

∑

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= (13) 

The equations for the transmittance as a function of irradiance and perpendicular irradiance will be: 

( ) ( ) ( )

i
k

kt

i
k

kt

i
k

kt

E

E

dsE

dsE

T
∑∑∑

==
Φ

Φ

= (14) 

( ) ( ) ( )

i
k

kt

1
2

1i
k

kkkt

i
k

kt

S

S

cos
cos

cosdsS

cosdsS

T
∑∑∑

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ
θ

=
θ

θ

=
Φ

Φ

= (15) 

It can be observed that the expressions do not depend on the material refractive index (n) and the 
direction of the interreflections (θ) and that they are quite similar to the expressions for an interface. If the 
plate is surrounded by the same medium (i.e., n1=n2), the angles of incidence, reflection and transmission are 
equal and the reflectance (transmittance) can be defined as the ratio of reflected (transmitted) to incident 
radiometric magnitude, no matter which one is chosen. 

Let’s write the reflectance and transmittance of the plate (R and T) as a function of the reflectance, 
transmittance of the interfaces, ρ12 , τ12 , ρ21, τ21, ρ23 , τ23, ρ32 and τ32. For that purpose, after choosing one 
radiometric magnitude we must apply its corresponding equations from Table II. Figure 3 shows the values 
obtained when using perpendicular irradiance (S) for the multiple reflections and transmissions between the 
two interfaces. If, for instance, radiance L were chosen, the values inside the material and at the right would 
be different from the S values displayed on figure 3, while the L values at the left of the figure would not 
change.  

The exponential law for the decreasing of radiation has been applied in the propagation of the beam 
inside the material. In this case this law does not change with the radiometric magnitude and takes its 
simplified expression (for instance, cx)exp(SS 12 −=  due to ⊥⊥ = )(ds)(ds 21 ). By performing mathematical
operations the following expressions for R and T are obtained: 

2cx

2cx

e1
eR

2321

211223
12 −

−

ρρ−

ττρ
+ρ=  and 

1
2

2cx

cx

cos
cos

e1

e
T

2312

2312
θ
θ

ρρ−

ττ
=

−

−
(16) 

and the law of energy conservation implies that the absorptance A of the plate is given by  A=1-R-T. 

In the case that the external medium be the same ( n1=n2 and cosθ1=cosθ2), using Fresnel equations we 
get ρ=ρ=ρ=ρ 122123 , 2

2112 )(1 ρ−=ττ ,  so that equations (16)  are simplified to: 

2cx2

2cx2

e1

e)(1R
−

−

ρ−

ρ−ρ
+ρ=    and 

2cx2

2cx2

e1

e)(1T
−

−

ρ−

ρ−
= (17) 

If  absorption processes are neglected (e-cx≈1),  the result is: 

ρ+

ρ
=

1

2
Rrad    and  

ρ+

ρ
=

1

-1Trad (18) 

Applying the Snell laws n1sinθ1=nsinθ , nsinθ=n2sinθ2 and their differential equations the expression for the 
transmittance is reduced to: 
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These magnitudes, that we call radiation reflectance and transmittance, only depend on ρ, that is, on 
the incident angle and the refraction indexes. 

4.2 Optical view 
Let’s pay attention to the corresponding expressions that appear in many Optics textbooks for the last 

case (i.e., same external medium n1=n2); these books9,10,17 usually provide the total reflected and transmitted 
“intensity”, from which the reflectance and transmittance of the plate are easily calculated by performing the 
corresponding ratios. The reflection and transmission expressions of a plate when absorption processes are 
negligible are given by: 

21122
12

4
12

2
12 rrwith
cosr2r1

r)2cos(2
R =

δ−+

δ−
= (19)       

( ) 2
1221122

12
4
12

2
2112 r1ttwith

cos2rr1

tt
T −=

δ−+
= (20) 

where δ is the phase difference of two consecutive waves ⎟
⎠
⎞

⎜
⎝
⎛ θ

λ
π

=δ cosnd4 , and r and t are reflection and

transmission coefficients; the latter are defined as the ratio of reflected/transmitted electric field amplitudes to 

the incident electric field amplitude, 
( )
( )i0

0

E

E
r r= , 

( )
( )i0

0

E

E
t t= , and they are determined by applying the Fresnel 

equations. Taking into account the definition of S as a function of the electric field amplitude, considering 
nonmagnetic materials and using properly the definitions displayed in Table II, the correct values for 

ρ , 12τ , 21τ  are obtained in this case as 2
21

2
12 rr ==ρ , 2

12
11

12 t
cosn

ncos
θ
θ

=τ ,  2
21

11
21 t

ncos
cosn

θ
θ

=τ . We can then 

transform equations (19)-(20) into: 

δρ−ρ+

ρδ−
=

cos21

)cos2(1
R

2opt    and     
δρ−ρ+

ρ
=

cos21

)-(1T
2

2
opt (21) 

4.3 Comparison 
 Let’s compare now equations (18) and (21). Obviously, they are not the same. It can be noticed in 

equations (21) the dependence on the phase difference of two consecutive waves which implies that these 
expressions depend on the thickness of the plate. On the contrary, equations (18) do not depend on the 
thickness. As an example, we plot in Figure 4 both transmittances as a function of thickness for an uncoated 
calcium fluoride window at 486nm19 at two angles of incidence. Calcium fluoride has very low absorption at 
this wavelength, so the equations (18) and (21) are appropriate for this case. The curved lines are values 
obtained from eq. (21) and the straight line from eq. (18). As it can be seen, the optical values oscillate around 
those calculated from the radiation method and the oscillations change with the value of angle of incidence. 
The maximum dispersion of the Ropt and Topt values is ΔRopt=ΔTopt=4ρ/(1+ρ)2, which only depends on ρ. In 
Figure 5, it can be seen the dependence of both transmittances (Trad and Topt  ) and the dispersion  ΔTopt with 
the angle of incidence. The dispersion is constant and small at low angles and increases strongly at higher 
angles of incidence. As we have noticed in the previous figure, the Topt values oscillate around the Trad 
values.How can we explain from a physical point of view these results? 
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Figure 4. Transmittance values for an uncoated calcium 
fluoride window at 486 nm as a function of thickness at 
normal incidence (a) and at incidence θ=45º (b). The 
curved lines are the optical values and the black straight 
lines are Trad. 

Figure 5.  Trad, Topt (d=0.002m) and maximum dispersion 
of Topt as a function of angle of incidence for an 
uncoated calcium fluoride window at 486 nm. The 
dashed lines are the optical values and the black straight 
lines are Trad. 

At first sight, and due to the fact that the optical equations (21) have been obtained taking into account 
interference processes, it may seem that performing some kind of averaging to the phase difference δ 

( θ
λ
π

=δ cosnd4 ) in the optical equations can lead us to the equations (18). But, what type of average? By

supposing a homogeneous and isotropic material, the net variation of δ can be expressed as the following 
expression: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θΔθ

λ
+θ

λ

λΔ
+θ

λ
Δ

π=δΔ sindncosdncosdn4
2

(22) 

Hence, we conclude that the phase differences produced by the waves inside the plate can adopt any 
value, if: 

ΔTopt 

ΔTopt 

Proc. of SPIE Vol. 9666  96661N-10



i) The plate surfaces are rough, meaning that the thickness (Δd) and the surface normal (Δθ) vary
randomly

ii) The incident light is a non-monochromatic radiation with a spectral bandwidth (Δλ).

By assuming that any of these effects take place, the Ropt and Topt could be averaged over all possible values 
of δ. If the following averages are performed:  

∫ ∫
π π

δ
δρ−ρ+

ρδ−
π

=δ
π

>=<
2

0

2

0
2opt d

cos21

)cos2(1
2
1dR

2
1R (23) 

∫ ∫
π π

δ
δρ−ρ+

ρ−
π

=δ
π

>=<
2

0

2

0
2

2
opt d

cos21

)(1
2
1dT

2
1T (24) 

we obtain <R>=Rrad and <T>=Trad, that is, the optical equations averaged over δ become into the radiation 
expressions for reflectance and transmittance. So, clearly distinguishing these two types of magnitudes is 
very important not only from a basic physical point of view but from a practical viewpoint. Accurate reflectance 
and transmittance measurements are necessary for calibration spectrometers or for determination of the 
optical properties of materials. It is also important to distinguish both magnitudes in optics catalogues19, where 
the transmittances of the colored glass filters, the neutral density filters, the interference filters, the uncoated 
windows, etc., are shown. Evidently, the expressions for transmittance which describe the corresponding 
behaviours are different for each type of filter; therefore we must take into account the above considerations, 
such as, the roughness of the plate or the spectral bandwidth of the radiation in order to correctly interpret the 
given information.  

5. CONCLUSIONS

1) The definition given in Electromagnetic and Optics textbooks of the “intensity” as the time average of the
amount of energy which crosses per second a unit area perpendicular to the direction of the flow is the
radiometric magnitude irradiance only if the direction of the propagation is perpendicular to the surface.

2) The reflectance ρ at an interface can always be expressed as the ratio of the reflected radiometric
magnitude to the incident one. In contrast, the transmittance τ expression changes with the radiometric
magnitude. Furthermore, the decreasing exponential law of the radiation propagating within an absorbing
medium depends on the radiometric magnitude used. The more conventional version of this law
corresponds to the case of a collimated beam of radiation, expressed as a function of irradiance. In this
situation, the simple exponential law is satisfied with every radiometric magnitude. For other cases, the
expression of the law may change. So one has to be very careful while interpreting this very well known
equation.

3) Equations for reflectance R and transmittance T have been obtained for the case of a plane parallel plate
by computing the total power flux (reflected and transmitted) at each interface. These expressions show a
dependence on radiometric magnitudes similar to the one displayed by the reflectance ρ and the
transmittance τ at an interface.  Only if the plate is surrounded by the same medium, R and T can be
defined as the ratio of the reflected (transmitted) to the incident radiometric magnitude, no matter which
one is chosen. The expressions obtained for this simple case have been compared with the
corresponding ones found in Optics textbooks. Not only the mathematical expressions differ, but also the
inner physical meaning, since the effect of interferences is only considered in the optical view. Both
expressions (the radiation ones and the optical ones) coincide if the plate does not have smooth and
parallel surfaces and/or the radiation presents a broad spectral bandwidth.
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