Measurements of birefringence induced in K9 and fused silica specimens by cracks produced by 1064 nm Nd∶YAG laser have been presented. The Birefringence data is converted into the units of stress, thus permitting the estimation of residual stress near crack. The intensity of residual stress in K9 glass is larger than that in fused silica under the same condition. The similarity of residual stress distribution along the y-axis reveals that the nature of shock wave transmission in optical materials under 1064 nm laser irradiation is the same with each other. The value of residual stress can be influenced by laser parameters and characterization of optical material. Simulation based on a theoretical model giving the residual stress field around a crack is developed for comparison with experiment results. The probability of initial damage and the direction of the energy dissipation in cracks determine the residual stress distribution. The thermal stress coupling enlarges the asymmetry of residual stress distribution. Residual stress in optical material has a strong effect on fracture and should be taken into account in any formulation that involves the enhanced damage resistance of optical components used in laser induced damage experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.