Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.
KEYWORDS: Thermal modeling, Performance modeling, Infrared radiation, Skin, Radiation effects, Atmospheric modeling, Solar radiation, Temperature metrology, Data modeling, Solar radiation models, Far infrared, Mathematical modeling
The characteristic of the self-infrared radiation of airplane-skin is very important for the stealth performance of airplane. Based on the theory of the airplane-skin temperature field, the distribution of the atmospheric temperature field and the principle of the black-body radiation function the self-infrared radiation model was established. In specified flight conditions, the influence of the atmospheric temperature, the speed of flight, the emissivity and the sight angle detection on the self-infrared radiation of the airplane skin were analyzed. Through the simulation of infrared radiation, some results under different flight states are obtained. The simulation results show that skin infrared radiation energy mainly concentrate on the far infrared wavebands, and various factors have different effects on the infrared radiation of skin. This conclusion can help reduce the infrared radiation and improve the stealth performance of airplane in the engineering design and the selection of flight conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.