An all-fiber system based on the principle of optical waveguide self-imaging for coherent beam combination (CBC) system is designed. A square fiber is used as the beam combination device for all-fiber CBC system. The self-imaging characteristics of the square fiber are studied. The self-imaging effect of the square fiber is verified by theoretical simulation and experiment. The square fiber has good self-imaging characteristics and is suitable for CBC using its self-imaging characteristics.
To ensure sufficient absorption of tandem-pumping energy, a large-scale aluminophosphosilicate fiber with 55 μm core and 400 μm inner-clad in diameter, i.e., a 55/400 Yb-APS fiber, was experimentally fabricated by using modified chemical vapor deposition system combining with chelate precursor doping technique. Based on an all-fiberized master oscillator power-amplifier laser setup tandem-pumped by 1018 nm fibber laser, a 150 W 1080 nm seed was amplified to 11.18 kW successfully, along with an optical-to-optical efficiency of 79.7%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.