In this paper, an end-to-end optimization of optics and image processing which consider angle of incidences is proposed. By considering the various angle of incidences to the optics, the optimized system can capture and reconstruct a real image even for non-paraxial input light. The optimization pipeline includes diffractive wave simulation, effects from wavelength differences, and image processing. Several points spread functions are used to simulate captured images for tilted input light. Captured images are reconstructed by different deconvolution kernels according to the sub-section of the images. To apply the system to real-world experiments, we consider the limitation of diffraction angle for given memory constraints and differences between manufacturing and sensor resolution by using Fourier optics. We demonstrate the simulation results of the proposed approach by applying it to various angle of incidences.
KEYWORDS: 3D displays, Microscopy, 3D image processing, In vivo imaging, Fourier transforms, Image resolution, Video, Video acceleration, Charge-coupled devices, Computer simulations
Here, we present dual-dimensional microscopy that captures both two-dimensional (2-D) and light-field images of an in-vivo sample simultaneously, synthesizes an upsampled light-field image in real time, and visualizes it with a computational light-field display system in real time. Compared with conventional light-field microscopy, the additional 2-D image greatly enhances the lateral resolution at the native object plane up to the diffraction limit and compensates for the image degradation at the native object plane. The whole process from capturing to displaying is done in real time with the parallel computation algorithm, which enables the observation of the sample’s three-dimensional (3-D) movement and direct interaction with the in-vivo sample. We demonstrate a real-time 3-D interactive experiment with Caenorhabditis elegans.
A head-mounted compressive three-dimensional (3D) display system is proposed by combining polarization beam splitter (PBS), fast switching polarization rotator and micro display with high pixel density. According to the polarization state of the image controlled by polarization rotator, optical path of image in the PBS can be divided into transmitted and reflected components. Since optical paths of each image are spatially separated, it is possible to independently focus both images at different depth positions. Transmitted p-polarized and reflected s-polarized images can be focused by convex lens and mirror, respectively. When the focal lengths of the convex lens and mirror are properly determined, two image planes can be located in intended positions. The geometrical relationship is easily modulated by replacement of the components. The fast switching of polarization realizes the real-time operation of multi-focal image planes with a single display panel. Since it is possible to conserve the device characteristic of single panel, the high image quality, reliability and uniformity can be retained. For generating 3D images, layer images for compressive light field display between two image planes are calculated. Since the display panel with high pixel density is adopted, high quality 3D images are reconstructed. In addition, image degradation by diffraction between physically stacked display panels can be mitigated. Simple optical configuration of the proposed system is implemented and the feasibility of the proposed method is verified through experiments.
A method for realizing a three-dimensional see-through augmented reality in Fourier holographic display is proposed. A holographic optical element (HOE) with the function of Fourier lens is adopted in the system. The Fourier hologram configuration causes the real scene located behind the lens to be distorted. In the proposed method, since the HOE is transparent and it functions as the lens just for Bragg matched condition, there is not any distortion when people observe the real scene through the lens HOE (LHOE). Furthermore, two optical characteristics of the recording material are measured for confirming the feasibility of using LHOE in the proposed see-through augmented reality holographic display. The results are verified experimentally.
To capture the three-dimensional (3D) information of microscopic (micro) object, the light field microscopy (LFM) has been studied. A lens array is inserted into the conventional microscope and 3D information of micro object is captured in single shot. However, since the lateral resolution decreases severely because of lens array, the integral floating microscopy (IFM) is proposed. The IFM is modified version of the LFM which concentrates on the lateral resolution rather than the angular resolution by changing the location of specimen and the lens array. The specimen should be located at the front focal plane and the lens array should be located at the back focal plane of the objective lens in the IFM but it is hard to locate the lens array into the back focal length of the objective lens because the back focal length lies in the barrel of the objective lens in general. In this paper, we propose the modified version of the integral floating microscopy which can place the lens array at the optimum position. The structure of the whole system is changed and the relay lens is added to relay the back focal length outside. By placing the lens array at the optimum position, the captured information could be maximized, and by changing the focal length of the relay lens, the field of view (FOV) mismatch problem can be also mitigated. The relationship between the captured information and the specification of the system is analyzed and proper experiments are presented for the verification.
We propose a one-shot dual-dimension microscope which captures 2D/3D information simultaneously based on light field microscopy. By locating a beam splitter into a relayed light field microscopy system, the simultaneous capture of both 2D and 3D information is possible. Two digital cameras are synchronized and simultaneously capture 2D and 3D information, respectively. We also discuss about the way to present 2D and 3D information together efficiently, and the way to develop the 3D depth image quality with the high resolution 2D image information.
KEYWORDS: Cameras, Integral imaging, Imaging systems, 3D displays, 3D image processing, Image sensors, Charge-coupled devices, LCDs, 3D visualizations, Associative arrays
Our objective is to construct real-time pickup and display in integral imaging system with handheld light field camera. A micro lens array and high frame rate charge-coupled device (CCD) are used to implement handheld light field camera, and a simple lens array and a liquid crystal (LC) display panel are used to reconstruct three-dimensional (3D) images in real-time. Handheld light field camera is implemented by adding the micro lens array on CCD sensor. Main lens, which is mounted on CCD sensor, is used to capture the scene. To make the elemental image in real-time, pixel mapping algorithm is applied. With this algorithm, not only pseudoscopic problem can be solved, but also user can change the depth plane of the displayed 3D images in real-time. For real-time high quality 3D video generation, a high resolution and high frame rate CCD and LC display panel are used in proposed system. Experiment and simulation results are presented to verify our proposed system. As a result, 3D image is captured and reconstructed in real-time through integral imaging system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.