This paper presents the preliminary study on the fluid-structure interaction (FSI) analysis of dynamic intraocular pressure (IOP) in the human eye. Because Glaucoma, a chronic disease of the optic nerve, can lead to blindness, the monitoring of IOP through tonometry is essential to prevent the increase of IOP. One of the most common tonometry methods to estimate IOP includes measuring corneal deflection by using either a direct contact or non-contact (e.g. air puff) impact force. Then, the dynamic characteristics of IOP should be investigated for improved correlation to IOP monitoring systems. In this paper, we develop a finite element model of a human eye as a spherically shaped structure filled with inviscid pressurized fluid to solve a problem of a fluid-coupled structural interaction of eye. The structural shape effects due to change in IOP are examined, and the proposed model is modified to further examine by including the mechano-luminescence (ML) membrane acting as IOP monitoring element. The effect of biomechanical parameters such as the ML membrane thickness is investigated based on the air puffy type applanation tonometry models.
This paper presents the preliminary study on the dynamic characteristics of the basilar membrane (BM) within the cochlea of inner ear. The BM is a vibrating element that varies in width and stiffness like a string on an instrument. While low frequency sounds vibrate near the apex (at the maximum length), high frequency sounds vibrate near the base of the cochlea (near the round and oval windows). Over the last decades, this frequency selectivity has been utilized for acoustic transducers by mimicking the cochlea tonotopy: passive frequency selectivity and transform from acoustic sound into frequency signal of hair cells in the organ of Corti. In previously reported studies, the frequency selectivity was simply achieved by physical parameters, such as length and thickness of beam array although the motion of the BM is generally described as a traveling wave. In this study, fluid-structure coupled acoustic analysis of vibrating BM within the cochlea of inner ear is performed to describe the actual motion of BM. The new approach different from the cantilever beam array –based approach will be then investigated for improved frequency selectivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.