With the development and application of digital cameras, especially in education, a great number of digital video recordings are produced in classrooms. Taking Beijing Normal University as an example, 3.4 TB of videos are recorded every day in more than 200 classrooms. Such huge data is beneficial for us, computer vision researchers, to automatically recognize students' classroom actions and even evaluate the quality of classroom teaching. To focus action recognition on students, we propose Beijing Normal University Large-scale Classroom Student Action Database version 1.0(BNU-LCSAD) which is the first large-scale classroom student action database for student action recognition and consists of 10 classroom student action classes from digital camera recordings at BNU. We introduce the construct and label Processing of this database in detail. In Addition , we provide baseline of student action recognition results based our new database using C3D network.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.