Photoacoustic tomography is a potential and noninvasive medical imaging technology. It combines the advantages of
pure optic imaging and pure ultrasound imaging. We have explored photoacoustic imaging with different filters, such as
RL, SL, Modi-SL arid Kwoh-Reed, which take important roles on reconstructed images. The results of simulations and
experiments show that the filter of Kwoh-Reed can restrain noise effectively and improve the contrast of images
compares with the filters of RL, SL, ModiSL in the presence of strong noise. A Q-switched Nd:YAG laser operating at
532nm was used as light source. The laser had a pulse width of 7ns and a repetition frequency of 30Hz. A needle PVDF
hydrophone with diameter of I mm was used to detect photoacoustic signals.
Photoacoustic imaging combines the contrast advantage of pure optical imaging and the resolution advantage of pure ultrasonic imaging. It has become a popular research subject at present. A fast photoacoustic imaging system based on multi-element linear transducer array and phase-controlled focus method was developed and tested on phantoms and tissues. A Q switched Nd:YAG laser operating at 532nm was used in our experiment as thermal source. The multi-element linear transducer array consists of 320 elements. By phase-controlled focus method, 64 signals, one of which gathered by 11-group element, make up of an image. Experiment results can map the distribution of the optical absorption correctly. The same transducer array also can operate as a conventional phase array and produced ultrasound imaging. Compared to other existing technology and algorithm, the PA imaging based on transducer array was characterize by speediness and convenience. It can provide a new approach for tissue functional imaging in vivo, and may have potentials in developing into an appliance for clinic diagnosis.
Photoacoustic tomography is a potential and noninvasive medical imaging technology. It combines the advantages of pure optic imaging and pure ultrasound imaging. Photoacoustic signals induced by a short pulse laser cover a wide spectral range. We have explored the frequency spectrum of absorbers with different sizes and the influence of photoacoustic signals with different spectral components on photoacoustic imaging. The simulations and experiments demonstrated that the major frequency ranges of photoacoustic pressures of absorbers with diameters of ~cm, ~mm and hundreds of mm are about 20kHz~300kHz, 70kHz~2.5MHz and 400kHz~20MHz, respectively. The low spectral components of photoacoustic signals contribute to the non-boundary region of absorbers, and the high spectral components contribute to small structures, especially, to boundaries. It suggests that the ultrasonic transducers used to detect photoacoustic pressures should be designed and selected according to the frequency ranges of absorbers.
A technique has been developed to simultaneously acquire ultrasound and photoacoustic (PA) images base on a linear transducer array. The system uses conventional ultrasound for rapid identification of potential target(s). Once a target is identified, the ultrasound echo and PA signals can be simultaneously obtained with optimized excitation and signal collection sequence. The corresponding ultrasound impedance and optical absorption images can be reconstructed with an algorithm similar to that used for conventional ultrasound imaging. The approach can effectively reduce the artifacts associated in conventional filter back-projection algorithm used in PA imaging by linear scanning. The technique provides a potential approach for practical applications.
A real-time photoacoustic (PA) imaging system based on multi-element linear transducer array was developed and test on phantoms. A Q switched Nd:YAG laser operating at 532 nm and 20Hz repeat rate was used in our experiment as thermal source. The multi-element linear transducer array consists of 320 elements. By phase-controlled method, 64 signals, one of which gathered by 11-group element, make up of an image. It was acquired in only about 3 seconds. Phantom experiment results can map the distribution of the optical absorption correctly. Compared to other existing technology and algorithm, the PA imaging based on transducer array was characterize by speediness and convenience. It can provide a new approach for tissue functional imaging in vivo, and may have potentials in developing into an appliance for clinic diagnosis.
Photoacoustic tomography is a potential and noninvasive medical imaging technology. It combines the advantages of pure optic imaging and pure ultrasound imaging. Photoacoustic signals induced by a short pulse laser cover a wide spectral range. We have explored the influences of attenuation of photoacoustic signals, which vary according to frequencies, to the quality of reconstructed photoacoustic images. It reveals that the attenuation of low frequent components are less than that of high frequencies, and the latter is more important for photoacoustic imaging with high resolution. Based on the ultrasonic attenuation theory, the photoacoustic imaging with rectification of the attenuation of different frequent component was performed. The experiments results show that this method improves the resolution of reconstructed images, which improves from 0.3mm to 0.2mm. A Q-switched Nd:YAG laser operating at 1064nm was used as light source. The laser had a pulse width of 6ns and a repetition frequency of 20Hz. A needle PVDF hydrophone with diameter of 1mm was used to detect photoacoustic signals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.