Hyperspectral imaging is applied in a wide range of defense, security and law enforcement applications. The spectral data caries valuable information for tasks such as identification, detection, and classification. However, the capturing of the spectral information, together with the spatial information, requires a significant acquisition effort. In the recent years we have developed several compressive hyperspectral imaging techniques demonstrating reduction of the captured data by at least an order of magnitude. However, compressive sensing techniques typically require computational heavy and time consuming iterative reconstruction algorithms. The computational burden is even more prominent in compressive spectral imaging due to the large amount of data involved. In this work we demonstrate the utilization of a convolutional neural network (CNN) for the reconstruction of spectral images captured with our Compressive Sensing -Miniature Ultraspectral Imager (CS-MUSI). We discuss the challenges of training the CNN for CS-MUSI and analyze the CNNbased reconstruction performance.
In the recent years, we have developed several architectures for compressive hyperspectral (HS) imagers. The compressive sensing (CS) design has allowed the reduction of the enormous acquisition effort associated with the huge dimensionality of the HS data. Unfortunately, the reduced sensing effort offered by the CS approach comes on the account of increased post-sensing computational burden. Conventional CS reconstruction involves algorithms that solve a ℓ1 minimization problem. Those algorithms are iterative and typically very computationally heavy. The computation burden is even more prominent when reconstructing 3D HS data, where each spectral image may have Gigavoxel size. Motivated by this, we have investigated replacing the CS iterative reconstruction step with an appropriate Deep Neural Network.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.