Patterning sapphire substrate can relax the stress in the nitride epilayer, reduce the threading dislocation density, and
significantly improve device performance. In this article, a wet-etching method for sapphire substrate is developed. The
effect of substrate surface topographies on the quality of the GaN epilayers and corresponding device performance are
investigated. The GaN epilayers grown on the wet-patterned sapphire substrates by MOCVD are characterized by
means of scanning electrical microscopy (SEM), atomic force microscopy (AFM), high-resolution x-ray diffraction
(HRXRD), and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about a 22%
increase in device performance with light output power of 13.31 mW@20mA is measured for the InGaN/GaN blue
LEDs grown on the wet-patterned sapphire substrate.
Nano-patterning sapphire substrates technique has been developed for nitrides light-emitting diodes (LEDs) growths. It
is expected that the strain induced by the lattice misfits between the GaN epilayers and the sapphire substrates can be
effectively accommodated via the nano-trenches. The GaN epilayers grown on the nano-patterned sapphire substrates by
a low-pressure metal organic chemical vapor deposition (MOCVD) are characterized by means of scanning electron
microscopy (SEM), high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL) techniques. In comparison
with the planar sapphire substrate, about 46% increment in device performance is measured for the InGaN/GaN blue
LEDs grown on the nano-patterned sapphire substrates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.