The optical properties of x-ray mirror samples are commonly measured using diffractometers based on laboratory sources; like the Bede D1 diffractometer operating at INAF-OAB. This instrument can generate a collimated x-ray beam up to 60 keV, even though the most interesting energy region for x-ray astronomy applications is usually below 10 keV. In the softest part of this range (below 6 keV), high x-ray absorption in air hinders a full and precise characterization of optical components. In this work, we present an upgrade of the Bede D1 diffractometer that extends the operative range of the instrument below 6 keV; this is done by maximizing the flux at lowest energies and by reducing absorption by means of a helium-rich atmosphere. The upgraded instrument will be used for the tests of x-ray mirrors with innovative soft x-ray coatings, with potential application to the next generation x-ray telescopes (such as ATHENA and eXTP).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.