KEYWORDS: Sensors, Field programmable gate arrays, Free electron lasers, Data processing, Electronics, Silicon, Synchrotrons, Analog electronics, Data acquisition, Diagnostics
KALYPSO is a novel detector operating at line rates above 10 Mfps. The detector board holds a silicon or InGaAs linear array sensor with spectral sensitivity ranging from 400 nm to 2600 nm. The sensor is connected to a cutting-edge, custom designed, ASIC readout chip, which is responsible for the remarkable frame rate. The FPGA readout architecture enables continuous data acquisition and processing in real time. This detector is currently employed in many synchrotron facilities for beam diagnostics and for the characterization of self-built Ytterbium-doped fiber laser emitting around 1050 nm with a bandwidth of 40 nm.
KALYPSO is a novel detector operating at line rates above 10 Mfps. It consists of a detector board connected to FPGA based readout card for real time data processing. The detector board holds a Si or InGaAs linear array sensor, with spectral sensitivity ranging from 400 nm to 2600 nm, which is connected to a custom made front-end ASIC. A FPGA readout framework performs the real time data processing. In this contribution, we present the detector system, the readout electronics and the heterogeneous infrastructure for machine learning processing. The detector is currently in use at several synchrotron facilities for beam diagnostics as well as for single-pulse laser characterizations. Thanks to the shot-to-shot capability over long time scale, new attractive applications are open up for imaging in biological and medical research.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.