Observation of clouds and precipitations with radars in millimeter waves is one of the most fruitful method to investigate those interior structures because the sensitivities for small particles and droplets are much better than those in longer wavelengths. We have developed the cloud profiling FMCA (Frequency Modulated Continuous Wave) 95 GHz Doppler Radar, named “FALCON-I” (Fig.1; FALCON=FMCW Radar for Cloud Observations), at Chiba University. FALCON-I consists of two 1-m diameter antennas and has a spatial resolution of 0.18 degree (which corresponds to 15m at the height of 5km) and ranging resolution of typically 50m. We make regular observations at zenith with the temporal interval of 10 seconds and make scanning observations with +/- 5-degree in one direction from the zenith with the interval of 15 seconds when we want to observe spatial extent of clouds.
Fig.2 shows clouds and precipitations observed with FALCON-I on 15 August 2017 at Chiba University. Time-height intensity map from 00:00-02:00 UT (09:00-11:00 JST; Fig.2a) and Doppler profile map at 00:50 UT (Fig.2b) are presented. The intensity map shows that precipitations started around 00:35 UT at the height of 5 km. The Doppler profile map shows the cloud at 5-7km in height has Doppler velocities about 0 to -2 m/s, which negative velocity means downward motion. At the bottom of the cloud i.e. 5km in height, rain droplets with the Doppler velocities of up to -6 m/s are abruptly produced within a few hundred meters in height. Terminal velocity of 6 m/s corresponds to about 2 mm diameter droplets. Rain droplets were produced intermittently in this case and one of the gropes of droplets is marked with a solid line which just started falling below the cloud bottom as shown in Fig.2b. We can recognize several groups of droplets whose inclines in Fig.2b are getting steeper with falling down. We can derive droplet number distribution N(D) from the Doppler spectra by assuming the observed velocities are terminal velocities. Successive Doppler profile maps and movies from 00:30 to 01:00 UT show dynamic phenomena in the beginning phase of precipitations such as production and acceleration of rain droplets at the bottom of the cloud, evaporation of droplets, changes of number distributions during the falling way, and so on. These results of analysis show that observations of millimeter-wave Doppler radar FALCON-I are powerful methods to investigate micro processes in clouds and precipitations.
Fig.1. Cloud Profiling Doppler Radar FALCON-I consists two 1-m antennas and observes clouds and precipitations at 95GHz with high spatial resolution of 0.18 degree.
Fig.2. Clouds and precipitations observed with FALCON-I on 15 August 2017 at Chiba University. Time-height intensity map from 00:00-02:00 UT (a) and Doppler profile map at 00:50 UT (b) are presented. The intensity map shows that precipitations occurred around 00:35 UT at the height of 5 km. The Doppler profile map shows the cloud at 5-7km in height has Doppler velocities about 0 to -2 m/s, which negative velocity means downward motion. At the bottom of the cloud i.e. 5km in height, rain droplets with the Doppler velocities of up to -6 m/s are abruptly produced within a few hundred meters. Terminal velocity of 6 m/s corresponds to about 2 mm diameter droplets. Rain droplets were produced intermittently in this case and falling as shown in (b).
We developed a low-power and high-sensitivity cloud profiling radar transmitting frequency modulated continuous wave (FM-CW) at 95 GHz for ground-based observations. Millimeter wave at 95 GHz is used to realize much higher sensitivity than lower frequencies to small cloud particles. An FM-CW type radar realizes similar sensitivity with much smaller output power to a pulse type radar. Two 1m-diameter parabolic antennas separated by 1.4m each other are used for transmitting and receiving the wave. The direction of the antennas is fixed at the zenith. The radar is designed to observe clouds between 0.3 and 20 km in height with a resolution of 15 m.
Using the developed millimeter-wave FM-CW radar at 95 GHz, we observed clouds in a campaign observation in Amami Island in March 2003, and on a sail on Mirai, a Japanese scientific research vessel, in September 2004 to January 2005 in the Arctic Ocean and the southwest of the Pacific Ocean. The radar provided good and sensitive data in these long-term observations.
We developed a cloud profiling radar transmitting frequency-modulated continuous wave (FM-CW) at 95 GHz for ground-based observations. Millimeter wave at 95 GHz is used to realize high sensitivity to small cloud particles. An FM-CW type radar would realize similar sensitivity with much smaller output to a pulse type radar. Two 1m-diameter parabolic antennas separated by 1.4m each other are used for transmitting and receiving the wave. The direction of the antennas is fixed at the zenith. The radar is designed to observe clouds between 0.3 and 15 km in height with a resolution of 15 m. Using the facility, test observations and long term campaign observations have been done. Results of observations show that the system is sensitive and stable enough to observe various clouds.
A cloud profiling radar transmitting frequency-modulated continuous wave (FM-CW) at 95 GHz is developed for ground-based observations. Millimeter wave at 95 GHz is used to realize high sensitivity to small cloud particles. Two 1m-diameter parabolic antennas separated by 1.4m each other are used for transmitting and receiving the wave. The direction of the antennas is fixed at the zenith. The radar is designed to observe clouds between 0.3 and 15 km in height with a resolution of 15 m. The system was integrated and sensitivities and stabilities have been measured. Results of test measurements of clouds show that the system is sensitive and stable enough to observe various clouds.
We have designed and developed polarizers (or polarization converter, λ/4 phase shifter) using solid anisotropic medium of sapphire for millimeter and submillimeter waverange. Prototype polarizers made of sapphire was fabricated for 90 GHz band. The diameter and the thickness of the polarizers are 50mm and 2.8mm, respectively. Characteristics of this prototype polarizer have been measured. A simple and preliminary estimation of the insertion loss and the quantity of the phase shift at present is 0.4dB and 70°, respectively. These results show that polarizers using solid anistropic medium of sapphire are applicable for millimeter and submillimeter waverange.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.