Hybrid polymers are a class of materials especially suited for micro-optical applications due to their outstanding transmission and excellent stability towards temperature, chemicals and radiation. They are solvent-free viscous liquid and therefore UV-replication has become the most established process for their usage in micro-optics manufacture. However, they have also comparable processing behavior to classical photoresists and can be processed in versatile ways offering further possibilities for 2D and 3D structuring. Herein, we report on different UV-lithographical technologies to create high-aspect and high resolution pattern with hybrid polymers.
KEYWORDS: Modulation transfer functions, Point spread functions, Near infrared, Long wavelength infrared, Lenses, Infrared radiation, Infrared imaging, Diffraction, Visible radiation
In conventional imaging, the information transfer from the object to the image plane is accomplished either with the help of a traditional lens that performs a one-to-one mapping or an unconventional lens that performs a one-to-many mapping. In the first case, the image is formed directly, whereas in the second case, the image is formed after a computation. The conventional lens approach is preferred in most cases due to the high signal-to-noise ratio achievable at each image pixel. By appealing to the fact that for most of the imaging applications, it is only the intensity, which is measured by the detector, the phase of the field in the image or focal plane is a free parameter, something that comes from the inverse diffraction transform. Therefore, it is easy to visualize that this phase of the plane wave after it transmits the lens can have multiple forms. Hence, the final choice can be made based upon specific application tailored requirements like achromaticity, depth-of-focus, wide-angle imaging, etc. This concept was exploited to design an achromatic MDL via inverse design across almost the entire electromagnetic spectrum (λ = 450 nm to 15 μm). Furthermore, a MDL with a Field Of View (FOV) up to 50° for wide-angle imaging as well as a MDL to enable an extreme Depth of Focus (EDOF) imaging of up to 6 m in the NIR were also designed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.