PLATO (PLAnetary Transits and Oscillations of stars)1 is the M3 class ESA mission dedicated to the discovery
and study of extrasolar planetary systems by means of planetary transits detection. PLATO Payload Camera
units are integrated and vibrated at CSL before being TVAC tested for thermal acceptance and performance
verification at 3 different test facilities (SRON, IAS and INTA). 15 of the 26 Flight Cameras were integrated,
tested and delivered to ESA for integration by the Prime between June 2023 and June 2024, with the remaining
flight units to be tested by the end of 2024. In this paper, we provide an overview of our serial testing approach,
some of the associated challenges, key performance results and an up-to-date status on the remaining planned
activities.
KEYWORDS: Cameras, Space operations, Stars, Design, Data processing, Control systems, Planets, Scanning tunneling microscopy, Satellites, X band, Exoplanets, Astronomical telescopes, Space telescopes
PLATO (PLAnetary Transits and Oscillations) mission is a space-based optical multi-camera photometer mission of the European Space Agency (ESA) to identify and characterize exoplanets and their hosting stars using two main techniques: planetary transit and asteroseismology. Selected as the M3 (third Medium class mission) of the ESA 2015-2025 Cosmic Vision program, PLATO is scheduled to launch end of 2026 and designed for 4 years of nominal observation. The PLATO spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems and the sun shield with attached solar arrays. The Payload Module consists of a highly stable optical bench, equipped with 26 optical cameras covering a global field of view of > 2232deg2. The PLATO spacecraft data is complemented by ground-based observations and processed by a dedicated Science Ground Segment. We describe the mission and spacecraft architecture and provide a view of the current status of development.
A STOP (Structural, Thermal, Optical and Performance) analysis has been conducted on the camera units of the PLATO space mission. The analysis is devoted to the prediction of in-orbit performance metrics that could not be otherwise verified through direct testing. The analysis presented in this paper is restricted to the so-called “static cases” which provide a snapshot of a specified thermal condition. These are intended to evaluate the camera performance over the expected operational temperature range and at zero gravity. We hereby provide a description of the model, the requirements to be tested, the simulation strategy and the performance results.
PLATO (PLAnetary Transits and Oscillations) mission is a space-based optical multi-camera photometer mission of the European Space Agency to identify and characterize exoplanets and their hosting stars using two main techniques: planetary transit and asteroseismology.
The PLATO spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems and the sun shield with attached solar arrays. The Payload Module consists of a highly stable optical bench, equipped with 26 optical imagers/cameras covering a global field of view of > 2232 deg2. The design includes two types of cameras: 24 Normal Cameras (N-CAMs) with measurement cadences of 25s and 2 Fast Cameras (F-CAMs) with a cadence of 2.5s. The PLATO spacecraft data is complemented by ground based observations and processed by a dedicate Science Ground Segment.
We describe the mission and spacecraft architecture and provide a view of the current status of development.
The global representation of aerosol, clouds, and their impact on the energy budget remains a major source of uncertainties in global models for climate predictions, but also strong weather events in numerical weather prediction. Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) mission, the sixth Earth Explorer Mission of the European Space Agency (ESA) Living Planet Programme, shall improve the understanding by three dimensional observations of global profiles of cloud, aerosol, precipitation and associated radiative properties. A major contribution will be provided by the ATmospheric LIDAR (Light Detection and Ranging), ATLID, being developed and tested by Airbus Defence and Space S.A.S in Toulouse. ATLID is a High Spectral Resolution-Polarization LIDAR and will provide vertical profiles of optically thin cloud and aerosol layers, the aerosol type, as well as the altitude of cloud boundaries. After the development, qualification and delivery of all units, ATLID integration has finally been completed and the self-standing instrument was successfully tested to demonstrate its performance under ambient and space environment conditions, in Toulouse and CSL/Liège respectively. All preliminary test results obtained up to now are very promising and indicate ATLID’s capability and compliance to all performance goals and specifications. The instrument has been now delivered, to Airbus Defence and Space GmbH Immenstaad, and integrated into the EarthCARE platform. Results of ATLID ambient test campaign, EMC, mechanical test campaign, and thermal balance test campaign, along with final performance and calibration test results shall be presented in this paper.
ESA deployed the first Doppler Wind lidar in space within its Earth Explorer Mission Aeolus. The objective of Aeolus is to provide tropospheric and lower stratospheric wind profiles globally for the improvement of weather forecasts on short and medium term. Spin-off products are profiles of atmospheric backscatter and extinctions coefficients and lidar ratio. The observations will also be used as input to air quality models and to verify climate model parameterization and predictability. After the successful launch in late August this year an intensive commissioning phase is taking place in the first three month of the mission, including the first switch on of the instrument ALADIN and its calibration in flight. First preliminary results will be presented during the talk.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.