Landmark detection is an essential step in the diagnosis of bone pathologies and pelvis morphometry. Hence, we propose a Deep Learning based method for automatic landmark detection on multi-modality hips magnetic resonance (MR) scans. Our method is based on a synergistic analysis of appearance and shape information by using deep networks for the detection of landmark candidate locations and then adjusting these locations using inter-landmark spatial properties. Our best model gives an average of 1.74 mm over all the landmarks, where 67% of the proposed landmarks are within the spatial matching error of at most 2mm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.