This will count as one of your downloads.
You will have access to both the presentation and article (if available).
In this paper, we present combination of DCS with SPI, namely a DCS-SPI. DCS-SPI provides 12,000 mode-resolved hyperspectral images in both amplitude and phase at a spatial resolution of 46 μm without the need for mechanical scanning. Furthermore, we determined thickness of a chromium layer from a phase image in the near-infrared wavelength region.
In this paper, we used second-harmonic-generation (SHG) microscopy, showing high selectivity and good image contrast to collagen molecules as well as high spatial resolution, optical three-dimensional sectioning, deep penetration, and without additional staining. Since SHG light intensity sensitively reflects the structural maturity of collagen molecule and its aggregates, it will be a good indicator for the repairing degree of the ruptured tendon. From comparison of SHG images between the 4-weeks-repaired tendon and the sound tendon in the animal model, we confirmed that SHG light intensity of the repaired tendon was significantly lower than that of the sound tendon, indicating that the collagen structure in the repaired tendon is still immature. Furthermore, we performed both SHG imaging and the tensile test for the same sample, and confirmed a correlation between them. This result shows a potential of SHG light for an indicator of the histological and mechanical recovery of the ruptured tendon.
In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront distortion.
View contact details
No SPIE Account? Create one