As the technology node shrinks, the systematic defects such as the missing and extra pattern are generated in the process of cell patterning. The defect such as the extra and missing pattern can lead to a critical failure on device. Subsequently, the systematic defect in the UBE could be an etch-gas path on proceeding the etch process and cause the quality degradation of device. In this paper, we propose an automated system to inspect the systematic defect in the cell array with the scanning electron microscope (SEM) image and the physical design. The method consists of conversion, matching, and detection. In the conversion method, the SEM image is converted into the layout using image processing such as noise reduction, segmentation and contour tracing. In the following matching method, gradient descent optimization is used to match the coordinate of layout converted from the SEM image with the coordinate of physical design. In the final detection method, the defect is detected by inspecting the patterns of two layouts. On the test of 2,500 data, we confirmed that the accuracy improved from 97% to 100% as a result of comparing the engineer's visual inspection method with the proposed method. In addition, the turnaround time (TAT) is improved by approximately 40 times. The proposed system is currently applied to DRAM products and used for the field of design for manufacturing (DFM) and manufacturing process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.