Unmanned Aerial Vehicles (UAVs) are very popular and increasingly used in different applications. For many applications, it can be very interesting to achieve UAVs collaboration. In this work, we propose the use of vision-based collaboration between UAVs. The proposed approach uses images captured by a UAV and deep learning to detect and follow another UAV. To detect the leader UAV, we developed an approach based on the deep YOLO algorithm. This approach was able to process videos at 30 fps and get high mAP for UAV detection. To follow the leader UAV, we developed a high-level control algorithm based on the use of the detected bounding box coordinates. The bounding box size and position help compute the command to send to the follower UAV. Tests were conducted in outdoor scenarios using quadcopter UAVs. The obtained results and the high mAP are promising and show the possibility of using this kind of vision-based deep learning approach for UAVs collaboration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.