With more rapid, affordable access to space and the emerging availability of large-volume fairings, owners and users of current and future space-based optical systems are desiring large-aperture or segmented-aperture primary mirrors for their missions. This demand is driving the need for new approaches to optical component fabrication to produce mirrors and mirror segments that are more cost-efficient with faster manufacturing lead times than traditional optical components. Harris Corporation is executing a mirror development strategy called Advanced Mirror Construction (AMC) to meet this need while still meeting the challenging requirements of space-based optics. A key component of this strategy is the utilization of replication to produce precision lightweight mirror components. We present the motivation and initial results for lightweight replicated, ultra-stable mirrors and mirror segments as well as other key elements of the AMC strategy.
ITT has patented and continues to develop processes to fabricate low-cost borosilicate mirrors that can be used for both
ground and space-based optical telescopes. Borosilicate glass is a commodity and is the material of choice for today's
flat-panel televisions and monitors. Supply and demand has kept its cost low compared to mirror substrate materials
typically found in telescopes. The current technology development is on the path to having the ability to deliver imaging
quality optics of up to 1m (scalable to 2m) in diameter in three weeks. For those applications that can accommodate the
material properties of borosilicate glasses, this technology has the potential to revolutionize ground and space-based
astronomy. ITT Corporation has demonstrated finishing a planar, 0.6m borosilicate, optic to <100 nm-rms. This paper
will provide an historical overview of the development in this area with an emphasis on recent technology developments
to fabricate a 0.6m parabolic mirror under NASA Earth Science Technology Office (ESTO) grant #NNX09AD61G.
The 25 m aperture Cornell Caltech Atacama Telescope (CCAT) will be the first segmented telescope of its size and precision. A new technology was required to be able to economically manufacture the segments for the primary mirror. This technology had to be a low cost, low risk, volume manufacturing process in addition to meeting all of the optical and mechanical requirements. The segments had to be lightweight (10-15 kg/m2), have high specific stiffness and be thermally stable. The segments had to have sufficient robustness for practical transport and use and be compatible with high-reflectivity coatings. ITT has designed a replicated, lightweight glass mirror solution to these manufacturing problems. This technology can be used to fabricate segments for CCAT. It can be used to fabricate segments for visible wavelength segmented telescopes or any other application requiring lightweight optics in large quantities. This technology enables the fabrication of large, lightweight mirror segments in a few weeks to a couple of months, depending on the figure requirements. This paper discusses the design of these mirrors and presents demonstrated results to date, including a 0.5 m diameter, 8 kg/m2 borosilicate mirror blank and 0.2 m diameter replicated borosilicate mirrors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.