We present our results on the generation and manipulation of high dimensional quantum frequency states of light generated with AlGaAs chips working in the telecom band at room temperature. In the case of devices based on a collinear phase matching scheme we propose a method to generate and control the symmetry of broadband biphoton frequency combs, exploiting the interplay of cavity effects and relative temporal delay between the two photons of each pair. In the case of devices based on a transverse pump configuration we demonstrate that engineering the spatial properties of the pump beam allows to produce frequency-anticorrelated, correlated and separable states, and to control the parity of the biphoton wavefunction to induce either bosonic or fermionic particle statistics. These results open promising perspectives for communication and computation protocols exploiting high-dimensional quantum states, as well as for the quantum simulation of fermionic problems with photons on an integrated platform.
High-dimensional entangled states of light provide novel possibilities for quantum information, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the frequency degree of freedom is particular attractive thanks to its robustness to propagation in optical fibers and its capability to convey large scale of quantum information into a single spatial mode. This provides a strong incentive for the development of efficient and scalable methods for the generation and the manipulation of frequency-encoded quantum states. Nonlinear parametric processes are powerful tools to generate such states, but up to now the manipulation of the generated frequency states has been carried out mostly by post-manipulation, which demands complex and bulk-like experimental setups. Direct production of on-demand frequency-states at the generation stage, and if possible using a chip-based source, is crucial in view of practical and scalable applications for quantum information technologies.
Here we use an integrated semiconductor chip to engineer the wavefunction and exchange statistics of frequency-entangled photon pairs directly at the generation stage, without post-manipulation. Tuning the pump spatial intensity allows to produce frequency-anticorrelated, correlated and separable states, while tuning the spatial phase enables to switch between symmetric and antisymmetric spectral wavefunctions, leading respectively to bosonic and fermionic behaviors of the photons. We also demonstrate the generation of non-Gaussian entanglement in the continuous variables formed by the frequency and time degrees of freedom of the photon pairs. These results, obtained at room temperature and telecom wavelength, and with a chip-based source, open promising perspectives for the quantum simulation of fermionic problems with photons on an integrated platform, as well as for communication and computation protocols exploiting antisymmetric high-dimensional quantum states.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.