KEYWORDS: Image segmentation, Cancer, Neural networks, RGB color model, Tumor growth modeling, Microscopes, FDA class I medical device development, In vitro testing, Data modeling, Image classification
New increasingly complex in vitro cancer cell models are being developed. These new models seem to represent the cell behavior in vivo more accurately and have better physiological relevance than prior models. An efficient testing method for selecting the most optimal drug treatment does not exist to date. One proposed solution to the problem involves isolation of cancer cells from the patients’ cancer tissue, after which they are exposed to potential drugs alone or in combinations to find the most optimal medication. To achieve this goal, methods that can efficiently quantify and analyze changes in tested cell are needed. Our study aimed to detect and segment cells and structures from cancer cell cultures grown on vascular structures in phase-contrast microscope images using U-Net neural networks to enable future drug efficacy assessments. We cultivated prostate carcinoma cell lines PC3 and LNCaP on the top of a matrix containing vascular structures. The cells were imaged with a Cell-IQ phase-contrast microscope. Automatic analysis of microscope images could assess the efficacy of tested drugs. The dataset included 36 RGB images and ground-truth segmentations with mutually not exclusive classes. The used method could distinguish vascular structures, cells, spheroids, and cell matter around spheroids in the test images. Some invasive spikes were also detected, but the method could not distinguish the invasive cells in the test images.
Skin cancers are a world wide deathly health problem, where significant life and cost savings could be achieved if detection of cancer can be done in early phase. Hypespectral imaging is prominent tool for non-invasive screening. In this study we compare how use of both spectral and spatial domain increase classification performance of convolutional neural networks. We compare five different neural network architectures for real patient data. Our models gain same or slightly better positive predictive value as clinicians. Towards more general and reliable model more data is needed and collection of training data should be systematic.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.